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Figure 1: (a) Interactive level set segmentation of a brain tum or from a '256 x '256 x 198 MR! with volume rendering to  
give context to  the segmented surface, (b) A clipping plane shows the user the source data, the volume rendering, and the 
segmentation simultaneously, while probing d a ta  values on the plane, (c) The cerebral cortex segmented from the same data. 
The yellow band indicates the intersection of the level-set, model with the clipping plane.

A b s t r a c t
Deformable isosurfaces, implemented with level-set, m eth­
ods, have dem onstrated a great, potential in visualization for 
applications such as segmentation, surface processing, and 
surface reconstruction. Their usefulness has been limited, 
however, by their high com putational cost, and and reliance 
on significant, param eter tuning. This paper presents a so­
lution to  these challenges by describing graphics processor 
(GPU) based algorithms for solving and visualizing level- 
set, solutions at, interactive rates. Our efficient, GPU-based 
solution relies on packing the level-set, isosurface data  into 
a dynamic, sparse texture format. As the level set, moves, 
this sparse d a ta  structure is updated via a novel GPU to 
CPU message passing scheme. When the level-set, solver is 
integrated with a real-time volume renderer operating on 
the same packed format, a user can visualize and steer the 
deformable level-set, surface as it, evolves. Tn addition, the 
resulting isosurface can serve as a region-of-interest, specifier 
for the volume renderer. This paper dem onstrates the capa­
bilities of this technology for interactive volume visualization
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1 In t r o d u c t io n
Level-set m ethods [Osher and Sethian 1988] rely on par­
tial differential equations (PDEs) to  model deforming iso­
surfaces. These m ethods have applications in a wide range 
of fields such as visualization, scientific computing, com­
puter graphics, and com puter vision [Fedkiw and Osher 
'2002; Sethian 1999]. Applications in visualization include 
volume segmentation [Malladi et, al. 1995; W hitaker 1994], 
surface processing [Tasdizen et, al. 2002], and surface recon­
struction [W hitaker 1998].

The use of level sets in visualization can be problematic. 
Level sets are relatively slow to com pute and they typically 
introduce several free param eters that, control the surface 
deformation and the quality of the results. The la tte r prob­
lem is compounded by the first because, in many scenarios, 
a user must, wait, minutes or hours to  observe the results of a 
param eter change. Although efforts have been made to  take 
advantage of the sparse nature of the com putation, the most, 
highly optimized solvers are still far from interactive. This 
paper proposes a solution to  the above problems by mapping 
the level-set, PDF; solver to  a commodity graphics processor.

While the proposed technology has a wide range of uses 
within visualization and elsewhere, this paper focuses on a 
particular application: the analysis and visualization of vol­
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ume data. By accelerating the PD E  solver to  interactive 
rates and coupling it to  a real-tim e volume renderer, it is 
possible to  visualize and steer the com putation of a level- 
set surface as it moves toward interesting regions w ithin a 
volume. The volume renderer, w ith its global visualization 
capabilities, provides context for the evolving level set. Also, 
the results of a level-set segm entation can specify a region- 
of-interest for the volume renderer [Yoo et al. 1992].

The m ain contributions of this paper are:
•  An integrated system th a t dem onstrates level-set com­

putations can be intuitively controlled by coupling a 
real-tim e volume renderer w ith an interactive solver.

•  A GPU-based 3D level-set solver which is approxi­
m ately 15 tim es faster than  previous optimized solu­
tions.

•  A dynamic, packed tex ture format th a t enables the ef­
ficient processing of tim e-dependent, sparse G PU com­
putations.

•  Real-time volume rendering directly from this packed 
tex ture format.

•  A novel message passing scheme between the G PU and 
CPU  th a t uses autom atic mipm ap generation to  create 
com pact, encoded messages.

The following section discusses previous work and gives 
some technical background for level sets, GPUs, and hard­
ware accelerated volume rendering. Section 3 discusses the 
algorithmic and graphics hardware details of our level-set 
solver and volume renderer. Section 4 describes our segmen­
ta tion  application. !t gives the specific form of the level- 
set equations and desrcribes the results of a performance 
analysis. Tn Section 5, we give conclusions, describe future 
research directions, and make suggestions for future GPU 
improvements.

2 B a c k g ro u n d  a n d  R e la te d  W o rk

2.1 Level Sets
This paper describes a new solver for an implicit represen­
ta tion  of deformable surface models called the m ethod of 
level sets [Osher and Setliiau 1988], The use of level sets 
has been widely docum ented in the visualization literature, 
and several works give comprehensive reviews of the m ethod 
and the associated numerical techniques [Fedkiw and Osher 
'2002; Setliiau 1999], Here we merely review the notation 
and describe the particular formulation th a t is relevant to  
this paper.

Tn an implicit model the surface consists of all points S  =  
( i |0 ( i )  =  0}, where <}> : 3?3 3?. Level-set m ethods relate 
the motion of th a t surface to  a PD E  on the volume, i.e.

0 0 /d t  =  - V 0 -  v, (1)
where v, which can vary in space and time, describes the 
m otion of the surface. W ithin this framework one can im­
plement a wide range of deformations by defining an appro­
priate v. This velocity (or speed) term  is often a combina­
tion of several other term s, including data-depeudeut term s, 
geometric term s (e.g. curvature), and others. Tn m any appli­
cations, these velocities introduce free param eters, and the 
proper tuning of those param eters is critical to  making the 
level-set model behave in a desirable maimer. Equation 1 
is the general form of the level-set equation, which can be 
tuned for wide variety of problems and which motivates the 
architecture of our solver. We describe the specific form used 
for volume segm entation in Sect. 4.1.

Solving level-set PDEs on a volume requires proper nu­
merical schemes [Osher and Setliiau 1988] and entails a sig­
nificant com putational burden. Stability requires th a t the

surface can progress at most a distance of one voxel at each 
iteration, and thus a large num ber of iterations are required 
to  com pute significant deformations. The purpose of this 
paper is to  offer a solution th a t is relevant to  a wide vari­
ety of level-set applications; th a t is, the ability to  solve such 
equations efficiently on com modity graphics hardware.

There is a special case of Eq. 1 in which the surface mo­
tion is strictly  inward or outward. Tn such cases the PDE 
can be solved somewhat efficiently using the fa s t m arching  
m ethod  [Setliiau 1999] and variations thereof [Droske et al. 
2001], However, this case covers only a very small subset 
of interesting speed functions. Tn general we are concerned 
w ith problems th a t require a curvature term  and sim ultane­
ously require the  model to  expand and contract.

Efficient algorithms for solving the more general equation 
rely on the observation th a t at any one tim e step the  only 
parts of the solution th a t are im portant are those adjacent 
to  the moving surface (near points where 0  =  0). Tn light 
of this observation several authors have proposed numerical 
schemes th a t com pute solutions for only those voxels th a t lie 
in a small num ber of layers adjacent to  the surface. Adal- 
steinsou and Setliiau [1995] have proposed the narrow band 
m ethod , which updates the embedding, 0, on a baud of 10-20 
pixels around the model, and reinitializes th a t baud when­
ever the model approaches the edge. W hitaker [1998] pro­
posed the sparse-field  method, which introduces a scheme in 
which updates are calculated only on the wavefront, and sev­
eral layers around th a t wavefront are updated  via a distance 
transform  at each iteration. A similar strategy is described 
in Peng et al. [1999]. Even w ith this very narrow baud of 
com putation, update rates using conventional processors on 
typical resolutions (e.g. 2503 voxels) are not interactive. 
This is the m otivation behind our GPU-based solver.

2.2 Scientific Computation on Graphics Processors
Graphics processing units have been developed prim arily for 
the com puter gaming industry, but over the last several years 
researchers have come to  recognize them  as a low cost, high 
performance com puting platform. Two im portant trends in 
GPU development, increased program m ability and higher 
precision arithm etic processing, have helped to  foster new 
non-gaming applications.

For m any data-parallel com putations, graphics processors 
out-perform  central processing units (CPUs) by more tliau 
an order of m agnitude because of their stream ing  architec­
tu re  [Owens 2002] and dedicated high-speed memory. Tn 
the stream ing model of com putation, arrays of input data 
are processed identically by the same com putation kernel to  
produce ou tpu t data streams. Tn contrast to  vector archi­
tectures, the com putation kernel in a stream ing architecture 
may consist of m any (possibly thousands) of instructions and 
use tem porary registers to  hold interm ediate values. The 
GPU takes advantage of the data-level parallelism inherent 
in the stream ing model by having m any identical processing 
units execute the com putation in parallel.

Currently G PUs must be programmed via graphics APTs 
such as OpenGL or DirectX. Therefore all com putations 
m ust be cast in term s of com puter graphics primitives such 
as vertices, textures, tex ture coordinates, etc. Figure 2 de­
picts the com putation pipeline of a typical GPU. A render- 
pass is a set of data  passing completely through this pipeline. 
Tt can also be thought of as the complete processing of a 
stream  by a given kernel.

Grid-based com putations are solved by first transferring 
the initial data into tex tu re memory. The G PU  performs 
the com putation by rendering graphics primitives th a t ad­
dress this texture. Tn the simplest case, a com putation is
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Figure 2: Tlie modern graphics processor pipeline.

performed on all elements of a 2D texture by drawing a 
quadrilateral th a t has the same num ber of grid points (pix­
els) as the texture. Memory addresses th a t identify each 
fragm ent’s d a ta  value as well as the location of its neigh­
bors are given as texture coordinates. A fragment program 
(the kernel) then uses these addresses to read d a ta  from 
texture memory, perform the com putation, and write the 
result back to  texture memory. A 3D grid is processed as 
a sequence of 2D slices. This com putation model has been 
used by a num ber of researchers to  m ap a wide variety of 
com putationally dem anding problems to  GPUs. Examples 
include m atrix multiplication, finite element m ethods, multi­
grid solvers, and others [Goodnight et al. 2003; Larsen and 
McAllister 2001; Strzodka and Rum pf 2001]. All of these ex­
amples dem onstrate a homogeneous sequence of operations 
over a densely populated grid structure.

Strzodka et al. [2001] were the first to show th a t the 
level-set equations could be solved using a graphics proces­
sor. Their solver implements the two-dimensional level-set 
m ethod using a tim e-invariant speed function for Hood-fi 11- 
like image segm entation without the associated curvature. 
Lefohn and W hitaker dem onstrate a full three dimensional 
level-set solver, with curvature, running on a graphics pro­
cessor [2002], Neither of these approaches, however, take 
advantage of the sparse nature of level-set PDEs and there­
fore they perform only marginally better (e.g. twice as fast) 
than  sparse or narrow band CPU implementations.

This paper presents a GPU com putational model tha t 
supports sparse and dynam ic  grid problems. These problems 
are difficult to  solve efficiently with GPUs for two reasons. 
The first is th a t in order to  take advantage of the G P U ’s par­
allelism, the stream s being processed must be large, contigu­
ous blocks of data, and thus grid points near the level-set sur­
face model must be packed into a small num ber of textures. 
The second difficulty is th a t the level set moves with each 
tim e step, and thus the packed representation must readily 
adapt to  the changing position of the model. This require­
ment is in contrast to  the recent sparse m atrix solvers [Bolz 
et al. 2003; Kruger and W esterm ann 2003] and previous work 
on rendering with compressed d a ta  [Beers et al. 1996; Kraus 
and E rtl 2002], Recent work by Slierbondy et al. [2003] de­
scribes a dynamic, sparse GPU com putation model and is 
discussed in Section 4. Section 3 gives a detailed description 
of our solut ion to  the sparse, dynam ic comput at ion problem.

2.3 Hardware-Accelerated Volume Rendering
Volume rendering is a flexible and efficient technique for cre­
ating images from 3D d ata  [Drebin et al. 1988; Levoy 1988; 
Sabella 1988]. W ith  the advent of dedicated hardware for 
rasterization and texturing, interactive volume rendering has 
become one of the most widely used techniques for visualiz­
ing m oderately sized 3D rectilinear d a ta  [Cabral et al. 1994; 
W ilson et al. 1994]. In recent years, graphics hardware has 
become more programmable, perm itting rendering features 
with an image quality th a t rival sophisticated software tech­
niques [Engel et al. 2001; Kniss et al. 2002], In this paper, 
we describe a novel volume rendering system th a t leverages 
programmable graphics hardware to simultaneously render

Figure 3: The spatial decomposition scheme for packing ac­
tive regions of the volume into texture memory. The un­
packed tile space is shown in (a) and the packed tile space 
is shown in (b). CPU-based d a ta  structures exist for both  
of these spaces. The only d a ta  stored on the GPU is tha t 
represented by (b). Three dimensional neighborhoods are 
efficiently reconstructed on the packed format by processing 
boundary pixels in nine separate special cases. These nine 
substream s are shown in (c).

the packed level-set solution and source data.

3 I m p le m e n ta t io n
This section gives a technical description of our implemen­
tation. We begin with a high-level description of the al­
gorithms used for bo th  the sparse-grid, streaming, level-set 
solver and the real-time volume renderer. We then cover 
some of the im plem entation details th a t are specific to  the 
architecture of current graphics processors. Note th a t this 
section focuses on our new solution to  the sparse/narrow ­
band com putation problem. We therefore refer the reader 
to  Lefohn et al. [2002] for a detailed description of the level- 
set equations.

3.1 Algorithmic Details
3 .1 .1  G P U  L ev e l-S e t S o lv e r

The efficient solution of the level-set PDEs relies on updat­
ing only those voxels th a t are on or near the isosurface. The 
narrow band [Sethian 1999] and sparse field [W hitaker 1998] 
m ethods achieve this by operating on sequences of hetero­
geneous operations. For instance, the sparse-field m ethod 
keeps a linked list of active  voxels on which the com puta­
tion is performed.

Take the narrow band and sparse field CPU-based solvers, 
our sparse G PU level-set solver com putes only those vox­
els near the isosurface. To run efficiently on GPUs, how­
ever, our solution must also have the following character­
istics: texture-based d a ta  structures th a t can be efficiently 
updated, no sca tter  write operations, minimal memory re­
quirem ents, and be highly data-parallel. We achieve these 
goals by decomposing the volume into a set of small 2D tiles 
(e.g. 16 x 16 pixels each). Only those tiles with non-zero 
derivatives are stored on the GPU (see Fig. 3). These ac­
tive  tiles are packed, in an arb itrary  order, into a large 2D 
texture. The 3D level-set PD E is com puted directly on this 
packed format. The CPU is used only to  help manage the 
packing of the active data. Figure 4 shows a flow diagram  
of our level-set solver.

Two d a ta  structures, a packed m ap  and unpacked map, are 
kept on the CPU to track each tile’s packed and unpacked 
position. The packed m ap stores the volumetric location of 
each tile in the sparse, GPU texture. The unpacked map
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Figure 4: Flow diagram  of the GPU-based level-set solver.

stores a tile  object th a t contains the vertices and tex ture co­
ordinates for the actual tex ture data. There are two special 
tiles set aside for white and black regions. Tiles th a t are not 
active (i.e. homogeneous in value either inside or outside of 
the level set) are m apped to  the white or black tile in texture 
memory. Also note th a t the vertices are replicated for each 
tile because each tile needs its own set of tex ture coordinates 
in order to  locate its neighboring tiles. A diagram  of these 
m appings are shown in Fig. 3.

The overview of the G PU portion of the com putation is 
given below. The six steps shown are those required for a 
single iteration of the level-set PDE. See Lefohn et al. [2002] 
for an explanation of the twenty-one first and second deriva­
tives and the discretization of the level-set equations.

1. Com pute 21, 1st and 2nd partial derivatives. 9 sub­
stream  passes each to  the same 4 buffers.

2. Com pute N  level-set speed term s. At least N  passes.
3. U pdate level-set PDE. 1 pass.
4. Create eight-bytes of neighborhood info. 9 substream  

passes.
■5. Down sample neighborhood information.
6. Create bit vector message. 1 pass.
7. Send bit vector to  CPU.

The remaining portion of th is section describes the de­
tails of the algorithm  above. Step 1 is the only point in the 
com putation when neighboring data  values are read. The 
location of all necessary neighbor values is reconstructed on- 
the-fly by using texture coordinates to  locate adjacent tiles in 
the 3D unpacked  space. The position of d a ta  elements in re­
lation to  tile boundaries divides these gather  operations into 
nine different eases: interior, corners, and edges (Fig. 3(c)). 
R ather th an  use a single fragment program to  com pute all 
nine cases, we instead create a specialized fragment program 
for each boundary ease. Each specialized program is associ­
ated w ith geometry th a t rasterizes only the pixels needed for 
th a t ease. We call this m ethod of statically resolving condi­
tionals using specialized fragment programs and geometry, 
substreams. The concept is a static im plem entation of the 
data-routing  idea described Kapasi et al. [2000].

Our use of substream s is m otivated by two characteristics 
of graphics hardware. The first is th a t GPUs do not support 
conditional execution in the fragment stage (all paths are 
executed and a single result is conditionally assigned). The 
second m otivation is th a t the m ajority of the pixels are in 
the in terio r  case, which has highly local neighbor lookups. 
In contrast, the neighbors for the eight boundary eases are 
almost never local, making tex ture caches almost useless. If 
we had instead combined all eases into one fragment program 
w ith an indirection tex ture to  locate the address of each 
neighbor, neighbor lookups would be significantly slower for 
the common (interior) ease.

S tep 2 of the algorithm  computes the speed term s de­
scribed in Sect. 4. We add an additional term , however, 
to  keep the volume in which the level-set is embedded, d>, 
resembling a clamped distance transform  (CDT). This is 
necessary because active tiles are identified by non-zero gra­
dients. The CDT ensures th a t voxels near the isosurface

have finite derivatives while those farther away have gradi­
ent m agnitudes of zero. Our new speed term  is added to  the 
velocity term  u(t)  in Eq. 1. This rescaling  term , G r is of the 
form,

G r =  4>g<p -  (2)

where rt> is the value of the embedding at a voxel and |V<£| 
is the gradient in the direction of the isosurface. The ta r­
get gradient, is set based on the numerical precision of 
the level-set data. This speed term  is strictly  a numeri­
cal construct; it does not affect the movement of the zero 
level set, i.e. the surface model. More detailed discussions 
of embedding-rescaling com putations such as Eq. 2 can be 
found in the literature [Lefohn et al. 2003; Fedkiw et al. 
1999],

After the solver updates the level-set data in step 3, it cre­
ates a compressed, bit-veetor message. This message enables 
the CPU  (in step 7) to  determ ine which tiles are active in the 
next pass. This compressed message provides the CPU  with 
aggregated inform ation about each tile a t each iteration, so 
th a t it can send vertices and tex ture coordinates for the new 
active set of tiles th a t the G PU will need in the next itera­
tion. All of this communication between the CPU  and GPU 
m ust be at the level of tiles to  avoid a communication bot­
tleneck. The aggregated tile description is generated on the 
GPU from a logical com bination of the s ta tus of each pixel 
w ithin each tile. This aggregation is performed efficiently 
by using the built-in mipm ap generation functionality of the 
GPU.

The G PU  creates the bit vector message in three stages 
steps 4, 5, and 6. The first stage (step 4) creates information 
buffers th a t determ ine the active s ta tus of each voxel and its 
neighbors. The inform ation buffers created in step 4 consist 
of eight bytes per active voxel. Each byte is set to  either its 
maximum value (true) or zero (false). The first byte is set 
to  true if any of the six, one-sided cardinal derivatives are 
non-zero. This determ ines if the voxel needs to  be active on 
the next iteration. Each of the next six tests represent the 
active s ta tus of adjacent tiles in the unpacked 3D neighbor­
hood. Each test is true only if a tile boundary is crossed in 
the corresponding direction and a non-zero derivative exists 
across th a t boundary. Note th a t the substream  technique is 
used to  process only those voxels th a t lie on tile boundaries. 
The eighth value is simply the level-set embedding value of 
the voxel.

In step 5, the solver uses the autom atic mipm apping fea­
ture on the GPU to  down sample these eight bytes of in­
formation until each tile is reduced to  a single pixel. Any 
non-zero value in the original inform ation buffers will result 
in a non-zero down sampled value for the entire tile.

Finally in step  6, the GPU creates the bit vector im­
age/message by combining the eight bytes per pixel of down 
sampled data  into a single eight-bit code for each pixel. The 
b it code is created w ith a fragment program  th a t emulates 
a bitwise OR operation by conditionally adding power-of- 
two values. For each of the eight bytes th a t are non-zero, a 
unique power-oLtwo value is added to  the final, single-byte 
result.

The CPU  then reads back and decodes this small (<  64 
kB) bit-veetor image in step 7. The bit code denotes whether 
a tile or any of the six adjacent tiles need to  be active for 
the next iteration. The code also encapsulates whether a 
newly inactive tile is inside or outside the level-set surface. 
The CPU  uses this inform ation to  activate new tiles (white 
or black as appropriate), frees tiles th a t are no longer active, 
and updates the packed and unpacked m aps described above.
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(a) (b)
Figure 5: For volume rendering the packed level-set model:
(a) W hen the preferred slicing direction is orthogonal to  the 
packed texture, the tiles (shown in alternating colors) are 
rendered into slices as quadrilaterals, (b) For slicing direc­
tions parallel to  the packed texture, the tiles are drawn onto 
slices as either vertical or horizontal lines.

3.2 Volume Rendering of Packed Data
Our volume renderer performs a full 3D (transfer-function 
based) volume rendering of the original d a ta  simultaneously 
w ith the evolving level set. For rendering the original vol­
ume, the input d a ta  and its gradient vectors are kept on the 
GPU as 3D textures. The volume d a ta  is rendered on the 
GPU w ith multidimensional transfer functions as described 
in Kniss et al. [2002],

For rendering the evolving level-set model, we use a mod­
ification of the conventional 2D sliced approach to  texture- 
based volume rendering [Cabral et al. 1994], We modify 
the conventional approach to  render the level-set solution 
directly from the packed tiles, which are stored in a sin­
gle 2D texture. The level-set d a ta  and tile configuration 
are dynamic, and therefore we do not precompute and store 
the three separate versions of the data , sliced along cardi­
nal views, as is typically done w ith 2D tex ture approaches. 
Instead we reconstruct these views each tim e the volume is 
rendered.

The 2D slice-based rendering requires interpolation be­
tween two adjacent slices in the back-to-front ordering along 
the appropriate cardinal direction. We reconstruct each slice 
in unpacked  space by texture mapping either quadrilateral or 
line primitives w ith d a ta  from the packed level-set texture. 
W hen the preferred slice axis, based on the viewing angle, 
is orthogonal to  the unpacked slices, we reconstruct using 
tex tured  quadrilateral for each tile. Tf the preferred slice di­
rection is parallel to  the unpacked slicing, we instead render 
a row or column from each tile using textured  line primi­
tives. Figure 5 illustrates the two cases for 2D slice-based 
rendering of the level-set model.

For efficiency the renderer reuses d a ta  wherever possible. 
For instance, lighting for the level-set surface uses gradient 
vectors com puted during the level-set update stage. The 
rendering of the source d a ta  relies on precom puted gradient 
d a ta—the gradient m agnitude is used by the transfer func­
tion and the gradient direction is used in the lighting model.

3.3 Graphics Hardware Implementation Details
This subsection describes im plem entation details th a t are 
specific to  the current generation of graphics hardware. Sug­
gestions for future graphics hardware features are given in 
Sec. 5.

The level-set solver and volume renderer are implemented 
in programmable graphics hardware using vertex and frag­
ment programs on the ATT Radeon 9800 GPU. The pro­
grams are w ritten  in the OpenGL ARB_vertex_program and 
A R B Jragm ent-program  assembly languages. The bulk of 
the com putations are performed in fragment programs. Ver­
tex programs are used, however, to  efficiently com pute tex­

ture coordinates for neighbor lookups—thereby minimizing 
both AGP bandw idth and valuable fragment instructions.

Critical to  the performance of the system  are two capabil­
ities pertaining to  render pass destination buffers. The first 
capability, relatively recent on GPUs, is the ability to  out­
put multiple, high-precision 4-tuple results from a fragment 
program. M ultiple ou tpu ts enable us to  perform the expen­
sive 3D neighborhood reconstruction only once and use the 
gathered d a ta  to  com pute all derivatives in the same pass. 
The second feature crucial to  the performance is the ability 
to  quickly change render pass destination buffers. As Bolz et 
al. [2003] discuss, changing pbuffers is very expensive due to 
the unnecessary context switch. We avoid this overhead by 
allocating a single buffer w ith many render surfaces (front, 
back, auxO, etc.) and switching between them. W hen the 
complexity of the com putation requires more interm ediate 
buffers, we use sub-regions of larger buffers to  augm ent this 
multisurface approach.

There is a subtle speed-versus-memory tradeoff th a t must 
be carefully considered. The packed level-set tex ture can 
be as large as 20482 (the largest 2D tex ture currently al­
lowed on GPUs). Tn order to  minimize the memory costs of 
the interm ediate buffers (derivatives, speed values, etc.), the 
level-set d a ta  is updated  in sub-regions. We maximize the 
size of these sub-regions to  keep com putational efficiency as 
high as possible. We currently use 5122 sub-regions when 
the level-set tex ture is 20482 and use a single region when it 
is smaller.

4  A p p l ic a t io n  a n d  R e s u lts
This section describes an application for interactive vol­
ume segm entation and visualization, which uses the level-set 
solver described previously. The system combines interac­
tive level-set models w ith real-tim e volume rendering on the 
GPU. We show pictures from the system and present tim ing 
results relative to  our current benchm ark for level-set de­
formations, which is a highly optim ized CPU solution [The 
Insight Toolkit 2003].

4.1 Volume Visualization and Analysis
For segmenting volume d a ta  w ith level sets, the velocity usu­
ally consists of a com bination of two term s [Malladi et al. 
1995: W hitaker 1994]

dv  iv , i
^7  =  V<Z> a t

aD(:t:) +  (1 — a )Y  • (3)

where D  is a d a ta  term  th a t forces the model to  expand 
or contract toward desirable features in the input data, the 
term  Y  • (Y<p/|Y<p|) is the mean curvature H  of the sur­
face, which forces the surface to  have less area (and remain 
smooth), and a  € [0,1] is a free param eter th a t controls the 
degree of smoothness in the solution. This corresponds to  a 
surface velocity (from Eq. 1), v =  n (D  +  77), where n  is the 
surface normal.

This com bination of a data-fitting speed function w ith the 
curvature term  is critical to  the application of level sets to 
volume segmentation. Most level-set d a ta  term s D  from the 
segm entation literature are equivalent to  well-known algo­
rithm s such as isosurfaces, flood fill, or edge detection when 
used w ithout the sm oothing term  (i.e. a  =  1). The sm ooth­
ing term  alleviates the effects of noise and small imperfec­
tions in the data, and can prevent the model from leak­
ing into unwanted areas. Thus, the level-set surface models 
provide several capabilities th a t complement volume render­
ing: local, user-defined control; sm ooth surface normals for 
better rendering of noisy data; and a closed surface model,
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Figure 0: A speed function based on image intensity causes 
the model to  expand over regions with greyscale values 
within the specified range and contract otherwise.

Slice W/Model

Slice W/Speed

3D Rendering Parameter 
Controls

# #
x X /  # #  
'.'.'X'" # #  

# #

Figure 7: A depiction of the user interface for the volume 
analysis application. Users interact via slice views, a 3D 
rendering, and a control panel.

which can be used in subsequent processing or for quantita­
tive shape analysis.

For the work in this paper we have chosen a simple speed 
function to  dem onstrate the effectiveness of in teractiv ity  and 
real-tim e visualiza tion  in level-set solvers. The speed func­
tion we use in this work depends solely on the greyscale value 
input data T a t the point x:

D(T)  = e - \ T - T \ ,  (4)

where T  controls the brightness of the region to  be seg­
mented and e controls the range of greyscale values around 
T  th a t could be considered inside the object. In this way a 
model situated on voxels with greyscale values in the interval 
T ± e will expand to  enclose th a t voxel, whereas a model situ­
ated on greyscale values outside th a t inverval will contract to  
exclude th a t voxel. The speed term is gradual, as shown in 
Fig. 0, and thus the effects of the D  diminish as the model 
approaches the boundaries of regions with greyscale levels 
within the T ± e  range, and the effects of the curvature term 
will be relatively larger. This choice of D  corresponds to  a 
simple, one-dimensional statistical classifier on the volume 
intensity [Lefohn et al. 2003].

To control the model a user specifies three free param ­
eters, T,  e, and o , as well as an initialization. The user 
generally draws a spherical initialization inside the region to  
be segmented. Note th a t the user can alternatively initial­
ize the solver with a preprocessed (thresholded, flood filled, 
etc.) version of the source data.

4.2 Interface and Usage
The application in this paper consists of a graphical user 
interface th a t presents the user with two slice viewing win­
dows, a volume renderer, and a control panel (Fig. 7). Many 
of the controls are duplicated throughout the windows to  al­
low the user to  interact with the data and solver through 
these various views. Two and three dimensional representa­
tions of the level-set surface are displayed in real tim e as it 
evolves.

The first 2D window displays the current segmentation 
as a yellow line overlaid on top of the source data. The sec­

ond 2D window displays a visualization of the level-set speed 
function th a t clearly delineates the positive and negative re­
gions. The first window can be probed with the mouse to  
accomplish three tasks: set the level set speed function, set 
the volume rendering transfer function, and draw 3D spher­
ical initializations for the level-set solver. The first two are 
accomplished by accum ulating an average and variance for 
values probed with the cursor. In the case of the speed func­
tion, the T  is set to  the average and e is set to  the standard 
deviation. Users can modify these values, via the GUI, while 
the level set deforms. The spherical drawing tool is used to  
initialize an d /o r edit the level-set surface. The user can place 
either white (model on) or black (model off) spheres into the 
system.

The volume renderer displays a 3D reconstruction of the 
current level set isosurface as well as the input data. In 
addition, an arb itrary  clipping plane, with texture-m apped 
source data, can be enabled via the GUI (Fig. lb ). Just 
as in the slice viewer, the speed function, transfer function, 
and level-set initialization can be set through probing on this 
clipping plane. The crossing of the level-set isosurface with 
the clipping plane is also shown in bright yellow.

The volume renderer uses a 2D transfer function to  render 
the level set surface and a 3D transfer function to  render the 
source data. The level-set transfer function axes are inten­
sity and distance from the clipping plane (if enabled). The 
transfer function for rendering the original data is based on 
the source data value, gradient magnitude, and the level- 
set data value. The la tte r is included so th a t the level set 
model can function as a region-of-interest specifier. All of 
the transfer functions are evaluated on-the-fly in fragment 
programs rather than in lookup tables. This approach per­
mits the use of arbitrarily  high dimensional transfer func­
tions, allows run-tim e flexibility, and reduces memory re­
quirem ents [Kniss et al. 2003].

We dem onstrate our interactive level-set solver and vol­
ume rendering system with the following three data sets: a 
brain tum or MRI (Fig. I ), an MRI scan of a mouse (Fig. 8), 
and transm ission electron tom ography data of a gap junc­
tion (Fig. 9). In all of these examples a user interactively 
controls the level-set surface evolution and volume rendering 
via the multiview interface. The initializations for the tum or 
and mouse were drawn via the user interface while the gap 
junction solution was seeded with a thresholded version of 
the source data.

4.3 Performance Analysis
Our GPU-based level-set solver achieves a speedup of ten 
to  fifteen times over a highly-optimized, sparse-field, CPU- 
based implementation [The Insight Toolkit 2003]. All bench­
marks were run on an Intel Xeon 1.7 GHz processor with
I GB of RAM and an ATI Radeon 9800 P ro  GPU. For a 
250 x 250 x 175 volume, the level-set solver runs a t rates 
varying from 70 steps per second for the tum or segmenta­
tion to  3.5 steps per second for the final stages of the cortex 
segmentation (Fig. I). In contrast, the CPU-based, sparse 
field implementation ran a t 7 steps per second for the tum or 
and 0.25 steps per second for the cortex segmentation.

The speed of our solver is bound almost entirely by the 
fragment stage of the GPU. In addition, the speed of our 
solver scales linearly with the num ber of active voxels in 
the com putation. Creation of the bit vector message con­
sumes approxim ately 15% of the GPU arithm etic and tex­
ture instructions, but for most applications the speedup over 
a dense GPU-based implementation far eclipses this addi­
tional overhead.
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Figure 8: (top) Volume rendering of a 2563 MRT scan of a 
mouse thorax. Note tbe level set surface which is deformed 
to  segment the liver, (bottom ) Volume rendering of the vas­
culature inside the liver using the same transfer function as 
in (a) with the level-set surface is being used as a region-of- 
interest specifier.

Figure 9: Segmentation and volume rendering of 512 x 512 x 
61 3D transmission electron tomography data. The pic­
ture shows cytoskeletal membrane extensions and connexins 
(pink surfaces extracted with the level-set models) near the 
gap junction between two cells (volume rendered in cyan).

The am ount of texture memory required for the level-set 
com putation is proportional to  the surface area of the level- 
set surface i.e. the number of active tiles. Our tests have 
shown th a t for many applications, only 10%-30% of the vol­
ume is active. To take full advantage of this savings, tex­
ture memory must be dynamically allocated as the surface 
expands. O ur current implementation performs only static 
allocation, bu t future versions could easily realize the above 
memory savings. Section 5 discusses changes to  GPU dis­
play drivers th a t will facilitate the implementation of this 
feature.

Tn comparison to  the depth-culling-based sparse volume 
com putation presented by Sherbondy et al. [2003], our pack­
ing scheme guarantees th a t very few wasted fragments are 
generated by the rasterization stage. This is especially im­
portan t for sparse com putations on large volumes where 
the rasterization and culling of unused fragments could con­
sume a signficant portion of the execution time. Tn addition, 
our packing strategy allows us to  process the entire active 
data  set simultaneously, rather than slice-by-slice. This im­
proves the com putationally efficiency by taking advantage of 
the G PU ’s deep pipelines and parallel execution. Our algo­
rithm  should also be able to  process larger volumes, due to 
the memory savings discussed above. Our algorithm, how­
ever, does incur overhead associated with maintaining the 
tiles, and more experim entation is necessary to  understand 
tlie circumstances under which each approach is advanta­
geous. Furtherm ore, they are not mutually exclusive, and 
Sect. 5 discusses the possibility of using depth culling in 
combination with our packed representation.

5 C o n c lu s io n s
This papers dem onstrates a new tool for interactive vol­
ume exploration and analysis th a t combines the quantitative 
capabilities of deformable isosurfaces with the qualitative 
power of volume rendering. By relying on graphics hard­
ware, tlie level-set solver operates a t interactive rates (ap­
proximately 15 times faster than previous solutions). This 
mapping relies on a novel dynamic, packed texture and a 
GPU-to-C’PU message passing scheme. W hile the G PU up­
dates the level set, it renders the surface model directly from 
this packed tex ture format. Future extensions and applica­
tions of the level-set solver include the processing of mul­
tivariate d a ta  as well as surface reconstruction and surface 
processing. Most of these only involve changing only the 
speed functions.

Another promising area of future work is to  adapt these 
volume processing algorithms to  leverage the evolving capa­
bilities of GPUs. For instance, the efficiency of our mem­
ory usage is ham pered by inflexibilities in the GPU mem­
ory model and instruction set. The first way in which we 
could use memory more efficiently is by spreading the packed 
representation across multiple textures. We could then dy­
namically allocate texture memory as needed and would not 
be limited to  the maximum size of 2D textures. This ap­
proach requires either an efficient mechanism for rendering 
to  a slice of a 3D buffer or the ability to  dynamically select 
which texture is sampled (i.e. more indirection in texture 
reads). The former solution is now possible with the uber 
buffer' [Percy and Mace 2003] OpenGL extension. A second 
strategy for reducing memory usage is the development of 
better compression schemes. Implementing these more ag­
gressive compression algorithms will almost certainly require 
the ability to  use integer data  types and bitwise operations 
in the fragment processor.

C urrent G PU  capabilities also limit the com putational ef­
ficiency of the proposed algorithms. We could achieve better
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com putational efficiency w ithin each tile if we could avoid 
processing pixels th a t are not sufficiently close to  the sur­
face, i.e. we could achieve an even narrower band of compu­
tation. This would require a more flexible depth  and /o r sten­
cil culling mechanism in which multiple d a ta  buffers could 
access a single dcp th /stcncil buffer [Percy and Mace 2003]. 
In addition, we could save additional fragment instructions 
by com puting all tex ture addresses in the vertex stage. This 
would require more pcr-vcrtcx interpolaiits. For instance, 
the sampling of a 3 x 3 x 3 kernel from a 3D texture requires 
at least 21, 4-tuple interpolaiits.

Future implementations of our algorithm could also take 
advantage of recently proposed higher-level shading lan­
guage features. The Java-like in terfaces proposed in M ark 
et al. [2003] could be used to  separate memory access opera­
tions from arithm etic com putation code. This would maxi­
mize code reuse for the nine specialized substream  fragment 
programs because these programs differ only in the definition 
of their gather operation.
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