
GPU-ACCELERATED SNAKE
GPU IMPLEMENTATION OF A REGION-BASED SEGMENTATION

ALGORITHM (SNAKE) FOR LARGE IMAGES

Gilles Perrot1, Stéphane Domas1, Raphaël Couturier1,
Nicolas Bertaux2.

1University of Franche-Comté - Distributed Numerical Algorithmics group (AND),
2Fresnel Institute - Physics and Image Computing group (PhyTI)

31 august - 1 september



Table of contents



Image segmentation

Definition, goal
Dividing an image in two homogeneous regions.
Reducing the amount of data needed to code information.
Helping the human perception in certain cases.

G. Perrot Snake GPU 3 / 1



Images of our interest

Origins

Synthetic Aperture RADAR (S.A.R.),
Ultrasonic (medical imaging),
Photographic (IR, nightshots).

Characteristics
16 bit-coded gray levels,
From 10 Mpixels to more than 100 Mpixels,
Very noisy.

G. Perrot Snake GPU 4 / 1



Algorithm basics : criterion

H pixels

Image (I)

L pixels

background (B)

target (T)

contour (Γ )
N nodes

pT

pB

nB pixels

nT pixels

The goal is to find the most likely
contour Γ (number and positions of
nodes).
The criterion used is a Generalized
Likelihood one .
In the Gaussian case, it is given by

GL =
1
2

[
nB.log

(
σ̂B

2
)

+ nT .log
(
σ̂T

2
)]

where σ̂Ω is the estimation of the
deviation σ for the region Ω.

G. Perrot Snake GPU 5 / 1



Algorithm basics : parameters estimation

Based on the Green-Ostogradsky theorem, Chesnaud has
shown how to replace those 2-dimensions sums inside the
contour by 1-dimension sums along the contour.
This optimization implies:

the precomputation of a few matrices (called cumulated
images) containing the potential contributions of each pixel
of the image,
the use of constant lookup tables of weighting coefficients
to determine the contributions of each segment of pixels.

G. Perrot Snake GPU 6 / 1



Snake algorithm in action

15 Mpixels image
(SSE implementation
limit).
Initial contour: 4 nodes.

G. Perrot Snake GPU 7 / 1



Snake algorithm in action

End of first iteration: no
more move can be of
interest.

G. Perrot Snake GPU 7 / 1



Snake algorithm in action

Nodes added in the
middle of segments.

G. Perrot Snake GPU 7 / 1



Snake algorithm in action

End of second iteration.

G. Perrot Snake GPU 7 / 1



Snake algorithm in action

End of fifth iteration
(36 nodes).

G. Perrot Snake GPU 7 / 1



GPU implementation: prior knowledge

The parallelism of a modern GPU lays on a SIMT
paradigm (Single Instruction Multiple Threads): the same
instruction is processed by a great number of threads at a
time (up to 216).
Threads are compounded in independants blocks with no
possible synchronization between blocks.
Threads in a block share a small amount of shared
memory (16-48 KBytes).
There are restrictive conditions to be fullfilled in order to
make efficent accesses to global and shared memory.
Data transfers between CPU and GPU are slow.

G. Perrot Snake GPU 8 / 1



GPU implementation: precomputations

One of the cumulated images is not to be computed
anymore: values are evaluated on the fly.
An inclusive parallel prefixsum is performed on each row of
the image for each matrix to be processed (z,z2).

ý Speedup is around x7 for images larger than 100 MPixels.
Comparison is done with the SSE/CPU implementation of
the PhyTI group.

ý Higher speedups (x15) are obtained with specific versions
for constant image sizes.

G. Perrot Snake GPU 9 / 1



GPU implementation: nodes move

To select the possible next position of a node:
Parameters of the corresponding contour have to be
estimated.
Then the value of the criterion can be obtained and
compared with the previous one.
The parallelization needs reside essentially in the
parameters estimation.
Two possible parallelism levels:

One contour per thread.
One pixel per thread.

ý The one pixel per thread rule is far more efficient, due to
memory access constraints.

G. Perrot Snake GPU 10 / 1



GPU implementation: parallelization

1 thread per row

1 thread per column

segment with

segment with

8 tests positions around node Pi

node Pi−1

node Pi+1

from Ti ,0 to Ti ,7 counterclockwise Every 16 segments for every
even/odd nodes are processed in
parallel.
Fits GPU specific parallelism:
each pixel is processed by a
thread.

G. Perrot Snake GPU 11 / 1



GPU implementation: data structure

The main idea is to organize, in a single array, every pixels of
every segments to be processed.
Thus, for a given state of the contour (N nodes), we:

1 Find the largest segment to be processed. It gives:
the block size bs of the computing grid,
the number of blocks needed for each segment (NTB).

2 Compute in parallel, the coordinates of every pixels of the
16.N segments to be considered,

3 Make some parallel reductions to finally obtain parameters
estimation.

G. Perrot Snake GPU 12 / 1



GPU implementation: data structure

block 0 block 1

NTB blocks of bs threads for one segment
block NTB − 1

G. Perrot Snake GPU 13 / 1



GPU implementation: data structure

block 0 block 1

16 segments around one node

NTB blocks of bs threads for one segment
block NTB − 1

−−−−−→
Pi−1Ti,0

−−−−−→
Pi−1Ti,7

−−−−−→
Ti,0Pi+1

−−−−−→
Ti,7Pi+1

G. Perrot Snake GPU 13 / 1



GPU implementation: data structure

block 0 block 1

16 segments around one node

NTB blocks of bs threads for one segment
block NTB − 1

−−−−−→
Pi−1Ti,0

−−−−−→
Pi−1Ti,7

−−−−−→
Ti,0Pi+1

−−−−−→
Ti,7Pi+1

P2(Nn/2+Nn%2−1)P2P0

(Nn/2 + Nn%2) even nodes

G. Perrot Snake GPU 13 / 1



GPU implementation: data structure

block 0 block 1

16 segments around one node

NTB blocks of bs threads for one segment
block NTB − 1

−−−−−→
Pi−1Ti,0

−−−−−→
Pi−1Ti,7

−−−−−→
Ti,0Pi+1

−−−−−→
Ti,7Pi+1

P2(Nn/2+Nn%2−1)P2P0

(Nn/2 + Nn%2) even nodes

P1 P3 P2(Nn/2−1)+1
(Nn/2) odd nodes

G. Perrot Snake GPU 13 / 1



GPU implementation: first results

Global speedup around x7-x8 for image sizes from 15 to
150 Mpixels.
First iterations have higher speedups:

several large segments,
few inactive threads in the grid.

Last iterations are sometimes slower than on CPU:
a lot of small segments,
more inactive threads in the grid.

G. Perrot Snake GPU 14 / 1



GPU implementation: smart init (reasons)

The target shape is often far from initial contour,
It causes the very first iteration to be much more
time-consuming than the other ones.
Horizontal segments contributions are null.
Vertical segments contributions computations can be fast,
through a specific process.

ý It’s fast to find a rectangle near the target.

G. Perrot Snake GPU 15 / 1



GPU implementation: smart init (process)

jL jH

Realize a periodic sampling
of a few hundreds of
J-coordinates.
Evaluate in parallel every
possible rectangle of
diagonal (0, jL)− (H, jH).
Select the one with the best
GL criterion.
jL and jH are now
considered as constants.

G. Perrot Snake GPU 16 / 1



GPU implementation: smart init (process)

iL

iH

jHjL

Given jL and jH .
Realize a periodic sampling
of a few hundreds of
I-coordinates.
Evaluate in parallel every
possible rectangle of
diagonal (iL, jL)− (iH , jH).
Select the one with the best
GL criterion.

G. Perrot Snake GPU 17 / 1



GPU implementation: enhancement

Global speedup around x10 for image sizes from 15 to
150 Mpixels and a small enough target (as in the example)
Less than 0.6 second for the 150 Mpixels image of this
example.

G. Perrot Snake GPU 18 / 1



Conclusion, future works

Interesting speedups
Original algorithm is not GPU-friendly
Future works:

Finding a more suited structure to describe the contour.
Switching to a statistical model independant from a PDF:
the potts model.
Benefit from recent features of CUDA v4 (overlapping,
multiple kernels)
Extend to a multiple targets algorithm, based on this single
target elementary piece of code.

G. Perrot Snake GPU 19 / 1


