
Interactive Deformation and Visualization of Level Set Surfaces Using
Graphics Hardware

Aaron E . Lefohn Joe M. Kniss Charles D. Hansen Ross T . Whitaker

Scientific Computing and Imaging Institute, University of Utah*

(a) (b) (c)
Figure 1: (a) Interactive level set segmentation of a brain tum or from a '256 x '256 x 198 MR! with volume rendering to
give context to the segmented surface, (b) A clipping plane shows the user the source data, the volume rendering, and the
segmentation simultaneously, while probing d a ta values on the plane, (c) The cerebral cortex segmented from the same data.
The yellow band indicates the intersection of the level-set, model with the clipping plane.

A b s t r a c t
Deformable isosurfaces, implemented with level-set, m eth­
ods, have dem onstrated a great, potential in visualization for
applications such as segmentation, surface processing, and
surface reconstruction. Their usefulness has been limited,
however, by their high com putational cost, and and reliance
on significant, param eter tuning. This paper presents a so­
lution to these challenges by describing graphics processor
(GPU) based algorithms for solving and visualizing level-
set, solutions at, interactive rates. Our efficient, GPU-based
solution relies on packing the level-set, isosurface data into
a dynamic, sparse texture format. As the level set, moves,
this sparse d a ta structure is updated via a novel GPU to
CPU message passing scheme. When the level-set, solver is
integrated with a real-time volume renderer operating on
the same packed format, a user can visualize and steer the
deformable level-set, surface as it, evolves. Tn addition, the
resulting isosurface can serve as a region-of-interest, specifier
for the volume renderer. This paper dem onstrates the capa­
bilities of this technology for interactive volume visualization

* e-mail:{lefohn |jmk | hansen | whilaker}Qsci. u lah .edu

IEEE Visualization 2003,
October 19-24, 2003, Seattle, Washington, USA
0-7803-8120-3/03/$ 17.00 ©2003 IEEE

and segmentation.
C R C a te g o r ie s : T.3.3 [Computer Graphics]
Com putational Geom etry and Object, Model­
ing,Methodology and Techniques

K ey w o rd s: Deformable Models, Tmage Segmentation,
Volume Visualization, GPU, Level Sets, Stream ing Compu­
tation

1 In t r o d u c t io n
Level-set m ethods [Osher and Sethian 1988] rely on par­
tial differential equations (PDEs) to model deforming iso­
surfaces. These m ethods have applications in a wide range
of fields such as visualization, scientific computing, com­
puter graphics, and com puter vision [Fedkiw and Osher
'2002; Sethian 1999]. Applications in visualization include
volume segmentation [Malladi et, al. 1995; W hitaker 1994],
surface processing [Tasdizen et, al. 2002], and surface recon­
struction [W hitaker 1998].

The use of level sets in visualization can be problematic.
Level sets are relatively slow to com pute and they typically
introduce several free param eters that, control the surface
deformation and the quality of the results. The la tte r prob­
lem is compounded by the first because, in many scenarios,
a user must, wait, minutes or hours to observe the results of a
param eter change. Although efforts have been made to take
advantage of the sparse nature of the com putation, the most,
highly optimized solvers are still far from interactive. This
paper proposes a solution to the above problems by mapping
the level-set, PDF; solver to a commodity graphics processor.

While the proposed technology has a wide range of uses
within visualization and elsewhere, this paper focuses on a
particular application: the analysis and visualization of vol­

75
Proceedings of the 14th IEEE Visualization Conference (VIS'03)
0-7695-2030-8/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: The University of Utah. Downloaded on July 06,2010 at 21:37:43 UTC from IEEE Xplore. Restrictions apply.

ume data. By accelerating the PD E solver to interactive
rates and coupling it to a real-tim e volume renderer, it is
possible to visualize and steer the com putation of a level-
set surface as it moves toward interesting regions w ithin a
volume. The volume renderer, w ith its global visualization
capabilities, provides context for the evolving level set. Also,
the results of a level-set segm entation can specify a region-
of-interest for the volume renderer [Yoo et al. 1992].

The m ain contributions of this paper are:
• An integrated system th a t dem onstrates level-set com­

putations can be intuitively controlled by coupling a
real-tim e volume renderer w ith an interactive solver.

• A GPU-based 3D level-set solver which is approxi­
m ately 15 tim es faster than previous optimized solu­
tions.

• A dynamic, packed tex ture format th a t enables the ef­
ficient processing of tim e-dependent, sparse G PU com­
putations.

• Real-time volume rendering directly from this packed
tex ture format.

• A novel message passing scheme between the G PU and
CPU th a t uses autom atic mipm ap generation to create
com pact, encoded messages.

The following section discusses previous work and gives
some technical background for level sets, GPUs, and hard­
ware accelerated volume rendering. Section 3 discusses the
algorithmic and graphics hardware details of our level-set
solver and volume renderer. Section 4 describes our segmen­
ta tion application. !t gives the specific form of the level-
set equations and desrcribes the results of a performance
analysis. Tn Section 5, we give conclusions, describe future
research directions, and make suggestions for future GPU
improvements.

2 B a c k g ro u n d a n d R e la te d W o rk

2.1 Level Sets
This paper describes a new solver for an implicit represen­
ta tion of deformable surface models called the m ethod of
level sets [Osher and Setliiau 1988], The use of level sets
has been widely docum ented in the visualization literature,
and several works give comprehensive reviews of the m ethod
and the associated numerical techniques [Fedkiw and Osher
'2002; Setliiau 1999], Here we merely review the notation
and describe the particular formulation th a t is relevant to
this paper.

Tn an implicit model the surface consists of all points S =
(i |0 (i) = 0}, where <}> : 3?3 3?. Level-set m ethods relate
the motion of th a t surface to a PD E on the volume, i.e.

0 0 /d t = - V 0 - v, (1)
where v, which can vary in space and time, describes the
m otion of the surface. W ithin this framework one can im­
plement a wide range of deformations by defining an appro­
priate v. This velocity (or speed) term is often a combina­
tion of several other term s, including data-depeudeut term s,
geometric term s (e.g. curvature), and others. Tn m any appli­
cations, these velocities introduce free param eters, and the
proper tuning of those param eters is critical to making the
level-set model behave in a desirable maimer. Equation 1
is the general form of the level-set equation, which can be
tuned for wide variety of problems and which motivates the
architecture of our solver. We describe the specific form used
for volume segm entation in Sect. 4.1.

Solving level-set PDEs on a volume requires proper nu­
merical schemes [Osher and Setliiau 1988] and entails a sig­
nificant com putational burden. Stability requires th a t the

surface can progress at most a distance of one voxel at each
iteration, and thus a large num ber of iterations are required
to com pute significant deformations. The purpose of this
paper is to offer a solution th a t is relevant to a wide vari­
ety of level-set applications; th a t is, the ability to solve such
equations efficiently on com modity graphics hardware.

There is a special case of Eq. 1 in which the surface mo­
tion is strictly inward or outward. Tn such cases the PDE
can be solved somewhat efficiently using the fa s t m arching
m ethod [Setliiau 1999] and variations thereof [Droske et al.
2001], However, this case covers only a very small subset
of interesting speed functions. Tn general we are concerned
w ith problems th a t require a curvature term and sim ultane­
ously require the model to expand and contract.

Efficient algorithms for solving the more general equation
rely on the observation th a t at any one tim e step the only
parts of the solution th a t are im portant are those adjacent
to the moving surface (near points where 0 = 0). Tn light
of this observation several authors have proposed numerical
schemes th a t com pute solutions for only those voxels th a t lie
in a small num ber of layers adjacent to the surface. Adal-
steinsou and Setliiau [1995] have proposed the narrow band
m ethod , which updates the embedding, 0, on a baud of 10-20
pixels around the model, and reinitializes th a t baud when­
ever the model approaches the edge. W hitaker [1998] pro­
posed the sparse-field method, which introduces a scheme in
which updates are calculated only on the wavefront, and sev­
eral layers around th a t wavefront are updated via a distance
transform at each iteration. A similar strategy is described
in Peng et al. [1999]. Even w ith this very narrow baud of
com putation, update rates using conventional processors on
typical resolutions (e.g. 2503 voxels) are not interactive.
This is the m otivation behind our GPU-based solver.

2.2 Scientific Computation on Graphics Processors
Graphics processing units have been developed prim arily for
the com puter gaming industry, but over the last several years
researchers have come to recognize them as a low cost, high
performance com puting platform. Two im portant trends in
GPU development, increased program m ability and higher
precision arithm etic processing, have helped to foster new
non-gaming applications.

For m any data-parallel com putations, graphics processors
out-perform central processing units (CPUs) by more tliau
an order of m agnitude because of their stream ing architec­
tu re [Owens 2002] and dedicated high-speed memory. Tn
the stream ing model of com putation, arrays of input data
are processed identically by the same com putation kernel to
produce ou tpu t data streams. Tn contrast to vector archi­
tectures, the com putation kernel in a stream ing architecture
may consist of m any (possibly thousands) of instructions and
use tem porary registers to hold interm ediate values. The
GPU takes advantage of the data-level parallelism inherent
in the stream ing model by having m any identical processing
units execute the com putation in parallel.

Currently G PUs must be programmed via graphics APTs
such as OpenGL or DirectX. Therefore all com putations
m ust be cast in term s of com puter graphics primitives such
as vertices, textures, tex ture coordinates, etc. Figure 2 de­
picts the com putation pipeline of a typical GPU. A render-
pass is a set of data passing completely through this pipeline.
Tt can also be thought of as the complete processing of a
stream by a given kernel.

Grid-based com putations are solved by first transferring
the initial data into tex tu re memory. The G PU performs
the com putation by rendering graphics primitives th a t ad­
dress this texture. Tn the simplest case, a com putation is

76
Proceedings of the 14th IEEE Visualization Conference (VIS'03)
0-7695-2030-8/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: The University of Utah. Downloaded on July 06,2010 at 21:37:43 UTC from IEEE Xplore. Restrictions apply.

Figure 2: Tlie modern graphics processor pipeline.

performed on all elements of a 2D texture by drawing a
quadrilateral th a t has the same num ber of grid points (pix­
els) as the texture. Memory addresses th a t identify each
fragm ent’s d a ta value as well as the location of its neigh­
bors are given as texture coordinates. A fragment program
(the kernel) then uses these addresses to read d a ta from
texture memory, perform the com putation, and write the
result back to texture memory. A 3D grid is processed as
a sequence of 2D slices. This com putation model has been
used by a num ber of researchers to m ap a wide variety of
com putationally dem anding problems to GPUs. Examples
include m atrix multiplication, finite element m ethods, multi­
grid solvers, and others [Goodnight et al. 2003; Larsen and
McAllister 2001; Strzodka and Rum pf 2001]. All of these ex­
amples dem onstrate a homogeneous sequence of operations
over a densely populated grid structure.

Strzodka et al. [2001] were the first to show th a t the
level-set equations could be solved using a graphics proces­
sor. Their solver implements the two-dimensional level-set
m ethod using a tim e-invariant speed function for Hood-fi 11-
like image segm entation without the associated curvature.
Lefohn and W hitaker dem onstrate a full three dimensional
level-set solver, with curvature, running on a graphics pro­
cessor [2002], Neither of these approaches, however, take
advantage of the sparse nature of level-set PDEs and there­
fore they perform only marginally better (e.g. twice as fast)
than sparse or narrow band CPU implementations.

This paper presents a GPU com putational model tha t
supports sparse and dynam ic grid problems. These problems
are difficult to solve efficiently with GPUs for two reasons.
The first is th a t in order to take advantage of the G P U ’s par­
allelism, the stream s being processed must be large, contigu­
ous blocks of data, and thus grid points near the level-set sur­
face model must be packed into a small num ber of textures.
The second difficulty is th a t the level set moves with each
tim e step, and thus the packed representation must readily
adapt to the changing position of the model. This require­
ment is in contrast to the recent sparse m atrix solvers [Bolz
et al. 2003; Kruger and W esterm ann 2003] and previous work
on rendering with compressed d a ta [Beers et al. 1996; Kraus
and E rtl 2002], Recent work by Slierbondy et al. [2003] de­
scribes a dynamic, sparse GPU com putation model and is
discussed in Section 4. Section 3 gives a detailed description
of our solut ion to the sparse, dynam ic comput at ion problem.

2.3 Hardware-Accelerated Volume Rendering
Volume rendering is a flexible and efficient technique for cre­
ating images from 3D d ata [Drebin et al. 1988; Levoy 1988;
Sabella 1988]. W ith the advent of dedicated hardware for
rasterization and texturing, interactive volume rendering has
become one of the most widely used techniques for visualiz­
ing m oderately sized 3D rectilinear d a ta [Cabral et al. 1994;
W ilson et al. 1994]. In recent years, graphics hardware has
become more programmable, perm itting rendering features
with an image quality th a t rival sophisticated software tech­
niques [Engel et al. 2001; Kniss et al. 2002], In this paper,
we describe a novel volume rendering system th a t leverages
programmable graphics hardware to simultaneously render

Figure 3: The spatial decomposition scheme for packing ac­
tive regions of the volume into texture memory. The un­
packed tile space is shown in (a) and the packed tile space
is shown in (b). CPU-based d a ta structures exist for both
of these spaces. The only d a ta stored on the GPU is tha t
represented by (b). Three dimensional neighborhoods are
efficiently reconstructed on the packed format by processing
boundary pixels in nine separate special cases. These nine
substream s are shown in (c).

the packed level-set solution and source data.

3 I m p le m e n ta t io n
This section gives a technical description of our implemen­
tation. We begin with a high-level description of the al­
gorithms used for bo th the sparse-grid, streaming, level-set
solver and the real-time volume renderer. We then cover
some of the im plem entation details th a t are specific to the
architecture of current graphics processors. Note th a t this
section focuses on our new solution to the sparse/narrow ­
band com putation problem. We therefore refer the reader
to Lefohn et al. [2002] for a detailed description of the level-
set equations.

3.1 Algorithmic Details
3 .1 .1 G P U L ev e l-S e t S o lv e r

The efficient solution of the level-set PDEs relies on updat­
ing only those voxels th a t are on or near the isosurface. The
narrow band [Sethian 1999] and sparse field [W hitaker 1998]
m ethods achieve this by operating on sequences of hetero­
geneous operations. For instance, the sparse-field m ethod
keeps a linked list of active voxels on which the com puta­
tion is performed.

Take the narrow band and sparse field CPU-based solvers,
our sparse G PU level-set solver com putes only those vox­
els near the isosurface. To run efficiently on GPUs, how­
ever, our solution must also have the following character­
istics: texture-based d a ta structures th a t can be efficiently
updated, no sca tter write operations, minimal memory re­
quirem ents, and be highly data-parallel. We achieve these
goals by decomposing the volume into a set of small 2D tiles
(e.g. 16 x 16 pixels each). Only those tiles with non-zero
derivatives are stored on the GPU (see Fig. 3). These ac­
tive tiles are packed, in an arb itrary order, into a large 2D
texture. The 3D level-set PD E is com puted directly on this
packed format. The CPU is used only to help manage the
packing of the active data. Figure 4 shows a flow diagram
of our level-set solver.

Two d a ta structures, a packed m ap and unpacked map, are
kept on the CPU to track each tile’s packed and unpacked
position. The packed m ap stores the volumetric location of
each tile in the sparse, GPU texture. The unpacked map

77
Proceedings of the 14th IEEE Visualization Conference (VIS'03)
0-7695-2030-8/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: The University of Utah. Downloaded on July 06,2010 at 21:37:43 UTC from IEEE Xplore. Restrictions apply.

Texture Coordinates
& Vertex Indices

CPU GPU
15-250 Render Passes - PDE Update

Bit Vector
Figure 4: Flow diagram of the GPU-based level-set solver.

stores a tile object th a t contains the vertices and tex ture co­
ordinates for the actual tex ture data. There are two special
tiles set aside for white and black regions. Tiles th a t are not
active (i.e. homogeneous in value either inside or outside of
the level set) are m apped to the white or black tile in texture
memory. Also note th a t the vertices are replicated for each
tile because each tile needs its own set of tex ture coordinates
in order to locate its neighboring tiles. A diagram of these
m appings are shown in Fig. 3.

The overview of the G PU portion of the com putation is
given below. The six steps shown are those required for a
single iteration of the level-set PDE. See Lefohn et al. [2002]
for an explanation of the twenty-one first and second deriva­
tives and the discretization of the level-set equations.

1. Com pute 21, 1st and 2nd partial derivatives. 9 sub­
stream passes each to the same 4 buffers.

2. Com pute N level-set speed term s. At least N passes.
3. U pdate level-set PDE. 1 pass.
4. Create eight-bytes of neighborhood info. 9 substream

passes.
■5. Down sample neighborhood information.
6. Create bit vector message. 1 pass.
7. Send bit vector to CPU.

The remaining portion of th is section describes the de­
tails of the algorithm above. Step 1 is the only point in the
com putation when neighboring data values are read. The
location of all necessary neighbor values is reconstructed on-
the-fly by using texture coordinates to locate adjacent tiles in
the 3D unpacked space. The position of d a ta elements in re­
lation to tile boundaries divides these gather operations into
nine different eases: interior, corners, and edges (Fig. 3(c)).
R ather th an use a single fragment program to com pute all
nine cases, we instead create a specialized fragment program
for each boundary ease. Each specialized program is associ­
ated w ith geometry th a t rasterizes only the pixels needed for
th a t ease. We call this m ethod of statically resolving condi­
tionals using specialized fragment programs and geometry,
substreams. The concept is a static im plem entation of the
data-routing idea described Kapasi et al. [2000].

Our use of substream s is m otivated by two characteristics
of graphics hardware. The first is th a t GPUs do not support
conditional execution in the fragment stage (all paths are
executed and a single result is conditionally assigned). The
second m otivation is th a t the m ajority of the pixels are in
the in terio r case, which has highly local neighbor lookups.
In contrast, the neighbors for the eight boundary eases are
almost never local, making tex ture caches almost useless. If
we had instead combined all eases into one fragment program
w ith an indirection tex ture to locate the address of each
neighbor, neighbor lookups would be significantly slower for
the common (interior) ease.

S tep 2 of the algorithm computes the speed term s de­
scribed in Sect. 4. We add an additional term , however,
to keep the volume in which the level-set is embedded, d>,
resembling a clamped distance transform (CDT). This is
necessary because active tiles are identified by non-zero gra­
dients. The CDT ensures th a t voxels near the isosurface

have finite derivatives while those farther away have gradi­
ent m agnitudes of zero. Our new speed term is added to the
velocity term u(t) in Eq. 1. This rescaling term , G r is of the
form,

G r = 4>g<p - (2)

where rt> is the value of the embedding at a voxel and |V<£|
is the gradient in the direction of the isosurface. The ta r­
get gradient, is set based on the numerical precision of
the level-set data. This speed term is strictly a numeri­
cal construct; it does not affect the movement of the zero
level set, i.e. the surface model. More detailed discussions
of embedding-rescaling com putations such as Eq. 2 can be
found in the literature [Lefohn et al. 2003; Fedkiw et al.
1999],

After the solver updates the level-set data in step 3, it cre­
ates a compressed, bit-veetor message. This message enables
the CPU (in step 7) to determ ine which tiles are active in the
next pass. This compressed message provides the CPU with
aggregated inform ation about each tile a t each iteration, so
th a t it can send vertices and tex ture coordinates for the new
active set of tiles th a t the G PU will need in the next itera­
tion. All of this communication between the CPU and GPU
m ust be at the level of tiles to avoid a communication bot­
tleneck. The aggregated tile description is generated on the
GPU from a logical com bination of the s ta tus of each pixel
w ithin each tile. This aggregation is performed efficiently
by using the built-in mipm ap generation functionality of the
GPU.

The G PU creates the bit vector message in three stages
steps 4, 5, and 6. The first stage (step 4) creates information
buffers th a t determ ine the active s ta tus of each voxel and its
neighbors. The inform ation buffers created in step 4 consist
of eight bytes per active voxel. Each byte is set to either its
maximum value (true) or zero (false). The first byte is set
to true if any of the six, one-sided cardinal derivatives are
non-zero. This determ ines if the voxel needs to be active on
the next iteration. Each of the next six tests represent the
active s ta tus of adjacent tiles in the unpacked 3D neighbor­
hood. Each test is true only if a tile boundary is crossed in
the corresponding direction and a non-zero derivative exists
across th a t boundary. Note th a t the substream technique is
used to process only those voxels th a t lie on tile boundaries.
The eighth value is simply the level-set embedding value of
the voxel.

In step 5, the solver uses the autom atic mipm apping fea­
ture on the GPU to down sample these eight bytes of in­
formation until each tile is reduced to a single pixel. Any
non-zero value in the original inform ation buffers will result
in a non-zero down sampled value for the entire tile.

Finally in step 6, the GPU creates the bit vector im­
age/message by combining the eight bytes per pixel of down
sampled data into a single eight-bit code for each pixel. The
b it code is created w ith a fragment program th a t emulates
a bitwise OR operation by conditionally adding power-of-
two values. For each of the eight bytes th a t are non-zero, a
unique power-oLtwo value is added to the final, single-byte
result.

The CPU then reads back and decodes this small (< 64
kB) bit-veetor image in step 7. The bit code denotes whether
a tile or any of the six adjacent tiles need to be active for
the next iteration. The code also encapsulates whether a
newly inactive tile is inside or outside the level-set surface.
The CPU uses this inform ation to activate new tiles (white
or black as appropriate), frees tiles th a t are no longer active,
and updates the packed and unpacked m aps described above.

78
Proceedings of the 14th IEEE Visualization Conference (VIS'03)
0-7695-2030-8/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: The University of Utah. Downloaded on July 06,2010 at 21:37:43 UTC from IEEE Xplore. Restrictions apply.

(a) (b)
Figure 5: For volume rendering the packed level-set model:
(a) W hen the preferred slicing direction is orthogonal to the
packed texture, the tiles (shown in alternating colors) are
rendered into slices as quadrilaterals, (b) For slicing direc­
tions parallel to the packed texture, the tiles are drawn onto
slices as either vertical or horizontal lines.

3.2 Volume Rendering of Packed Data
Our volume renderer performs a full 3D (transfer-function
based) volume rendering of the original d a ta simultaneously
w ith the evolving level set. For rendering the original vol­
ume, the input d a ta and its gradient vectors are kept on the
GPU as 3D textures. The volume d a ta is rendered on the
GPU w ith multidimensional transfer functions as described
in Kniss et al. [2002],

For rendering the evolving level-set model, we use a mod­
ification of the conventional 2D sliced approach to texture-
based volume rendering [Cabral et al. 1994], We modify
the conventional approach to render the level-set solution
directly from the packed tiles, which are stored in a sin­
gle 2D texture. The level-set d a ta and tile configuration
are dynamic, and therefore we do not precompute and store
the three separate versions of the data , sliced along cardi­
nal views, as is typically done w ith 2D tex ture approaches.
Instead we reconstruct these views each tim e the volume is
rendered.

The 2D slice-based rendering requires interpolation be­
tween two adjacent slices in the back-to-front ordering along
the appropriate cardinal direction. We reconstruct each slice
in unpacked space by texture mapping either quadrilateral or
line primitives w ith d a ta from the packed level-set texture.
W hen the preferred slice axis, based on the viewing angle,
is orthogonal to the unpacked slices, we reconstruct using
tex tured quadrilateral for each tile. Tf the preferred slice di­
rection is parallel to the unpacked slicing, we instead render
a row or column from each tile using textured line primi­
tives. Figure 5 illustrates the two cases for 2D slice-based
rendering of the level-set model.

For efficiency the renderer reuses d a ta wherever possible.
For instance, lighting for the level-set surface uses gradient
vectors com puted during the level-set update stage. The
rendering of the source d a ta relies on precom puted gradient
d a ta—the gradient m agnitude is used by the transfer func­
tion and the gradient direction is used in the lighting model.

3.3 Graphics Hardware Implementation Details
This subsection describes im plem entation details th a t are
specific to the current generation of graphics hardware. Sug­
gestions for future graphics hardware features are given in
Sec. 5.

The level-set solver and volume renderer are implemented
in programmable graphics hardware using vertex and frag­
ment programs on the ATT Radeon 9800 GPU. The pro­
grams are w ritten in the OpenGL ARB_vertex_program and
A R B Jragm ent-program assembly languages. The bulk of
the com putations are performed in fragment programs. Ver­
tex programs are used, however, to efficiently com pute tex­

ture coordinates for neighbor lookups—thereby minimizing
both AGP bandw idth and valuable fragment instructions.

Critical to the performance of the system are two capabil­
ities pertaining to render pass destination buffers. The first
capability, relatively recent on GPUs, is the ability to out­
put multiple, high-precision 4-tuple results from a fragment
program. M ultiple ou tpu ts enable us to perform the expen­
sive 3D neighborhood reconstruction only once and use the
gathered d a ta to com pute all derivatives in the same pass.
The second feature crucial to the performance is the ability
to quickly change render pass destination buffers. As Bolz et
al. [2003] discuss, changing pbuffers is very expensive due to
the unnecessary context switch. We avoid this overhead by
allocating a single buffer w ith many render surfaces (front,
back, auxO, etc.) and switching between them. W hen the
complexity of the com putation requires more interm ediate
buffers, we use sub-regions of larger buffers to augm ent this
multisurface approach.

There is a subtle speed-versus-memory tradeoff th a t must
be carefully considered. The packed level-set tex ture can
be as large as 20482 (the largest 2D tex ture currently al­
lowed on GPUs). Tn order to minimize the memory costs of
the interm ediate buffers (derivatives, speed values, etc.), the
level-set d a ta is updated in sub-regions. We maximize the
size of these sub-regions to keep com putational efficiency as
high as possible. We currently use 5122 sub-regions when
the level-set tex ture is 20482 and use a single region when it
is smaller.

4 A p p l ic a t io n a n d R e s u lts
This section describes an application for interactive vol­
ume segm entation and visualization, which uses the level-set
solver described previously. The system combines interac­
tive level-set models w ith real-tim e volume rendering on the
GPU. We show pictures from the system and present tim ing
results relative to our current benchm ark for level-set de­
formations, which is a highly optim ized CPU solution [The
Insight Toolkit 2003].

4.1 Volume Visualization and Analysis
For segmenting volume d a ta w ith level sets, the velocity usu­
ally consists of a com bination of two term s [Malladi et al.
1995: W hitaker 1994]

dv iv , i
^7 = V<Z> a t

aD(:t:) + (1 — a)Y • (3)

where D is a d a ta term th a t forces the model to expand
or contract toward desirable features in the input data, the
term Y • (Y<p/|Y<p|) is the mean curvature H of the sur­
face, which forces the surface to have less area (and remain
smooth), and a € [0,1] is a free param eter th a t controls the
degree of smoothness in the solution. This corresponds to a
surface velocity (from Eq. 1), v = n (D + 77), where n is the
surface normal.

This com bination of a data-fitting speed function w ith the
curvature term is critical to the application of level sets to
volume segmentation. Most level-set d a ta term s D from the
segm entation literature are equivalent to well-known algo­
rithm s such as isosurfaces, flood fill, or edge detection when
used w ithout the sm oothing term (i.e. a = 1). The sm ooth­
ing term alleviates the effects of noise and small imperfec­
tions in the data, and can prevent the model from leak­
ing into unwanted areas. Thus, the level-set surface models
provide several capabilities th a t complement volume render­
ing: local, user-defined control; sm ooth surface normals for
better rendering of noisy data; and a closed surface model,

7 9
Proceedings of the 14th IEEE Visualization Conference (VIS'03)
0-7695-2030-8/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: The University of Utah. Downloaded on July 06,2010 at 21:37:43 UTC from IEEE Xplore. Restrictions apply.

Figure 0: A speed function based on image intensity causes
the model to expand over regions with greyscale values
within the specified range and contract otherwise.

Slice W/Model

Slice W/Speed

3D Rendering Parameter
Controls

#
x X / # #
'.'.'X'" # #

#

Figure 7: A depiction of the user interface for the volume
analysis application. Users interact via slice views, a 3D
rendering, and a control panel.

which can be used in subsequent processing or for quantita­
tive shape analysis.

For the work in this paper we have chosen a simple speed
function to dem onstrate the effectiveness of in teractiv ity and
real-tim e visualiza tion in level-set solvers. The speed func­
tion we use in this work depends solely on the greyscale value
input data T a t the point x:

D(T) = e - \ T - T \ , (4)

where T controls the brightness of the region to be seg­
mented and e controls the range of greyscale values around
T th a t could be considered inside the object. In this way a
model situated on voxels with greyscale values in the interval
T ± e will expand to enclose th a t voxel, whereas a model situ­
ated on greyscale values outside th a t inverval will contract to
exclude th a t voxel. The speed term is gradual, as shown in
Fig. 0, and thus the effects of the D diminish as the model
approaches the boundaries of regions with greyscale levels
within the T ± e range, and the effects of the curvature term
will be relatively larger. This choice of D corresponds to a
simple, one-dimensional statistical classifier on the volume
intensity [Lefohn et al. 2003].

To control the model a user specifies three free param ­
eters, T, e, and o , as well as an initialization. The user
generally draws a spherical initialization inside the region to
be segmented. Note th a t the user can alternatively initial­
ize the solver with a preprocessed (thresholded, flood filled,
etc.) version of the source data.

4.2 Interface and Usage
The application in this paper consists of a graphical user
interface th a t presents the user with two slice viewing win­
dows, a volume renderer, and a control panel (Fig. 7). Many
of the controls are duplicated throughout the windows to al­
low the user to interact with the data and solver through
these various views. Two and three dimensional representa­
tions of the level-set surface are displayed in real tim e as it
evolves.

The first 2D window displays the current segmentation
as a yellow line overlaid on top of the source data. The sec­

ond 2D window displays a visualization of the level-set speed
function th a t clearly delineates the positive and negative re­
gions. The first window can be probed with the mouse to
accomplish three tasks: set the level set speed function, set
the volume rendering transfer function, and draw 3D spher­
ical initializations for the level-set solver. The first two are
accomplished by accum ulating an average and variance for
values probed with the cursor. In the case of the speed func­
tion, the T is set to the average and e is set to the standard
deviation. Users can modify these values, via the GUI, while
the level set deforms. The spherical drawing tool is used to
initialize an d /o r edit the level-set surface. The user can place
either white (model on) or black (model off) spheres into the
system.

The volume renderer displays a 3D reconstruction of the
current level set isosurface as well as the input data. In
addition, an arb itrary clipping plane, with texture-m apped
source data, can be enabled via the GUI (Fig. lb). Just
as in the slice viewer, the speed function, transfer function,
and level-set initialization can be set through probing on this
clipping plane. The crossing of the level-set isosurface with
the clipping plane is also shown in bright yellow.

The volume renderer uses a 2D transfer function to render
the level set surface and a 3D transfer function to render the
source data. The level-set transfer function axes are inten­
sity and distance from the clipping plane (if enabled). The
transfer function for rendering the original data is based on
the source data value, gradient magnitude, and the level-
set data value. The la tte r is included so th a t the level set
model can function as a region-of-interest specifier. All of
the transfer functions are evaluated on-the-fly in fragment
programs rather than in lookup tables. This approach per­
mits the use of arbitrarily high dimensional transfer func­
tions, allows run-tim e flexibility, and reduces memory re­
quirem ents [Kniss et al. 2003].

We dem onstrate our interactive level-set solver and vol­
ume rendering system with the following three data sets: a
brain tum or MRI (Fig. I), an MRI scan of a mouse (Fig. 8),
and transm ission electron tom ography data of a gap junc­
tion (Fig. 9). In all of these examples a user interactively
controls the level-set surface evolution and volume rendering
via the multiview interface. The initializations for the tum or
and mouse were drawn via the user interface while the gap
junction solution was seeded with a thresholded version of
the source data.

4.3 Performance Analysis
Our GPU-based level-set solver achieves a speedup of ten
to fifteen times over a highly-optimized, sparse-field, CPU-
based implementation [The Insight Toolkit 2003]. All bench­
marks were run on an Intel Xeon 1.7 GHz processor with
I GB of RAM and an ATI Radeon 9800 P ro GPU. For a
250 x 250 x 175 volume, the level-set solver runs a t rates
varying from 70 steps per second for the tum or segmenta­
tion to 3.5 steps per second for the final stages of the cortex
segmentation (Fig. I). In contrast, the CPU-based, sparse
field implementation ran a t 7 steps per second for the tum or
and 0.25 steps per second for the cortex segmentation.

The speed of our solver is bound almost entirely by the
fragment stage of the GPU. In addition, the speed of our
solver scales linearly with the num ber of active voxels in
the com putation. Creation of the bit vector message con­
sumes approxim ately 15% of the GPU arithm etic and tex­
ture instructions, but for most applications the speedup over
a dense GPU-based implementation far eclipses this addi­
tional overhead.

80
Proceedings of the 14th IEEE Visualization Conference (VIS'03)
0-7695-2030-8/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: The University of Utah. Downloaded on July 06,2010 at 21:37:43 UTC from IEEE Xplore. Restrictions apply.

Figure 8: (top) Volume rendering of a 2563 MRT scan of a
mouse thorax. Note tbe level set surface which is deformed
to segment the liver, (bottom) Volume rendering of the vas­
culature inside the liver using the same transfer function as
in (a) with the level-set surface is being used as a region-of-
interest specifier.

Figure 9: Segmentation and volume rendering of 512 x 512 x
61 3D transmission electron tomography data. The pic­
ture shows cytoskeletal membrane extensions and connexins
(pink surfaces extracted with the level-set models) near the
gap junction between two cells (volume rendered in cyan).

The am ount of texture memory required for the level-set
com putation is proportional to the surface area of the level-
set surface i.e. the number of active tiles. Our tests have
shown th a t for many applications, only 10%-30% of the vol­
ume is active. To take full advantage of this savings, tex­
ture memory must be dynamically allocated as the surface
expands. O ur current implementation performs only static
allocation, bu t future versions could easily realize the above
memory savings. Section 5 discusses changes to GPU dis­
play drivers th a t will facilitate the implementation of this
feature.

Tn comparison to the depth-culling-based sparse volume
com putation presented by Sherbondy et al. [2003], our pack­
ing scheme guarantees th a t very few wasted fragments are
generated by the rasterization stage. This is especially im­
portan t for sparse com putations on large volumes where
the rasterization and culling of unused fragments could con­
sume a signficant portion of the execution time. Tn addition,
our packing strategy allows us to process the entire active
data set simultaneously, rather than slice-by-slice. This im­
proves the com putationally efficiency by taking advantage of
the G PU ’s deep pipelines and parallel execution. Our algo­
rithm should also be able to process larger volumes, due to
the memory savings discussed above. Our algorithm, how­
ever, does incur overhead associated with maintaining the
tiles, and more experim entation is necessary to understand
tlie circumstances under which each approach is advanta­
geous. Furtherm ore, they are not mutually exclusive, and
Sect. 5 discusses the possibility of using depth culling in
combination with our packed representation.

5 C o n c lu s io n s
This papers dem onstrates a new tool for interactive vol­
ume exploration and analysis th a t combines the quantitative
capabilities of deformable isosurfaces with the qualitative
power of volume rendering. By relying on graphics hard­
ware, tlie level-set solver operates a t interactive rates (ap­
proximately 15 times faster than previous solutions). This
mapping relies on a novel dynamic, packed texture and a
GPU-to-C’PU message passing scheme. W hile the G PU up­
dates the level set, it renders the surface model directly from
this packed tex ture format. Future extensions and applica­
tions of the level-set solver include the processing of mul­
tivariate d a ta as well as surface reconstruction and surface
processing. Most of these only involve changing only the
speed functions.

Another promising area of future work is to adapt these
volume processing algorithms to leverage the evolving capa­
bilities of GPUs. For instance, the efficiency of our mem­
ory usage is ham pered by inflexibilities in the GPU mem­
ory model and instruction set. The first way in which we
could use memory more efficiently is by spreading the packed
representation across multiple textures. We could then dy­
namically allocate texture memory as needed and would not
be limited to the maximum size of 2D textures. This ap­
proach requires either an efficient mechanism for rendering
to a slice of a 3D buffer or the ability to dynamically select
which texture is sampled (i.e. more indirection in texture
reads). The former solution is now possible with the uber
buffer' [Percy and Mace 2003] OpenGL extension. A second
strategy for reducing memory usage is the development of
better compression schemes. Implementing these more ag­
gressive compression algorithms will almost certainly require
the ability to use integer data types and bitwise operations
in the fragment processor.

C urrent G PU capabilities also limit the com putational ef­
ficiency of the proposed algorithms. We could achieve better

81
Proceedings of the 14th IEEE Visualization Conference (VIS'03)
0-7695-2030-8/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: The University of Utah. Downloaded on July 06,2010 at 21:37:43 UTC from IEEE Xplore. Restrictions apply.

com putational efficiency w ithin each tile if we could avoid
processing pixels th a t are not sufficiently close to the sur­
face, i.e. we could achieve an even narrower band of compu­
tation. This would require a more flexible depth and /o r sten­
cil culling mechanism in which multiple d a ta buffers could
access a single dcp th /stcncil buffer [Percy and Mace 2003].
In addition, we could save additional fragment instructions
by com puting all tex ture addresses in the vertex stage. This
would require more pcr-vcrtcx interpolaiits. For instance,
the sampling of a 3 x 3 x 3 kernel from a 3D texture requires
at least 21, 4-tuple interpolaiits.

Future implementations of our algorithm could also take
advantage of recently proposed higher-level shading lan­
guage features. The Java-like in terfaces proposed in M ark
et al. [2003] could be used to separate memory access opera­
tions from arithm etic com putation code. This would maxi­
mize code reuse for the nine specialized substream fragment
programs because these programs differ only in the definition
of their gather operation.

A c k n o w le d g m e n ts
Thanks to Evan Ifart, M ark Segal, Jeff Eoyal and Jason
Mitchell a t ATI for donating technical advice and hardware
to this project. Gordon K iiidlm am rs nrrd toolkit was used
for dataset m anipulation. Milan Ik its’ G L E W library was
used for OpenGL extension management. Erik Jorgensen
helped w ith production of the video. Steve Lamoiit and
Gina Sosinsky a t the National Center for Microscopy and
Imaging Research a t UCSD provided the tom ography data.
Simon Warfield, Michael Kaus, Ron Kikinis, Peter Black and
Ferenc Jolesz provided the MRI head data. The mouse d a ta
was supplied by the Center for In Vivo Microscopy at Duke
University. This work was supported bv grants from NSF.
A0 0 0 8 9 9 15 and CCR00920G5, and ONR N000140110033.
We also tliank Jolm Owens and the anonymous reviewers
for their input on the m anuscript.
R e fe re n c e s

A dalsteinson, D., and Sethian, J. A. 1995. A fast level set method
for propogating interfaces. Journal o f Computational Physics, 269—
277.
Beers, A. C., A graw ala, M., and Chaddha, N. 1996. Rendering from
compressed textures. In Proceedings o f S IG G R A P H 96, Computer
Graphics Proceedings. Annual Conference Series. 373-378.
Bolz, J., Farm er, L, Grinspun, E., and S chroder, P. 2003. Sparse
m atrix solvers on the GPU: Conjugate gradients and multigrid. In
A C M Transactions on Graphics, vol. 22. 917-924.
C ab ral, B., Cam, N., and Foran , J. 1994. Accelerated volume
rendering and tomographic reconstruction using texture mapping
hardware. In A C M Symposium On Volume Visualization, 91—98.
Drebin, R. A., C a rp en te r, L., and H anrahan, P. 1988. Volume
rendering. In Com puter Graphics (Proceedings o f S IG G R A P H 88),
vol. 22. 65-74.
Droske, M., M eyer, B., Rumpf, M., and S c h a lle r, C. 2001. An
adaptive level set m ethod for medical image segmentation. In Proc.
of the Annual Symposium on Inform ation Processing in Medical
Imaging, Springer. Lecture Notes Computer Science. R. Leahy and
M. Insana. Eds.
E ngel, K., Kraus, M., and E r t l , T. 2001. High-Quality Pre­
integrated Volume Rendering Using Hard ware-Accelerated Pixel
Shading. In Graphics Hardware 2001.
Fedkiw, R., and Osher, S. 2002. Level Set Methods and Dynamic
Im plicit Surfaces. Springer.
Fedkiw, R., Aslam, T., M erriman, B., and Osher, S. 1999. A non-
oscillatory Eulerian approach to interfaces in multimaterial flows
(the ghost fluid method). Journal o f Computational Physics 152,
457-492.
G oodnight, N., W oolley , C., Lewin, G., Luebke, D., and
Humphreys, G. 2003. A multigrid solver for boundary value prob­
lems using programmable graphics hardware. In Graphics Hardware
2003, 102-111.

Kapasi, U., D ally , W., Rixner, S., M attson , P., Owens, J., and
K HA I LAN Y, B. 2000. Efficient conditional operations for data-parallel
architectures. In Proceedings o f the 33rd Annual International
Symposium on Microarchitecture, 159-170.
Kniss, J., Kindlmann, G., and Hansen, C. 2002. Multi-Dimensional
Transfer Functions for Interactive Volume Rendering. Transactions
on Visualization and C omputer Graphics 8 (July-September). 270­
285.
Kniss, J., Premoze, S., Ikits, M., Lefohn, A., and Hansen, C. 2003.
Gaussian transfer functions for multi-field volume visualization. In
IE E E Visualization, To Appear.
Kraus, M., and E r t l , T. 2002. Adaptive texture maps. In Graphics
Hardware 2002, 7-16.
K ruger, J., and W esterm ann, R. 2003. Linear algebra operators
for GPU implementation of numerical algorithms. In A C M Trans­
actions on Graphics, vol. 22. 908—916.
Larsen, E. S., and M cA llis te r, D. 2001. Fast m atrix multi­
plies using graphics hardware. In Super Computing 2001, ACM
SIG ARCH/IEEE.
Lefohn, A., and Whitaker, R. 2002. A GPU-based, three­
dimensional level set solver with curvature flow. University of Utah
tech report UUCS-02-017. December.
Lefohn, A., C ates, J., and W hitaker, R. 2003. Interactive. GPU-
based level sets for 3D brain tum or segmentation. In Medical Image
Computing and Computer A ssisted Intervention, To Appear.
Levoy, M. 1988. Display of surfaces from volume data. IE EE
Computer Graphics & Applications 8, 29-37.
M alladi, R., Sethian, J. A., and Vemuri, B. C. 1995. Shape model­
ing with front propagation: A level set approach. IE E E Trans, on
Pattern Analysis and M achine Intelligence 17, 158-175.
M ark, W. R., G lan v ille , R. S., Akeley, K., and K ilgard , M. J.
2003. Cg: A system for programming graphics hardware in a C-like
language. In A C M Transactions on Graphics, vol. 22. 896—907.
Osher, S., AND Sethian, J. 1988. Fronts propagating with curvature-
dependent speed: Algorithms based on Hamilton-Jacobi formula­
tions. Journal o f Computational Physics 79, 12-49.
Owens, J. 2002. Computer Graphics on a Stream Architecture.
PhD thesis. Stanford University.
Peng, D., M erriman, B., Osher, S., Zhao, IL, and Kang, M. 1999.
A PDE based fast local level set method. Journal o f Computational
Physics 155, 410—438.
P ercy, J., AND Mace, R. 2003. OpenGL extensions: Siggraph 2003.
h t tp :/ /m ir ro r .a t i . com/developer/techpapers.html.
Rumpf, M., and S trzodka, R. 2001. Level set segmentation in graph­
ics hardware. In International Conference on Image Processing,
1103-1106.
S ABELL A, P. 1988. A rendering algorithm for visualizing 3D scalar
fields. In C omputer Graphics (Proceedings o f S IG G R A P H 88),
vol. 22. 51—58.
Sethian, J. A. 1999. Level Set Methods and Fast Marching Methods
Evolving Interfaces in Computational Geometry, Fluid Mechanics,
Com puter Vision, and M aterials Science. Cambridge University
Press.
Sherbondy, A., H ouston, M., and Nepal, S. 2003. Fast volume
segmentation with simultaneous visualization using programmable
graphics hardware. In IE E E Visualization, To Appear.
S trzodka, R., and Rumpf, M. 2001. Using graphics cards for quan­
tized FEM computations. In Proceedings VHP Conference on Vi­
sualization and Image Processing.
Tasdizen, T., W hitaker, R., B urchard , P., and Osher, S. 2002.
Geometric surface smoothing via anisotropic diffusion of normals.
In IE E E Visualization, 125-132.
T he Insight Toolkit. 2003. h t tp : / /w w .itk .o rg .
WHITAKER, R. T. 1994. Volumetric deformable models: Active
blobs. In Visualization In Bio-medical Computing 1994, SPIE.
Mayo Clinic. Rochester. Minnesota. R. A. Robb. Ed.. 122—134.
WHITAKER, R. 1998. A level-set approach to 3D reconstruction from
range data. In ternational Journal o f Com puter V ision October,
203-231.
W ilson, O., Gelder, A. V., and W ilhelms, J. 1994. Direct Volume
Rendering via 3D Textures. Tech. Rep. UCSC-CRL-94-19. Univer­
sity of California at Santa Cruz. June.
Yoo, T., Neumann, U., Fuchs, IL, Pizer, S., Cullip, T., Rhoades, J.,
and W hitaker, R. 1992. Direct visualization of volume data. IE EE
Com puter Graphics and Applications 12, 63-71.

82
Proceedings of the 14th IEEE Visualization Conference (VIS'03)
0-7695-2030-8/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: The University of Utah. Downloaded on July 06,2010 at 21:37:43 UTC from IEEE Xplore. Restrictions apply.

http://mirror.ati.com/developer/techpapers.html
http://ww.itk.org

