In Proceedings VIIP' 01, pages 193-202, 2001.

Using Graphics Cardsfor Quantized FEM Computations

MARTIN RUMPF
Deparment of Applied Mathematics
University of Duisburg
47048 Duisburg, Germany

email: rumpf@math.uni-duisburg.de

ABSTRACT

Graphics cards exercise increasingly more computing
power and are highly optimized for high data transfer vol-
umes. In contrast typical workstations perform badly when
data exceeds their processor caches. Performance of scien-
tific computations very often is wrecked by this deficiency.
Here we present a novel approach by shifting the computa-
tional load from the CPU to the graphics card. We represent
data in images and operations on vectors in graphics oper-
ations on images. Broad access to graphics memory and
parallel processing of image operands thus turns the graph-
ics card into an ultrafast vector coprocessor. The presented
strategy opens up a wide area of numerical applications for
hardware acceleration. The implementations of Finite Ele-
ment solvers for the linear heat equation and the anisotropic
diffusion method in image processing underline its practi-
cability.

We explain the vector processor usage of graphics cards in
detail. An extensive correspondence of vector and graph-
ics operations is given and the decomposition of complex
operations into hardware supported is explicated. We also
sketch the realization of arbitrary number formats in graph-
ics hardware and the consequences of the restricted preci-
sion. Finally, we propose slight modifications and exten-
sions which would further improve computational benefits
and extend the range of applicability of the proposed ap-
proach. Computing in image processing at 5ms for an Ja-
cobi iteration on 1282 images is exemplarily depicted as an
ideal field, where Finite Element methods can be greatly
accelerated and ultimate number precision is not required.

KEY WORDS
graphics hardware computing, hardware accelerated nu-
merical methods, anisotropic diffusion

1. Introduction

In the last two decades PC graphics hardware has devel-
oped dramatically boosting its performance, functionality
and programmability. The former line drawer has become a
graphics processor unit (GPU), which outrivals the CPU in
increasingly many computations. This enormous success
could only be accomplished so quickly, because graph-

ROBERT STRZODKA
Deparment of Applied Mathematics
University of Duisburg
47048 Duisburg, Germany

email: strzodka@math.uni-duisburg.de

ics hardware development closely followed the needs of
graphics programmers, whereas the general purpose micro-
processors could not be oriented solely towards graphics re-
quirements. In the continuation of this development there
is now a very good opportunity to upvalue the GPU to a
revolutionary fast vector coprocessor.

M otivation

In the last years graphics hardware design has been partic-
ularly sensitive to memory bandwidth problems due to a
rapidly increasing data transfer volume. As a result mod-
ern GPUs can access and transfer large data blocks tremen-
dously faster than the CPU.

In micro-processors the same problem has namely been
tackled by introducing a hierarchy of fast memory caches,
which is very good for accelerating repeated random mem-
ory accesses, but fails for large data blocks which exceed
the cache sizes. Unfortunately most scientific applications
have to handle large amounts of data and thus they suf-
fer from both the limited main memory bandwidth and the
obsolete repeated command transfer, when the same oper-
ation has to be performed on each component of the data
block. Therefore many typical scientific computing appli-
cations perform at about 1% of the peak processor per-
formance. This disastrous situation is still little acknowl-
edged. Though there are successful concepts how to signif-
icantly optimize storage and access for caching [4, 16, 2],
overall performance remains far away from peak values.
Unfortunately this will not change in near future, because
cache sizes are miles away from reaching the size of graph-
ics memory, and even then they would still lack the vec-
tor operations on entire data blocks. In conclusion we see
that when competing with typical micro-processor systems
graphics boards are much better suited for scientific appli-
cations dealing with regular large data blocks.

Many implementations of this philosophy, though they did
not always explicitly subscribe to it, have already bore
very fruitful results. In particular volume rendering, in-
cluding lighting and shading, has greatly benefited from
the exploitation of fast texturing and blending operations
[18, 5, 10]. But also further going techniques of image

analysis and filtering have found support in graphics hard-
ware functionality [11, 6, 7] and even a rather complex
application like vector field visualization has been imple-
mented [3, 8].

Goals

Going beyond rendering calculations and image transfor-
mations we want to show that the functionality of mod-
ern graphics cards has reached a state, where the graphics
processor unit may be regarded as a programmable fixed-
point vector coprocessor. Anything from basic algebraic
operations to arbitrary functions of several variables can
be mapped onto graphics hardware functionality. Observ-
ing the precision restrictions even typical discrete numeri-
cal schemes for partial differential equations can be imple-
mented completely in graphics operations.

We will show how this coprocessor usage can be accom-
plished and will demonstrate its capacity and flexibility by
implementing Finite-Element schemes for the linear heat
equation and the anisotropic diffusion model [17], used for
the edge sensitive denoising of images. But these applica-
tions really only scratch the surface of the looming possi-
bilities.

The main reason for bringing numerical computations
to graphics hardware is the formerly explained unrivaled
dominance of the GPU over the CPU in data transfer dom-
inated applications. Also, processor design orientates to-
wards general software optimizations comprising branch
predicted execution, fast local computations and cached
random memory access. It is hard to exploit these in
solvers for partial differential equations modeling various
processes on 2D or 3D domains. They would rather need
vector operations on entire data blocks and fast broad ac-
cess to large amounts of data. These are issues also put
forward -though maybe in different terms- by the graphics
community. Moreover, recent advances in graphics hard-
ware functionality clearly convey the tendency to arbitrary
algebraic operations and pipeline customization, which are
both very beneficial for numerical scheme implementa-
tions. Certainly there are some obstacles like the restricted
number formats and precision or some unoptimized parts
of the graphics pipeline, but the overall hardware design
and development amazingly fits the numerical purpose.
Therefore, our primary goal here is to support a dialog
across the disciplines of graphics hardware development
and scientific computing, which, with little effort on both
sides, could achieve astounding results. The applications
presented, demonstrate the huge potential in performance
lurking in these graphics hardware based implementations.
But many numerical algorithms still disregard hardware is-
sues and little humps in the graphics hardware still obstruct
the passage to general fast numerical computations. Hence
even minor considerations of graphics hardware issues with
respect to numerics on the one side, and development of
slightly more hardware sensitive algorithms on the other,
could result in revolutionary speedups for many applica-

tions. We hope that the forthcoming benefits will raise in-
terest in this interdisciplinary field on both sides.

Since our approach tries to bring together both concepts of
numerical analysis and graphics programming, familiarity
with one of these areas surely gives a different perspective
on the subject. We think that an alternating change of the
perspective would leave everyone unsatisfied with the pre-
sentation, so here we have chosen to focus on the graphics
perspective. To span the bridge from numerics to graph-
ics programming we must, however, utilize mathematical
language dealing with partial differential equations and its
numerical treatment.

The present paper complements and greatly expands our
recent presentation at VisSym’01 ([14]). In [14] we had to
restrict ourselves to a preliminary study of possibilities on
older graphics hardware, and have dealt only with the basic
Perona Malik diffusion model. Here we present a thorough
exposition of graphics feature exploitation for numerical
computations, and have expanded the image processing to
the full anisotropic diffusion model. Finally, the new hard-
ware supported multitexture based implementation here re-
deems the formerly drawn up prospect of effective speedup
results on nowadays PCs.

2. Computational Setting

Here we explain roughly in which ways we intend to use
the graphics card for computations. The implementations
of our applications are based on the OpenGL API [12], and
to provide accuracy we will refer to OpenGL commands in
the text, but naturally the framework presented is indepen-
dent of the API.

We assume a modern graphics card with designated texture
memory of high memory bandwidth and an equally fast
GPU. In the GPU effectively only the rasterization engine
is strained, since no other primitives than textured quads of
fixed size are drawn. The texture memory should be able
to store the algorithm dependent number of auxiliary image
operands of the requested size, e.g. 1282%3%16 = 0.75MB
of texture memory for 1282 RGB images in case of the
anisotropic diffusion, discussed in Section 7..

The basic idea of the computing is to use the blending ca-
pacities and the imaging subset or the texture environment
functions and its extensions to perform algebraic operations
on images. We will call the first approach the fragment
based implementation and the second the texel based im-
plementation. In both cases the texture memory is used to
contain an array of images, which hold the initial, interme-
diate and final data of the calculations.

In the fragment based implementation the back buffer is
used to combine intermediate results through blending and
to apply extended image operations via glCopyPixels. In
the texel based implementation the multitexture extension
is needed to enable the combination of several textures and
the result is stored in another texture. Since currently one
cannot render directly to a texture, the back buffer is used as
a temporary target, from which glCopyTexSubl mage trans-

fers the result to the target texture. Figure 1 gives an visual
overview of the settings.

‘ textures ‘ ‘ textures ‘
(\ blending T
- - muftitexture
:mag;f:g back environment | g, back
operations buffer functions buffer
|

Figure 1. On the left the setting of the fragment based
implementation using blending functions and the imaging
subset. On the right the texel based implementation us-
ing multitextures with texture environment functions and
its extensions.

Let us still sketch the overall data flow during program
execution. In the beginning initial data is loaded to main
memory and then transfered to texture memory. Once the
computation has started all operations take place on the
graphics card and there is no image transfer to or from
the main memory whatsoever. The program only sends
graphics commands and parameters to the graphics card,
of which the largest are one dimensional textures or lookup
tables, necessary to code nonlinear functions. The only
data sent back to the main memory are the intensities pro-
vided by glGetMinMax or glGetHistogram if the applica-
tion chooses to exercise adaptive control.

3. Vector Operations

This section describes the key issues of representing nu-
merical data in images and numerical vector operations by
graphics operations on images.

3.1 Vector Representation

In what follows we will discuss numerical schemes for
solving partial differential equations. These numerical
schemes, however, operate on vectors which describe func-
tions on a given grid, whereas our graphics card operates
on images. We therefore have to explain how our images
represent these vectors and how our grids look like.

In general the components of the vectors, which describe
discrete functions over a grid, are not necessarily the values
of the corresponding analytical functions at the grid nodes.
But here we deal with the simplest case of an equidistant
2D grid and bilinear Finite Element discretizations, where
this is the case.

So our domain of interest Q is covered by an equidistant
n x n grid. An analytical function « over this domain is
approximated by a discrete bilinear function U, which is
described by the n? values at the grid-nodes. These val-
ues are stored in a nodal vector U on which the numerical

schemes operate. Throughout the paper we will continue
to denote the analytical functions by small roman letters
(u), the discrete by capital roman letters (U) and the cor-
responding vectors with an additional bar (U). Matrices
operating on these vectors will be marked by two bars (4).

0,n-1) n-1,n-1) a+(-1,1) a+(0,1) a+(1,1)

B | S
03) o
a+(-1,0) a a+(1,0)
02) (12
EC | G

01) |11 |21

(0.0) (10) (20) (3.0 (n-1.0) a+(-1-1) a+(0-1) a+(1-1)

Figure 2. On the left an equidistant n x n grid enumerated
by a tuple, on the right the neighboring elements of a node
and the local offsets to neighboring nodes.

Our goal now is to represent the n2 values of the vector U
in an image. For this purpose we choose the image to have
the same width and height in pixels as our grid in nodes and
we enumerate the grid-nodes with a 2-dimensional index
a = (az,ay) €(0,...,n—1) x(0,...,n— 1) according
to their 2 and y coordinates (Fig. 2). This way our image
represents the vector U, such that the vector’s component
U, is simply the intensity of the pixel at the coordinates
(ag,ay) in the image. If we deal with vector-valued func-
tions then the vector component U, is itself a small vector,
which we represent as the RGBA color vector of the cor-
responding pixel in a color image. For vector-valued func-
tions with more than 4 components we have to use several
images.

To some readers this representation may at first seem like
an obsolete tautology. In fact, one could reinterpret all the
needed numerical results talking about images and pixel
coordinates instead of vectors and their components, but in
the long run this mingling of implementational aspects and
numerical notation obscures more than it reveals.

In image processing applications, like the anisotropic dif-
fusion presented in Section 7., the input and output data is
often itself an image. But in general, the input and output
images in such models, are first interpreted as a function
over a domain and then again discretized, leading to vectors
and their image representations different from the original
image.

3.2 Basic Operations

After establishing a firm connection between vectors and
images, we may now turn towards the issue of hardware
supported vector operations.

First let us consider the componentwise algebraic opera-
tions, i.e. operations which act in the same manner on ev-
ery component of the vector independently of the other vec-
tor components. These comprise addition, multiplication,

linear transformation and arbitrary componentwise func-
tions. We have already mentioned the two basically dif-
ferent implementational approaches to realize these opera-
tions on images. The fragment based implementation uses
the blending capacities and the imaging subset, whereas the
texel based implementation assumes a multitexture exten-
sion and uses the texture environment functions and its ex-
tensions.

Table 1 lists the correspondence of the vector operations
to OpenGL functionality for the first implementational ap-
proach. The OpenGL function given in the right column
of the table naturally only indicates the relevant part of the
API, usually additional calls to other functions for execu-
tion and further parameter specification are necessary for
the implementation of the desired operation. The upper
half of the table deals with unextended functionality and
we see that even in OpenGL 1.0 we may implement all the
basic operations, although hardware support is very rare for
the pixel transfer operations. The lower half lists additional
and alternative functions while using the imaging subset of
OpenGL 1.2 or equivalent extensions. These also include
not componentwise functions: the convolution, the vector
norms and the color matrix multiplication which operates
independently on the vector components but intermingles
the components’ color-components. We shall discuss them
in more detail later in Sections 3.4 and 4.

In Table 2 we give the correspondence of the vector oper-
ations to OpenGL functionality for the texel based imple-
mentational approach. In the right column this time we list
the names of the extensions providing the necessary func-
tions. The upper half of the table is a subset of the func-
tions from Table 1, whereas the lower half introduces func-
tions of several variables through multidimensional depen-
dent texture lookups, which we will consider in more detail
in Section 3.4.

3.3 Number Formats

The number formats processed in graphics cards have been
designed to describe intensities of colors, so in general they
only represent the range [0, 1]. Although absolute values in
scientific computations are not relevant for the processing,
after rescaling them we will usually still have to deal with
a bigger value range, say [—po, p1]. Therefore we must
explain how to emulate number operations on this interval
using only intensities from [0, 1].

For finite po, p1 there is a canonical linear correspondence
r: [=po,p1] = [0,1], r(x):= poipl (x + po), which we
can use to represent numbers from [—po, p1] by intensities
from [0,1]. We have to keep in mind that the intensities
from [0, 1] are typically resolved by only 8 bits in graphics
hardware, so that the numbers from [—pg, p1] will also be
resolved by only 8 bits through our correspondence. It is
therefore very important to choose po and p; as small as
possible, potentially through the expansion or collapse of
formulas and their rearrangement in the algorithm.

Table 1. Correspondence of the blending and imaging sub-
set operations of OpenGL to vector operations, where vec-
tors are represented by images.

operation formula OpenGL
OpenGL 1.0

addition V+W BlendFunc
multiplication V e W BlendFunc
scalar add. V +b1 BlendFunc
scalar mult. aV BlendFunc
lin. trans. aV + bl PixelTransfer
function F(V) PixelMap

imaging subset of OpenGL 1.2
subtraction V-W

BlendEquation

lin. trans. aV £ b1 BlendFunc
function F(V) ColorTable
maximum max(V, W) BlendEquation
minimum min(V, W) BlendEquation

convolution SxV ConvolutionFilter

vector norms ||V||k=1,...,00 Histogram

color matrix Cc-Vv MatrixMode

To clearly express which entities we mean, we will con-
tinue to refer to the elements of [—pg, p1] as the numbers
or values in a texture or framebuffer, and the elements of
[0, 1] as the intensitiesin a texture or framebuffer. Similarly
we will call the transformation from numbers to intensities
the encoding and the inverse transformation from intensi-
ties to numbers the decoding. So by these transformations
we obtain encoded numbers and decoded intensities.

Now we know how to represent numbers in a bigger inter-
val but since the GPU will only perform operations on the
intensities, we have to define formulas which perform the
desired operation on numbers by combining the intensities
of the operands into an intensity which represents the cor-
responding number result. In Table 3 we list exactly these
formulas for the symmetric interval [—p, p]. The left col-
umn shows the operation to be performed, and the right
column shows which operation must be performed on the
encoded operands to obtain the equivalent encoded result.

The formulas must be build up and evaluated in a way
which guarantees that any intermediate results in intensi-
ties do not transcend the range [0, 1], although within cer-
tain stages of the graphics pipeline this may happen. For
example: £ is represented by %; the result of the operation
on numbers £ + £ = p is thus obtained by first comput-

Table 2. Correspondence of the multi-texture environment
functions and its extensions in OpenGL to vector opera-
tions, where vectors are represented by images.

operation formula OpenGL

addition V+W texture_env_add
multiplication V e W standard

lin. trans. aV + bl texture_env_add
lin. trans. aV + bl texture_scale_bias
function Ff(V) texture_color_table
function F(Vo, Vi, V) texture_shader(2)
function f(Vo,V1,Va,V3) pixel_texture

ing he=1.3 4+ 1.3 = 3 whichis still in [0, 1] and then
2h — 3 = 1 which in fact represents the correct number re-
sult p. For some operations we possibly cannot guarantee
the final result in intensities to fit into [0, 1], as for exam-
ple the product of two numbers from [—p, p],p > 1 may
always transcend [—p, p]. Therefore it is important to an-
alyze the underlying algorithm in advance and choose p
appropriately.

We have confined ourselves to a symmetric interval be-
cause this is the typical number range of many numerical
schemes, and more importantly we may always multiply
with —1 without exceeding our interval. Moreover, the en-
coded operations on intensities become simpler and thus
faster with the symmetric encoding.

Finally, we want to emphasize that no other operations than
those already discussed in the last Section 3.2 are needed
to evaluate the above formulas.

3.4 Optimized Operations

Although we do not need any additional operations to eval-
uate the formulas from Table 3, which insure the correct
functionality for the encoded numbers, we may want to
make use of special graphics features to reduce the number
of passes necessary for their evaluation. We have several
options available.

The form in which the formula for the multiplication has
been written in Table 3, for example, already suggests,
that the use of appropriate blending source and destination
factors, will evaluate (r(a)(1 — (b)) + r(b)(1 — r(a))) at
once and so reduce the number of rendering passes to two.
As demonstrated in the last Section 3.3 in the example, the
formula for the addition must have a rather awkward form
to ensure that the intermediate result after the first blend-
ing remains within the range [0,1]. However, the avail-
ability of the EXT _texture_env_combine extensions with the
ADD_SIGNED_EXT texture environment function allows

us to perform 2 (3r(a) + 1r(b)) — 3 =r(a) +r(b) — 5 in

Table 3. Correspondence of operations in numbers and in-
tensities. Numbersrefer to the real values for which a com-
putation should take place, whereas intensities refer to the
encoded representations of these numbers in the graphics
internal number formats.

Numbers Intensities

— r:w—)%p(w—l—p) —

a € [—p,p] r(a) € [0,1]

a+b 2(3r(a) + 1r(b)) — 3

ab 2 —p(r(a)(1—r(b))+r(b)(1-7(a)))
aa+ 3 ar(a)+(%+1’7")

max(a, b) max(r(a),r(b))

flag,-..,an) (rofor Y (r(ap),...,r(as))
>, aaq Yaar(as)+31 -3, a)

1

— pRy—1D)«y:r b +—

a single pass.

A more universally applicable extension s
NV_register_combiners, because between the combin-
ers intermediate values can range in [—1,1] without
encoding. So not only addition, but even the linear
combination and the multiplication require only one pass,
if the scaling and biasing factors are small enough.
Sometimes, not only single rendering passes but entire
computations could be saved, if, for example, we knew that
we have already approximated the solution of our problem
up to the given precision, so that any further calculations
would not lead to a better result. The idea would be to
calculate the error vector in graphics hardware and then ex-
amine its values, for example by computing a vector norm
of it. But reading an entire image from the graphics mem-
ory to the main memory for this purpose is, in compari-
son to internal graphics operations, a very slow process.
Instead, the histogram extension offers the possibility to
obtain a histogram of pixel intensities for an image, re-
quiring to transfer far less data. Given such an histogram
H : {0,...,255} — N which assigns the number of ap-
pearances to every intensity of an image V, the different
vector norms with coefficient exponents & = 1,2,. .. c?n
be computed by [[V]lx = (3% ()" H) ",
and for k = oo we simply pick up the largest |r =1 (y)| with
H(y) > 0, where r—! is the inverse transformation from
intensities to numbers.

The color matrix offers another way to save rendering
passes. Because fast texture copy from the framebuffer re-
quires both to have the same format, we usually have three
color-components RGB available for storage and process-
ing. As all color-components are processed in each op-

eration we may perform parallel computations on them.
However, to obtain the final result, we need a possibility
to merge the different color values, and this is given by the
color matrix.

Finally, we should discuss precision issues when dealing
with nonlinear functions. Certainly we cannot resolve the
result of a nonlinear function better than the fixed precision
permits, but in many cases we are bound to do it far worse
than that. When evaluating terms of the form 2 or (z* +

y’“)% we may obtain very erroreneous results, because we
must compute them sequentially. So for sufficiently small
numbers y the application of the inverse function will result
in a very large number, which cannot be encoded in [0, 1]
anymore; and so even if z = y > O and thus 7 = 1 we will

obtain z, since é will have been clamped to 1. In such
cases the application of a function of several variables is
recommended. The lower half of Table 2 lists the relevant
functions.

4. TheMatrix Vector Product

One of the most common linear algebra operations, re-
quired especially in our Finite Element discretizations, is
the matrix vector product. We therefore must explain how
it can be realized in graphics operations.

Our aim is to express the product of a matrix with s non-
vanishing bands and a vector, in terms of a short series of
vector operations, of which we have already seen that they
can be implemented in graphics hardware. We examine the
band matrices, because they represent the typical matrix
form occuring in Finite Element discretizations

We will use a, 8 as indices for matrices and vectors and
v = B — a as an index offset. The general reformulation
makes no reference to the vector image correspondence of
Section 3.1, so first we may think of a;, 8 as ’normal’ in-
dices. B B

We are given a matrix A = (A, 5)a,p and a vector X =
(X4)a and are interested in the resulting vector of the ma-
trix vector product (AX), = 35 Aq,5Xp. The subdiag-
onals of A are given by A7:= (A,_-)a and are vectors.
Let I' 4 be the set of the y-indices corresponding to the s
nontrivial subdiagonals of A. Moreover, we define the in-
dex shift operators T, (V):= (Va—y)a. The index differ-
ences in the above definitions may evaluate to indices out-
side of the index range of the matrix or vector. For this
cases we define the value of the matrix or vector to be zero.
Now we may reformulate the matrix vector product:

(AX)o = Y AupXs=) (Aot Xaty,
B

Y€El'a

AX Y T, (A eX). 1)

YElA

In Finite Element discretizations of partial differential
equations the number of nontrivial subdiagonals s = |T 4|

is fairly small, so that there are only few subdiagonals to be
stored and the above sum can quickly be evaluated.

For the implementation let us recall from Section 3.1 that
our vectors X = (X,), are enumerated by 2-dimensional
indices @ € (0,...,n — 1) x (0,...,n — 1) (cf. Fig. 2).
Thus a matrix in our context A is defined by the n* val-
ues (A, 3)a,s- The popular perception of a matrix as a 2-
dimensional number agglomeration may lead here to some
confusion. In fact, we would need a 4-dimensional texture
for an equivalent representation of a full matrix. But as
already indicated, we we will only need to store few subdi-
agonals which are vectors and thus represented by images.
As we already know how to perform addition and multipli-
cation on vectors, in view of (1) we only need to say which
graphics operation corresponds to the index shifts T", for
vy € {(-(n-1),...,n—1)x(—(n—1),...,n—1)}. From
Section 3.1 we recall that the index of a vector component
corresponds to the x, y pixel position in its image represen-
tation. Thus an index shift by v = (y;,,) corresponds to
an image shift by -, pixels in z-direction and -, pixels in
y-direction. This can be simply accomplished by drawing
a (7ya,7y)-shifted copy of the image into the framebuffer or
by offsetting the texture coordinates by (—v,, —7,), while
accessing it from the graphics memory.

We may summarize the matrix vector product as follows.
The nontrivial subdiagonals of the matrix in our numeri-
cal scheme are computed from the initial data and stored in
textures. When a matrix vector product is required, the tex-
tures representing the subdiagonals are subsequently mul-
tiplied with the texture representing the vector, then shifted
and added. The resulting sum is the representation of the
resulting vector from the matrix vector product.

5. Solving aLinear System of Equations

With the availability of a matrix vector product realizable
in graphics hardware we can now implement an iterative
solver for a linear system of equations. This is the core
component of most Finite Element codes.

We are given a sparse linear system of equations

AU = R,)

with the matrix A € R™" and the right hand side vector
R € R™ and want to obtain the vector U € R" approxi-
mating the exact solution, by applying an iterative solver:
Xt = p(XY, X° = R. Typical solvers are the the
Jacobi iteration

F(X)= D"Y(R—(A-D)X), D:= diag(4)
and the conjugate gradient iteration
F(XY)= X'+ fl‘ﬁl '
Ap -
=7+ 777[1[:Zﬁlpl‘l, 7= R-AX'.

We see that all the operations needed are available in graph-
ics hardware (cf. Table 1, Equation 1). The so far un-
mentioned scalar product of two vectors can be rewritten
asV -W = ||V e« W]||;, and the inversion of the matrix D
is simply the application of a componentwise inverse func-
tion to a vector, because D is a diagonal matrix compris-
ing only a nontrivial main diagonal vector. For the Jacobi
solver even the smaller set of operations available in the
texel based implementation suffices (Table 2 upper half).
Of course, during the calculations we must always observe
the encoding of numbers, by replacing any operations on
numbers by the transformation formulas for operations on
image intensities given in Table 3.

6. Linear Heat Equation

In this section we present a graphics hardware solver for
the linear heat equation. The discussion of this well known
partial differential equation will help us to understand the
more complex model of the anisotropic diffusion derived
from it in the next Section 7..

We consider the time dependent temperature distribution
u : RT x Q@ — R in the domain Q:= [0,1]2. The ini-
tial temperature function ug at the point in time ¢ = 0 and
static heaters respectively coolers in form of the function
f: ©Q — R are given. For simplicity, let the temperature
of the borders be constantly zero. Then the evolution of the
temperature distribution « is governed by the linear heat
equation:

Ou—Au = f, IinRt xQ,

®)

ug, ONnQ.

We discretize the domain 2 with an equidistant n. x n grid,
and the analytical functions over €2 with discrete functions
represented by nodal vectors consisting of the values of the
analytical functions at the grid nodes. These nodal vec-
tors are represented in graphics hardware by images of
equivalent size. A detailed description of the correspon-
dence between the nodal vectors and the representing im-
ages is given in Section 3.1. Furthermore we discretize the
time parameter ¢ into an ascending series of points in time
to = 0 < t; <t < For each point in time k, there is
a corresponding solution vector U* to be found, apart from
the first vector U°which is given as initial data. The fol-
lowing linear system of equations allows us to compute the
next solution vector U+ for the point in time k£ + 1 from
the current solution vector U*

(f + T_{“i) gkt T+, F
h? N
A UM = ROY,

where 7, = tg41 — tx iS the current timestep width,

h = —L the grid specific diameter, F" the nodal vector cor-
responding to the given function f, I the identity matrix,

and L the stiffness matrix related to the Laplacian. Strictly
speaking, we have discretized the problem with bilinear
conforming Finite Elements on an equidistant quadrilateral
n X n grid and an implicit first order Euler time scheme,
using a lumped mass matrix [15].

The stiffness matrix L in this case has a fairly simple struc-
ture, because all of its subdiagonals are constant. The val-
ues of these constants arise from the specific Finite Element
discretization we use. The constant values of the main di-
agonal and the 8 subdiagonals are arranged in the following
stencil:

Sy =

W= W= W=

Wi Wl =

W= W= W=

The a-component (LX), of the resulting vector (f:g?) ina
matrix vector product thus is the sum of % times X, plus
—% times all the values of X at the neighboring nodes of

a. Therefore LX is nothing else than a convolution of the
image representing X with the stencil Sr,.

Although at first it may seem that we have departed far
away from an implementation in graphics hardware talking
solely about vector components and operations, we have in
fact almost specified the concrete implementation for the
linear heat equation.

If we look closely, we see that by knowing the subdiagonals
of L, we also know those of A = I + 74L, and with F
being the nodal vector of the user defined function f we can
easily identify the right hand side vector R = U* + 7, F.
Hence, we have a defined linear system of equations just
like in Section 5., where we have shown to be able to solve
it in graphics hardware. Below we have summarized the
whole process in pseudo code notation:

linear heat equation {
load the images related to uo, f and the parameters n, 7%;
encode the images in graphics memory U°, F;
(From now on perform all operations on image intensities
according to the transformation formulas from Table 3.)
for each timestep & {
store the right hand side image RF =U* + 1, F;
initialize the iterative solver X° = R*;
for each iteration [
calculate a step of the iterative solver X'*' = F(X);
(Each time a matrix vector product is needed, apply
the subdiagonal reformulation (1) to compute it.)
store the solution U*+* = X!+1
}
}

7. Anisotropic Diffusion in Image Processing

In this section we present a graphics based acceleration of
the anisotropic diffusion model in image processing, which
is a full grown application used for advanced edge sensitive
denoising of images.

The nonlinear diffusion models were first introduced by
a work of Perona and Malik [13], who created a model
that allows for denoising of images while retaining and
enhancing edges. The regularized model was derived by
Catte et. al. [1] and Weickert [17] introduced an anisotropy
depending on the so called structure tensor of images,
that steers a nonlinear diffusion process taking care of
tangential and normal directions on edges. Concerning
the numerical implementation Kacur and Mikula [9] sug-
gested a semi-implicit Finite Element implementation for
the isotropic diffusion, on which our presentation here is
based.

We consider the unknown » : RY x Q@ — R in the do-
main Q:= [0, 1]2. An initial noisy image as a function ug
at the point in time ¢ = 0 and a contrast enhancing func-
tion f : R — R which depends on w are given. The idea
is to evolve the initial image through a partial differential
equation such that in the multiscale of the resulting images
u(t,.),t > 0 the noise dissolves and the contrast and edges
enhance with progressing time. This may be compared to
the evolution of the temperature distribution in the last sec-
tion, where starting with an inhomogeneous initial distri-
bution ug, we obtain a multiscale of temperature functions
u(t,.),t > 0 in which the initial unevenness levels out in
time. However, here we do not use the Laplacian A, which
is responsible for the homogeneous diffusion of the temper-
ature, but the modified term div (B” g(Vue)BVu), which
steers the diffusion both in force and direction depending
on Vu,, a mollification of the gradient Vu, for example
through the convolution with a Gaussian kernel. Thus we
can detect edges, diffuse them in the tangential direction
and protect them from diffusion in the normal direction.
The 2 x 2 matrices B and g are defined by

Oy 15)
B(Vu):= oot @
—Oyu Ozu
a1 (IVue]) 0
a(IVud)= | ~
0 9> ([V]])

where typical functions in g are g;(x) = 1 and g2(z) =
T7e27- Hence the modified partial differential equation
has the following form:

O —div(BTg(Vue)BVu) = f(u), inRF xQ,
u(0,) = wy , onQ,
Tg(Vu)BVu-v = 0 , onRt x9Q.

We use again the bilinear Finite Elements and deviate from
the linear heat equation discretization mainly in the time
scheme, where we now use a semi-implicit scheme, evalu-
ating the linear Vu at the current timestep and the nonlinear
BT g(Vu.)B and f(u) explicitly at the previous timestep.
Hence, we formally obtain the same linear system of equa-
tions

(T+5L@9) O+ = T*+nF@" @)

with the current timestep width 7, = ¢x41 —t5 and the grid
specific diameter h = —L+, but with a different stiffness

matrix L, which strongly depends on U*.

Here, the components of L(TU*) vary globally with their in-
dex, i.e. the representing subdiagonal images have differ-
ent values across all its pixels, unlike the stiffness matrix of
the linear heat equation (4) where all pixels had the same
value. Therefore, we can specify the subdiagonals L only
locally, in dependence on the local U* values. The key
point to remember is, that the stiffness matrix L(TU*) inher-
its the property of locally steering the diffusion in force and
direction, from the weight matrix

G:= BT g(Vu,)B. (6)

To specify L first we have to evaluate this 2 x 2 weight ma-
trix G. This is accomplished by substituting the discrete
gradient VU*, evaluated at the center of each grid-element
E (cf. Fig. 2), for the analytical gradient Vu in the defi-
nitions (4). Thus we obtain the discrete weight matrix G%,
for each element of the grid.

With G%, we can identify the subdiagonals L of the stiff-
ness matrix as

EZ[= Z Z GE 7] ,] ’ (7)

E€E(a) i,je{z,y}

where E(«) is defined as the set of the 4 elements around
the node a, the indices 4, j € {z,y} address the 2 x 2 ma-
trices and

8y = / 8,8 (2,y)0,0) - 8;8 (), dz dy

[_1a1]2

are factors which can be precomputed and depend on spe-
cific Finite Element basis functions. We can analyze the
whole term (7) as follows: G% contains the right weight
distribution to steer the diffusion along the edges but not
across them; S contains the discretization dependent fac-
tors with which to assign the weights to the nodes; the sum
Zi’ jefzy} summarizes the effects calculated separately
for the direction combinations and the sum 5 () lets
all the neighboring elements contribute to the entry of this
node.

For the implementation we must explain how we can build
up the right hand side vector F(U*) and the subdiagonal
vectors L7 (U*) of the stiffness matrix from the vector U*
in graphics hardware.

A typical choice for £ is f(z) = c¢|u®(z) — u* ()|, from
which we deduce the nodal vector F'(U*) = ¢;|U° — U¥|,
with |.| operating on components. Obviously, we can eas-
ily implement this in graphics hardware. For the construc-
tion of L7(U*) we must calculate the values (G%); ; and
(87);,; for all grid-elements E, indices 4,5 € {z,y} and
offsets y € {0, £1} x {0, %1} (cf. 7).

As (57);,; do not depend on the grid-element, they can be
precomputed as 4 x« 9 = 38 different values. The weight
values (G%,); ; are more difficult to handle. We organize

them in 4 images G, ;== (G% (; ;) &, each containing the
values on all elements with common (¢, j)-index.

Before invoking the solver for the linear equation sys-
tem, we compute the images 8,U%:= (8, rU*)r and
0, U*:= (8,,rU*)E by differencing the values of U* on
the nodes of each element in the z and y direction re-
spectively. From these we compute the image ||VU*|| =
v/ (0:U*)2 + (9,U*)2 and then convolute it with a Gaus-
sian kernel, represented by a stencil, to || VUE||. Finally, we
evaluate the function g» to obtain the image g (||VUF||).
Then we have all the discrete equivalents of the entries of
the matrices B and g (4) by which G has been defined (6).
Hence we obtain the 4 images G{“z.,j) as the 4 entries result-

ing from the computation BT (VU*)g(||VU|)B(VU*).

Figure 3. One step of the anisotropic diffusion model
apllied to noisy 1282 images. The computation in graph-
ics hardware takes about 0.05s ensuring real time perfor-
mance.

The examples in Fig. 3 underline the edge conserving prop-
erty of the anisotropic diffusion model. Performance issues
are discussed in the following Section 8..

8. Performance Measurements and Conclu-
sions

All computations have been performed on an ELSA Glad-
iac Ultra graphics card powered by NVIDIA’s GeForce2
Ultra chip. We have used the texture environment based
implementation (Table 2) with the NV _register_combiners
extension (cf. Section 3.4) and RGBS textures under the
[-1,1] — [0, 1] encoding representing 1282 vectors. All
matrix vector products have been computed by applying

the subdiagonal reformulation (1), even where a convolu-
tion would have sufficed, and the Jacobi solver with the
fixed number of 10 iterations has been used for solving of
the linear systems of equations.

In the case of the linear heat equation one iteration of the
Jacobi solver takes approximately 1.6ms. This equivalents
more than 300 MOP/s, a value hardly reachable by pure
software implementations on nowadays PCs. The same ap-
plies to the anisotropic diffusion. Here one iteration of the
Jacobi solver took approximately 5ms, thus computing the
images of Fig. 3 in about 0.05s.

Besides these promising results, there are however some
important issues to discuss. We have been using a very
restricted set out of the introduced operations. This is
because, only these operations actually exploit the main
advantage of the graphics hardware, namely the superior
memory bandwidth. Activating an operation which does
not do that, hits performance by a huge factor. Therefore
we had to approximate all involved nonlinear functions by
linear in the implementation of the anisotropic diffusion.
This leads to an deterioration in image quality in the follow-
ing timesteps. The feedback function glHistogram which
enables adaptive iteration abort is also too slow to be used.
Moreover, larger number intervals than [—1, 1], cost many
more passes, because unlike the slow glPixel Transfer, scal-
ing and biasing with intensities |a| > 1 is very restricted.
Finally, the restricted precision of 8 bits per color compo-
nent leads to unsatisfying results for the linear heat equa-
tion, because smooth transitions in temperature produce
very small values in the convolution, with very high rel-
ative errors.

But the remaining restrictions do not distract us from the
looming possibilities. Therefore, we want to consider here
a few graphics hardware developments which would be
very beneficial to numerical implementations. Some of
these are already on the way, others already strongly ad-
vocated by the graphics community, but let us list them all
to point out the needs:

o Numbers

— Signed textures, signed color buffer values.

— Exact representation of —1,0,1 in the fixed
point number format (very important for itera-
tions).

— Cumulating high precision formats like LA16 or
L32 in addition to RGBAS.

— Fast scale, bias out of (—o0, 00).

e Operations

Direct rendering to arbitrary textures.

Fast dependent texture lookup.

3D texture hardware support (greatly simplifies
computations on 3D data).

Volumetric rendering to 3D textures.

Obviously, this list is by no means complete. Instead, we
have concentrated on graphics features within reach of the
forthcoming GPU generation and hope that they can be a
starting point for further considerations of graphics hard-
ware applications in scientifc computations.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

F. Catté, P.-L. Lions, J.-M. Morel, and T. Coll. Im-
age selective smoothing and edge detection by nonlin-
ear diffusion. SAM J. Numer. Anal., 29(1):182-193,
1992.

C.C. Douglas, J. Hu, M. Lowarschik, U. Riide, and
C. Wei3. Cache optimization for structured and un-
structured multigrid. Electronic Transactions on Nu-
merical Analysis (ETNA), 1999.

W. Heidrich, R. Westermann, H.-P. Seidel, and T. Ertl.
Applications of Pixel Textures in Visualization and
Realistic Image Synthesis. In ACM Symposium on
Interactive 3D Graphics. ACM/Siggraph, 1999.

H. Hellwagner, U. Ride, L. Stals, and Chr. WeiB.
Data locality optimizations to improve the efficiency
of multigrid methods. In Proc. 14th GAMM Sem-
inar ' Concepts of Numerical Software’, Kiel, 1998.
Vieweg.

U. Hoffmann, M. Meifner, and W. Straer. Enabling
classsification and shading for 3d texture mapping
based volume rendering using opengl and extensions.
In Proc. Visualization ' 99, pages 207-214, 1999.

M. Hopf and T. Ertl. Accelerating 3d convolution
using graphics hardware. In Proc. Visualization 99,
pages 471-474. IEEE, 1999.

M. Hopf and T. Ertl. Accelerating Morphological
Analysis with Graphics Hardware. In Workshop on
Vision, Modelling, and Visualization VMV ’ 00, pages
337-345, 2000.

B. Jobard, G. Erlebacher, and M. Yousuff Hussaini.
Hardware-accelerated texture advection for unsteady
flow visualization. In Visualization ’00, pages 155—
162, 2000.

J. Kacur and K. Mikula. Solution of nonlinear diffu-
sion appearing in image smoothing and edge detec-
tion. Appl. Numer. Math., 17 (1):47-59, 1995.

E. LaMar, B. Hamann, and K. Joy. Multiresolution
techniques for interactive texture-based volume vi-
sualization. In Proceedings |EEE Visualization ' 99,
pages 355-362, 1999.

L. Lippert. Wavelet-based Volume Rendering. PhD
thesis, Department of Computer Science, ETH Zrich,
1998.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

OpenGL Architectural Review Board (ARB),
http://www.opengl.org/. OpenGL: graphics applica-
tion programming interface (API), 1992.

P. Perona and J. Malik. Scale space and edge detec-
tion using anisotropic diffusion. In IEEE Computer
Society Workshop on Computer Vision, 1987.

M. Rumpf and R. Strzodka. Nonlinear diffusion
in graphics hardware. In Proceedings of EG/IEEE
TCVG Symposiumon Visualization VisSym'’ 01, pages
75-84. Springer, 2001.

V. Thomee. Galerkin - Finite Element Methods for
Parabolic Problems. Springer, 1984.

S. Turek. Some basic concepts of feast. In Proc. 14th
GAMM Seminar ' Concepts of Numerical Software’,
Kiel, 1998. Vieweg.

J. Weickert. Theoretical foundations of anisotropic
diffusion in image processing. Computing, Suppl.
11:221-236, 1996.

R. Westermann and T. Ertl. Efficiently using graph-
ics hardware in volume rendering applications. Com-
puter Graphics (S GGRAPH '98), 32(4):169-179,
1998.

