Signal Processing Systems manuscript No.
(will be inserted by the editor)

Fine-tuned high-speed implementation

of a GPU-based median filter.

Gilles Perrot - Stéphane Domas -

Received: date / Revised: date

Keywords median, filter, GPU

Abstract Median filtering is a well-known method used
in a wide range of application frameworks as well as
a standalone filter, especially for salt-and-pepper de-
noising. It is able to highly reduce the power of noise
while minimizing edge blurring. Currently, existing al-
gorithms and implementations are quite efficient but
may be improved as far as processing speed is con-
cerned, which has led us to further investigate the speci-
ficities of modern GPUs. In this paper, we propose the
GPU implementation of fixed-size kernel median fil-
ters, able to output up to 1.85 billion pixels per second
on C2070 Tesla cards. Based on a Branchless Vector-
ized Median class algorithm and implemented through
memory fine tuning and the use of GPU registers, our
median drastically outperforms existing implementa-
tions, resulting, as far as we know, in the fastest median
filter to date.

1 Introduction

First introduced by Tukey in [? |, median filtering has
been widely studied since then, and many researchers
have proposed efficient implementations of it, adapted
to various hypothesis, architectures and processors. Orig-
inally, its main drawbacks were its compute complex-
ity, its non linearity and its data-dependent runtime.
Several researchers have addressed these issues and de-
signed, for example, efficient histogram-based median
filters featuring predictable runtimes [? ? ]. More re-
cently, authors have managed to take advantage of the
newly opened perspectives offered by modern GPUs, to

FEMTO-ST institute
Rue Engel Gros, 90000 Belfort, France.
E-mail: forename.name@univ-fcomte.fr

Raphaél Couturier

develop CUDA-based filters such as the Branchless Vec-
torized Median filter (BVM) [? ? | which allows very
interesting runtimes and the histogram-based, PCMF
median filter [? | which was the fastest median filter
implementation to our knowledge.

The use of a GPU as a general-purpose computing
processor raises the issue of data transfers, especially
when kernel runtime is fast and/or when large data sets
are processed. In certain cases, data transfers between
GPU and CPU are slower than the actual computa-
tion on GPU, even though global GPU processes can
prove faster than similar ones run on CPU. In the fol-
lowing section, we propose the overall code structure
to be used with our median kernels. For more conci-
sion and readability, our coding will be restricted to 8
or 16 bit gray-level input images whose height (H) and
width (W) are both multiples of 512 pixels. Let us also
point out that the following implementation, targeted
on Nvidia Tesla GPU (Fermi architecture, compute ca-
pability 2.x), may easily be adapted to other models
e.g. those of compute capability 1.3.

2 General structure

Algorithm 1 describes how data is handled in our code.
Input image data is stored in the GPU’s texture mem-
ory so as to benefit from the 2-D caching mechanism.
After kernel execution, copying output image back to
CPU memory is done by use of pinned memory, which
drastically accelerates data transfer.



Gilles Perrot et al.

Algorithm 1: Global memory management on
CPU and GPU sides.

SO Gk W N

8 kernel

kernLe|

ft.jpg
gridDim,blockDimi

*/;

9 copy data from d_out to h_out ;

allocate and populate CPU memory h_in;
allocate CPU pinned-memory h_out;
allocate GPU global memory d_out;
declare GPU texture reference tex_img_in;
allocate GPU array array_img_in;
bind array_img_in to texture tex_img_in;
copy data from h_in to array_img_in;

kernRi]|

ght. jpg
/* to d_out




