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Abstract—In  this study, we propose to address the issue the intrinsic constraints of the device which is actuallyngp
of image denoising by means of a GPU-based filter, able to to run those algorithms. Consequently, this often resuits i
achieve high-speed processing by taking advantage of themtel ;53| options and even apparently sub-optimal solytions

computation capabilities of modern GPUs. Our approach is baed - . . .
on the level sets theory first introduced by [1] in 1975 but litle but the considerable speed benefits obtained would possibly

implemented because of its high computation costs. What we Make it at least a good compromise or even the only current
actually do is try to guess the best isoline shapes inside tmoisy way to real-time high-definition image processing.

image. At first, our method involved the polyline modelling d

isolines; then we found an optimization heuristics which vey II. CONTRIBUTION

closely fits the capabilities of GPUs. So far, though our propsed . -,
hybrid PI-PD filter has not achieved the best denoising level it~ AS €arly as 1975 [1], it was found that, under the conditions

is nonetheless able to process a 512x512 image in about 11 msmentioned in section V, an image can be decomposed into a
set of level lines. Accordingly, real-life images fulfillerabove
conditions and since then, with the increase of computing
capabilities, researchers have succeded in implementicly s
. INTRODUCTION level-lines based algorithms as in [9] and [10]. A few years

Denoising has been a much studied research issue siage, in [11], authors proposed an original method whichigign
electronic transmission was first used. The wide range ighntly reduces speckle noise inside coherent imagesy tisn
applications that involve denoising makes it uneasy to @sep level lines in the image to constrain the minimization pssxe
a universal filtering method. Among them, digital imag&hose level lines are actualigo-gray-levellines, which are
processing is a major field of interest as the number of digitealled isolines In [11], isolines consist in neighborhoods of
devices able to take pictures or make movies is growing faslyline shapes determined by maximum likelihood optimiza
and shooting is rarely done in optimal conditions. Moregvetion. This method proved not only to bring good enhancement
the increase in pixel density of the CCD or CMOS sensobgit also to preserve edges between regions. Neverthdbess, t
used to measure light intensity leads to higher noise effeciosts in computation time, though not prohibitive, did not
and imposes high output flow rates to the various processialfpw real-time image processing; as an example, the asithor
algorithms. of [11] managed to process an almost 2Mpixel image within

In addition, it is difficult to quantify the quality of an imag a minute on an old PIlI-1GHz.
processing algorithm, as visual perception is subject ghhi Our work started by designing a set of GPU implemen-
variation from one human to another. So far, the advent t#tions with various optimization heuristics, in order tadfi
GPUs has brought high speedups to a lot of algorithms, aadt which tracks could be followed towards minimizing loss
many researchers and developpers have successfully edreds quality and preserve admissible execution times. Those
the issue of implementing existing algorithms on such deszic algorithms have been tested with reference images takem fro
For example in [2], [3] and [4], authors managed to desiga2] for which various processing results have been puétish
quite fast median filters. Bilateral filtering has also beea-s Some of the more interesting ones are listed and compared in
cessfully proposed in [5]. Still, most high quality algbrits, [13]. Statistical observations (to be detailed below) made
like NL-means [6] or BM3D [7] make use of non-localthe output images produced by the method proposed in [11],
similarities and/or frequency domain transforms. Howgevded us to propose a very fast and simple parallel denoising
speedups achieved by their current GPU implementatiomsethod which gives good results in terms of average gray-
though quite sigificant (as shown for example with NL-mearisvel error, but also avoids the blurring of edges.
in [8]), do not come near those achieved by local methodsAs exposed later in the result section, our proposed GPU-
such as gaussian, median or neighborhood filters, as thmsed filter does not achieve such high denoising levels as,
have not originally been designed against GPU architectufer example, the BM3D algorithm described in [7], but on the
In order to fully benefit from the capabilities of GPUs, it ighasis of the timings listed in [7] and on our own measurements
important that the approach to designing algorithms be mdteuns hundreds of times faster and thus is able to process hi
hardware-oriented, keeping in mind, from the very begignindefinition images at over 16fps.
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[. PLAN our goal is to find, for each single pixel of a noisy image, the

In the following, section IV briefly focuses on recent NvididSline it belongs to. The generalized likelihood criteri@L)
GPU characteristics. Section V will introduce the theory ariS Used to select the best isoline among all the consideres| on
notations used to define isolines. Then, in section VI, wdl of which must have the same number of pixels in order to
will describe the two isoline based models that led to tHe€ compared.
final hybrid model, while section VII details the parallel ) .
implementation of the proposed algorithm. Finally, we prées A. Fixed-length isolines
our results in section VIII before drawing our conclusionsia  For each pixel(i, j) of the corrupted image, we look for

outlining our future works in section IX. the gray level of the isoline it belongs to, inside a rectdagu
window w centered oni, 7). Insidew, let S™ be the isoline
IV. NVIDIA'S GPUARCHITECTURE part which the center pixel belongs t6" is a set ofn pixel

GPUs are multi-core, multi-threaded processors, optichizR0S1ONS(ig. jq) (¢ € [O;n[);l . .
for highly parallel computation. Their design focuses on he gray IeyeISz along 5" follow a gaussian prol_)ab!llty
SIMT model (Single Instruction Multiple Threads) that de- ensity function whose p_argmetergn (mean valu_e of |s_oI|ne
votes more transistors to data processing rather than d:ﬂg[t) andy (standard deviation brought by gaussian noise ) are
caching and flow control (see [14] for more details). For exaankmwn' ) o
ple, a C2070 card features 6 GBytes global memory and a t?&lt S" be ‘?'ef'”ed byw = 5™ U 5. _
of 448 cores bundled in several Streaming Multiprocess g each pixel, the mean val_ua%- of gray levelsz over 5™
(SM). An amount of shared memory, much faster than gIob%rIe unknown and supposed_lndependant '
memory, is avalaible on each SM (up to 48 KB for a C20xket Z be the gray levels of pixels in and{4; 1z the mean
card) values of pixels inS™. The likelihood is given by:

Writing efficient code for such architectures is not obvious P[Z)S", psn, {pij}zm, 0]
as re-serialization must be avoided as much as possible, T . _— . —_
code design requires one pays attention to a nurFr)1ber of poitr‘léﬁlgéir;nzzparatlng contributions from regiofis and 57, it
among which: '
« the CUDA model organizes threads by a) thread bIocksH P[z(i,j)|psn, o). H P [2(i, ) {pij}gw- 0] (1)
in which synchronization is possible, b) a grid of blocksi.j)es™ (i,§)ES™
with no possible synchronization between them. The goal is then to estimate the value of the above exprgssion
« there is no way to know how blocks are scheduled during order to find the boundaries 6f* that maximize expression
one single kernel execution. (1).
- data must be keptin GPU memory, to reduce the overheggt us consider that, 0", the values:(i, ;) are the likelihood

generated by copying between CPU and GPU. estimationsyz;; for p;;. The second term of expression (1)
« the total amount of threads running the same computatigBcomes:

must be as large as possible.

« the number of execution branches inside one block should H_P [Z(i’j” (st s U} =1 @
be as small as possible. (i,5)eS™
« global memory accesses should be coaleséenthem- which leads to the generalized likelihood expression:
ory accesses done by physically parallel threads (2 x 16 .
at a time) must be consecutive and contained in a 128 ’ l;IS Pz, j)lpse, 0] (3)
7;,] 6 n

Bytes range. - ) _

« shared memory is organized in 32x32 bit-wide banks. TdS We know the probability density function oft", (3) can
avoid bank conflicts, each parallel thread (2 x 16 at en be developped as
time) must access a different bank.

_ (2G5 —pgn)?

1
- -2
All the above characteristics always make designing effi- H ,/—%Uze ’ )
. .. . (i,7)€8™
cient GPU code all the more constraining as non-suited code o _ _
would probably run even slower on GPU than on CPU. The log-likelihood is then given by:
n n n
——log (27) — =log (%) — = (5)
V. ISOLINES 2 (2m) 2 (=) 2

In the following, let! be the reference noiseless image (ad2Side Which the vector of paramete(iss-, o) is determined

suming we have oneJ! the noisy acquired image corrupted byPY Maximum likelihood estimation

Independent and Identically Distributed (IID) additive iteh — 1 .

) . o fan ==y (i)

gaussian noise of zero mean value and standard deviation (s

Let I be the rebuilt image. Each pixel df of coordinates —~ 1 - o

(i,7) has its own gray levet(i, ). o= > (2(,4) - fisn)
As introduced above and since most common images are (B,5)esm

continuous and contain few edges, they can be decompo3é@ selection of the best isoline is done by searching which
into a set of constant gray level lines calleblines Then one maximizes the expression of equation (5).



___________ P The difference between (6) and (7) leads to the expression
e of GLRT(S"+7, 5™, 87, Thnas):

SSCESNSS

£ Tz = (n+ p): [log (75°) = tog (52°)] ®)

The decision to validate lengthening frosi® to S™*?
depends whetheGGLRT(S"TP, S™ SP T,...) is higher or
lower than0. ValueT,,,. is the GLRT threshold.

VI. | SOLINE MODELS

The most obvious model considers isolines as polylines.
Each isoline can then be curved by allowing a direction ckang

Fig. 1. Determination and lengthening of an isoline: Theygevel z of at the end of each segment; we shall call such isol'[miy-
each pixel is seen as an elevation valgé. is then pixel length isoline for isolines

pixel of coordinates(s, j). The elongation ofS™ by SP (p pixel length) is . L Lo
submitted to the GLRT condition (see eq. (8)). In order to keep the number of candidate isolines within

reasonable range, we chose to build them by combinating
segments described by simple pre-computed patterns. Each
B. Lengthenable isolines pattern p; ; describes a segment of lengthand direction

d. For one given! value, allp; 4 patterns are grouped into

Searching for larger isolines should lead to better fil@rin, iy denoted?;. Figure 8 shows an example of such a
as a larger number of pixels would be involved. Howevebattern matrix forl = 5

processing all possible isolines starting from each pialid To fit the GPU-specific architecture, we define regularly

be too costly in computing _time_, even in the case of a S'ﬁmﬁnstributedD primary directions D = 32 in our examples).
GPU-processed 512x512 pixel image. Therefore, we chose to

build large isolines step by step with a mandatory validatio o o o
stage between each lengthening step, so as to reduce AhdPoly-isolines with limited deviation angle (PI-LD)

number of pixel combinations to be examined and keep theAt one Stage we implemented an a|gorithm parsing the tree
estimation of deviatiomr within a Satisfactory range of Va|ueS.0f all possib'e po'y”ne ConﬁgurationS, but the process,pd)

Let S™ be a previously selected isoline part afl con- far too slow regarding our goal, even on GPU, because of
nected to.S™ in such a way thatS? could be seen as anthe amount of memory involved (and consequent memory
addition to S™ so as to define a possible valid isoliS&¢*?. accesses) and because of the necessary reduction stage for
Figure 1 illustrates this situation with a very simple ex&npwhich GPU efficiency is not maximum. So we focused on a
image. In this figure, the gray level of each pixel is used ®s ¥ariant inspired by [11] in which the selected direction lné t
corresponding height:§ in order to visualize isolines easily. next segment depends on the whole of the previously built and
Some of the orthogonal isoline projections have been drawalidated poly-isoline.
in dotted line in the(i, j) plane. Both labeled partS” and | et us consider a poly-isoling™ under construction, start-
S™ are represented in the, j) plane and in the 3D associatedng from pixel (i,j) and made ofK validated segments
plot. sk (k € [1;K]) of length i, each of them having its own

In order to decide whethe$”*? can be considered as andirection d;,. The coordinates of the ending pixel of each
actual isoline, we compare the log-likelihood of both silmias  segments;, are denotediy, ji,). Both of the following sums
below by using GLRT (Generalized Likelihood Ratio Test):

First, assuming thas™*? is an isoline, the gray levels of Co(Z(S™) = > 2(i,9) )
its pixels share the same mean vajug,,,. According to (5), (i,j)esn
its log-likelihood is and Cgp2 (Z(S™) = Z 2(i,5)? (10)
(i,5)es™
(n+p) (n+p) 2
—— (og (2m) +1) — =——"log (01 ) (6)  have been obtained during the previous lengthening steps.

. o . Let us examine now how to decide wether to add a new
whereg; is the estimation of the standard deviation aldfig segment taS™ or to stop the lenghtening process. The main

Second, considering™ and.S? as two separate isoline partSgea is to apply each pattegn 4 to the ending pixelix, ji),
connected together, the gray levels of their pixels have oy the condition that its direction is contained within the
different mean valueg., and ;. The log-likelihood is the |imits of maximum deviationAd,,.,. Maximum deviation
sum of both log-likelihoods, given by Ad,nq prevents poly-isolines from beeing of circular shape

(n + p) n e » . (or backward-oriented) which would possibly generate teypp

5 (log (2m) +1) — §log (02 ) - §log (0'2 ) (7) mentary artefacts in the output image. Another of its bemefit
is to reduce the number of combinations to be evaluated.
wherea; is the estimation of the standard deviation aldtiy For each allowed pattern, GLRT is performed in order to
and SP. decide if the corresponding segment could likely be added to




the end of the poly-isolin&™. If none is validated by GLRT, two different types of validation at each lengthening stage
the poly-isolineS™ is stopped. GLRT and maximum likelihood minimization. In order to be

If at least one segment has been accepted by GLRT, therformed, each of them generates numerous branches during
one that leads to the maximum likelihood (ML) value okernel execution, which does not fit GPU architecture well
the lengthened poly-isoliné™*! is selected and integratedand leads to execution times that we hoped would be more
to S assg . impressive.

As the GL criterion only applies to the validated parts of Within the PI-LD model, at each pixél, j), as no selection
poly-isolines and not to full-size eligible ones, this mmth is done at the first stagd) poly-isolines are computed and
cannot,a priori, select the actual best poly-isoline. kept as candidate though, obviously, only one follows the

Nevertheless, to avoid critical situations where the firsictual isoline at(i, j). So, if we assume we can achieve a
selected segment would not share the primary directionef ttobust determination of the direction at any given pixel of
actual poly-isoline, no selection is performed on the lesfel this isoline, it becomes unnecessary to perform the selecti
the first segmentD poly-isolines are kept and submitted to thét each lenghtening step. Thus, at each pikel), only
lengthening process. To ensure isotropy, each of them shalee first segment has to be determined in order to obtain
the direction of one patterp, 4 (d € [0; D]). the local direction of the isoline. This leads to an importan

Eventually, the poly-isoline with the maximum likelihoodreduction of the work complexity: the above PI-LD model
value is selected among the longest ones. needs to evaluatd. (2.Agma: +1)" ' segments at each

Figure 2 illustrates one stage of the lengthening procets wpixel position, while only D.K evaluations are needed in
the example of a two-segment poly-isoline at the beginning the second case. For example, with a maximumiof= 5
stage (=5 and Ad 4 = 2). segments and a maximum deviation &f,,.. = 2, the PI-

LD needs to evaluate up to 20000 segments per pixel where
only 160 should be enough.

On the basis of these observations, we propose a new model
that we shall call PI-PD, that completely separates the vali
dation stages performed in the PI-LD model implementation
mentioned above:

A first computation stage selects the best first segment
starting at each pixeli, j) of the input image. Its direction
index d; (i, 7) is then stored in a reference matrix denoted
Io; sumsC, and C,» alongsi(i,j) are also computed and
stored in a dedicated matrik:. It can be noticed that this
selection method of; segments is a degraded version of PI-
LD constrained byK = 1.

A second stage manages the now independant lengthening

(i,9)
(a) Isoline with two validated
segmentss; and so.

(b) First evaluated segment,
corresponding to patterps o.
'i3muz
o adz=d

(12, 42)

= d3min

(i, 5)

(c) Second evaluated segment,

corresponding to patterps ;.

d3maz

\X;ﬂ_._._._._._.. damin
(42, 52)

@i,9)
(e) Fourth evaluated segment,

(i,5)

(d) Third evaluated segment,

corresponding to patterps 2.

- d3mnz

(i2, J2)
(,9)
() Fifth evaluated segment,
corresponding to patterps 4.

process. For one given state of a poly-isoline where the last
added segment has been, the pattern whose direction index
is given byd = Ig(ik,jk) defines the only segment to be
evaluated. Both corresponding sutiisandC,.» are read from
matrix Iz, and used in GLRT evaluation. The last point is to
prevent poly-isolines from turning back.

Figure 3 details this process, starting from the same Initia
state as in figure 2 with the noticeable difference that no
deviation limit is needed.

corresponding to patterps,s. Thus, as introduced above, work complexity is considerably
Fig. 2. Example of lengthening process starting with a tegesent poly- reduced, as each pattern is only applied once at one given

isoline ¢ = 5, Admaa = 2). The initial situation is shown in 2a, while 2b to nixe| (5. 7). and associated values are computed only once:
2f represent the successive candidate segments. Thdalira@udex of the last P (i), P y ’

validated segment ig2 = 2 (2a). It implies that direction indexes allowed for they are re-used e\{ery time one pon-i;oIine’s Segme.nt 3“9'3
the third segment range frody — Admax = 0 to d2 + Admaz = 4 (2bto  pixel (¢, j). Also, this fits GPU constraints better, as it avoids

2f). The lengthening of the poly-isoline is accepted if @sieone segment has multiple branches during kernel execution. It remains that
a positive GLRT. If there are several, the one which minimigee standard - . . . I
deviation of the whole poly-isoline is selected. the_bl_Jlld|_ng of poly-isolines is done without global liketiod
optimization.
Eventually, the model has been improved by adding to it
o , . the ability to thicken poly-isolines from one pixel up to ¢ler
B. Poly-isolines with precomputed directions (PI-PD) which allows to achieve higher PSNR values by increasing the
Though much faster, the PI-LD-based filter may be comumber of pixels of poly-isolines in addition to the lengtirey
sidered a bit weak compared &late-of-the-artfilters like process. This may apply to large images which do not contain
BM3D family algorithms [7]. Furthermore, we saw that thismall relevant details, as it may blur small significant deta
way of building poly-isolines requires the alternate use afr objects present in the noisy image. Still, this featurdesa



PI-PD more versatile than our reference BM3D, which has
prohibitive computation times when processing large insage
(over 5 minutes for a 4096x4096 pixel image) and thus should
require a slicing stage prior to processing them, causingeso

overhead.
(a) Reference image
J2
l
IQ—{ Toliais) - ::]H,
S2
I/\ }\_‘
sy t 3 R
(42, 32) (42, 72) “ds
:.9) ) - :
(@  Poly-isoline  (b) Next direction is read from element (b) Image corrupted by random  (c) Image corrupted by random
with two validated (i2,j2) of Ie. drawingn°1 drawing n°2
segments.
Ps.ds IEEEIIEEENm SEHErEENESNE
ﬁ NIEEEEEEEEN EEEEEEREEEE
H ‘NNZESSNZAASE HEEEHEEREEAN
HHH ‘MEEIEESRIEEZ ‘HFSSEEAENAE
89 EEEEEEEEEEN EEEEEEEEEEE
~rm EEEEEEEEEEE EEEEEEEEEEE
3y t . EEEEEEEEEEE ‘EEEEEEEEEEE
(32,32) Ty NNEEEINEENN ‘NFEFENERNNSN
- . JMNFEENNSSEN ‘HHIENEENEEZ
@:9) (@.4) NEEIZNNENNN ‘°=- FEREEREE
(c) Patternp; 4, is then applied at  (d) If accepted by GLRT, AENEEEESNNRE ‘NENIEEEEERE
(i2,72) and GLRT is performed. segmentss is added to T F o 4 %t w8 a0 T2 3 4 5 6 7 8 8 10
Both sums needed to perform GLRT  poly-isoline. (d) Isoline directions for ran-  (e) Isoline directions for ran-
are read from elemertiz, j2) of I dom drawingn®1 dom drawingn°2

Fig. 3. Example of PI-PD lengthening process starting witva-segment rig 4. Zoom on a small square window of the airplane imageegeoduce
poly-isoline ¢ = 5). The initial situation is represented in 3a, while 3a t0 3dhe z00m on the window, taken from the reference image ofrEigu 4b, 4c
represent_the successive processing steps. The end pim st validated 5ng 4a and are 3D views where each bar represents a pixel \grmstevel
segment is(iz, j2) (3a). Reference matricefy and s provide the values ¢orresponds to the height of the bar. Figures 4d and 4e areoflviews
needed to select the pattern to be applied(@j2) (3b and 3c). GLRT is  of the window. The chosen window shows an edge between twionegf
perfor_med to validated lengthening or not. This processsgme until one  |gy slope. The images 4b and 4c are corrupted with two differandom
submitted segment does not comply with GLRT. drawings of the same additive white gaussian noise (AWGNpamfier o2
and mean valué. 4d and 4e show, for each pixel of the window, the direction
of the isoline found by PI-PD. In regions of low slope (the tplanes at the
top and the bottom), the determination of the direction isrobust. But near
the edge, directions do not vary from one drawing to another.

C. Hybrid PI-PD

As the determination of each segment's direction only
involves a few pixels, the PI-PD model may not be robuéfe average value computed on the current square window,
enough in regions where the surface associated ithas a Otherwise, the PI-PD output value is used.
low local slope value regarding power of noisé. We shall In order to further simplify computation, only the patterns
call those regions Low Slope Regions (LSR). Figure 4 showat do not share any pixel are used. These patterns have a
this lack of robustness with an example of two drawings efirection which is a multiple oft5°.
additive white gaussian noise applied on the same referenc&ach base directiori®;) and its oppositeg®; + =) [27]
image (Figure 6). Within this image, we focused on a smalefine a line that separates the square window in two half-
11x11 pixel window containing two LSR with one sharp edgplanes. We assume that segments on the limit belong to the
between them. half-plane (denoted H) which includes pixels of orientatio
Figures 4d and 4e show that the directions computed fpm ©; to ©, + w. This half-plane comprises three more
PI-PD are identical from one drawing to the other near tteegments of direction&d; + %), (6; + 2F) and (©; + 2%).
edge (lines 5-7), while they vary in LSR (lines 1-4, 8-11). The other half-plane (denoted L) only includes three segsnen
Within such regions, our speed goals forbid us to compueé directions(©; + 27), (6, + &F) and (0, + ).
isoline directions with the PI-LD model, more robust but far Figure 5 illustrates this organization f&@, = ©, = 45°.
too slow. Instead we propose a fast solution which implidgsach bar represents a pixel in the detector’s window. Pixels
designing an edge detector whose principle is to re-use thigh null height are not involved in the GLRT. Pixels rep-
segment patterns defined in section VI and to combine theesented by higher bars define the half-plane denoted H and
by pairs in order to detect any possible LSR around the centhose represented by shorter bars define the half-plandetkeno
pixel. If a LSR is detected, the output gray-level value ik.



to achieve smoother transitions between regions to whieh Pl
PD is applied and those in which the plain average value
is used. Figure 7 shows an example of such a classification
achieved by the edge detector. The detector has been applied
on the top noisy airplane image with a GLRT threshold value
T2..4: = 2. Black pixels represent pixel classified as an

edge while white ones are those which belong to LSR.

Fig. 5. Edge detector. 3D view representing an example eqliax11 pixel
window ( = 5) used in the edge detector f@, = 45° around a center
pixel colored in black. Each pixel is represented by a barsBs# height
value 0 are for pixels that are not involved in the detectopl&he is defined
by five pattern segments and includes the center pixel. Leptarly includes
three pattern segments. The different height values aretmeadistinguish
between each of the three different sets of pixels and tlogr r

(a) Noisy airplane image (b) Pixel classification per-

For each®;, one GLRT is performed in order to decide formed by the edge detector.

whether the two half-planes defined above are likely to ba seg . e o . .

) X ig. 7. Pixel classification inside the noisy image. Figuaesfiows the noisy
as a single plane or as two different ones H and L, separat@dn image and 7b reproduces the output classification afli as a black
by an edge as shown in figure 5. The center pixel is locatea white image, obtained with threshold vallie,.... = 2. Black pixels
on the edge. Equations (6), (7) and (8) lead to a similar GLFgf:g;L:gposed to be near an edge, while white pixels belongoto $lope
expression:

—~2 —2
T2maq — (81+1). {log (03 ) —log (04 )} (11) VII. HYBRID PI-PDFILTER IMPLEMENTATION: DETAILS

where o3 is the standard deviation considering that the two All implementation details that will be given here are
half-planes are likely to define a single plane and the relative to the proposed PI-PD models and NviliaGPU
standard deviation if an edge is more likely to separatewioe t devices.

half-planes.72,,.. is the decision threshold. With equation

(11), a negative result leads to an edge detection, Orient&%.dSegment patterns

towards directior®;. When GLRT is known for eacl®;, we The first kernel to be run iker nel _genPat hs() which

apply the following hybrldat.|0n policy: generates matrix@;. Its elements(Ai; Aj) are the relative
a) more than one negative GLRT: the PI-PD output valygordinates of the pixels which define segment pattgins
is used. _ o The dimensions of matri¥, are D rows x [ columns. To fit
b) only one negatlvg GLRT: the center pixel is likely t(GPU architecture as closely as possible, we chbse: 32
be on a well-defined edge, and only the half-plane Jatterns. Each segment of a poly-isoline can then be seen
belongs to is considered. The average value of its pixgl 5 patterrp; ; applied on the starting pixeli, j) of this
gray levels is then used. segment, denoteg 4(i, 7).
C) _no_negative GLRT: the window around the center pixel The example in yfigure 8 shows the first quarterRyfand
is likely to be a LSR. The average value on the wholge corresponding eight discrete segment patterns in thie fir
defined plane is used. quadrant. The three remaining quarters of the matrix arigyeas
deduced by applying successive rotations of arfléo the
| above elements.

ke LN

B. Generation of reference matricédg and Ig

In order to generate both matrices, a GPU kernel
A kernel _preco computes, in parallel for each pixel
; - p np p p p
d o (Zv.])
’ - - « the directioné of the most likely segment; = p; (4, j
's iy - theD possibl This value is stored in matri
PR - e among possible ones. This value is stored in matrix
(@) Reference noiseless air- (b) Location of the example Io at position(z‘ j)
plane image window in the reference image. © ey

o | § e the ref « valuesC,(s1) andC,2(s1) defined in equations (9) and
Fig. 6. Location of the example window inside the referemoage. Figure ; ; ;
6a shows the whole reference image and 6b zooms on the pare e (10),'_ Thl§ ,VeCtor of values is stored in matri at
example 11x11 pixel window is. position (i, 7).
In order to reduce processing time, the input image is first
It must be noticed that point b) has been introduced in ordespied into texture memory (see algorithm 1 for initialinat



Fig. 8. Top: example segment pattenms for d € [0; 7]; the black pixel 10:

‘l P50 P51 P52 P53
11 11
111 |
D54 P55 D56 P57
T o [T]
i | |
I I I I
r (0, 1) (0,2) (0, 3) (0, 4) (0,5) 7
(0,1) (0,2)  (=1,3) (=1,4) (-1,5)
(0,1)  (-1,2) (-1,3) (=2,4) (-2,5)
(—1,1) (—1,2) (—2,3) (—3,4) (—3,5)
Py = [(-L1D)  (=2,2) (=3,3) (-4,4) (-5,5)
(—1,1) (—-2,1) (—3,2) (—4,3) (—5,3)
(—1,0) (—2,1) (—3,1) (—4,2) (—5,2)
(=1,0)  (=2,0) (=3,1) (—4,1) (=5,1)

Algorithm 2: generation of reference matrices, kernel
kernel _preconp()

1. foreach pixel (¢, 7) do

2 Cm—best — Z

(y,x)€p1,0(%,7)

3 Cm?—best — Z I721tew (2 + ya] + :E) ,
(y,x)€p1,0(%,7)

4; opest < Standard deviation along (4, j) ;

[+ in parallel =/
Intem(z"i_yaj +.T) ;

/+* | oop on each pattern */
5: foreachd € [1; D — 1] do
6: Cm — Z Intem(i + yvj + .T),

(y,z)€p1,a(i,5)
Z Iztem(i"’—yaj'i_x);
(y,x)€pr,a(i,g)
o + standard deviation along 4(4, j);
if g < opest then [+ keep the best x/
C1szesti — Cz ;

7: CIQ —

represents the center pix@, j), which does not belong to the pattern. ThiL:
gray ones define the actual pattern segments. Bottom: the8fites of 12:
corresponding matri¥’s whose elements are the positions of segment pixtﬂ;
with respect to the center pixel. '
14:

15:

. . 16:

and memory transfer details), thus taking advantage of Iﬂwel;_

0127best — 012 ;

®best —d ;
end
end
Ig(i,j) — [szbest, Cx27best] , /= stores =/
Io(i, j) < Obest ; [+ in matrices */

end

optimized caching mechanism.
This kernel follows theone thread per pixetule. Conse-

guently, each value o, has to be accessed by every thread _
of a block. That led us to load it from texture memory firstC. PI-PD lengthening proces&er nel _Pl PDX)

then copy it into all shared memory blocks. This has proved Thjs parallel kernel is run in order to obtain the image of
to be the fastest scheme.

Algorithm 2 summarizes the computations achieved kpyrocess description).

ker nel _preconp() . Vector(C,, Cy2) stores the values of

theisolines It is detailed in algorithm 3, (see section VI-B for

Lines from 2 to 11 perform allocations for the first lengthen-

C.(s1) andC,2(s1) associated with the current tested pattering to evaluate. More preciselfi,, j1) represents the starting
Vector (Cy—pest, Cra—best) Stores the values of’.(s1) and pixel of the current segmentis, j») is both its ending pixel
C,2(s1) associated with the best previously tested pattern. and the starting pixel of the next segmedit;andd, are their
In the same manneg and oy, are deviation values for directions, read from precomputed matdy. C! and C.,
current and best tested patterns.
The selection of the best pattern is driven by the value 6f-» are the gray-level sums of the candidate segment. The
the standard deviation of candidate isolines. Lines 2 andcgrrent poly-isoline ends &t;, j1) and is made of; pixels
compute both sums for the first pattern to be evaluated. Li@ready accepted segments); its standard deviation.ihe
4 computes its standard deviation. Then, lines 5 to 14 loop §9p extending from lines 12 to 21 performs the allocations
each pattern and keep values associated with the bestrpatf@eded to proceed one segment forward, as long as GLRT is

found. These values are eventually stored in matrigesind

Is, on lines 16 and 17.

Algorithm 1: Initializations in GPU memory

. | + step size;
- D + number of primary directions;
I, + noisy image;

Intex < In; [+ copy to texture mem =/
P, < kernelgenPaths ; /* pattern matrix =/
Pitex < P, [+ copy to texture mem =/

Traz < GLRT threshold (lengthening);
T2 + GLRT threshold (edge detection);

are the gray-level sums along the current poly-isolifig;and

true. If the lengthening has been accepted, the length of the
poly-isoline is updated in line 13, and the same is done with
C, andC,, which are read from precomputed matrix (see
equations (9) and (10) for definition). Finally, using diien
value ds, it translates the coordinatés,, j;) to the end of

the newly elongated poly-isoline, ands, j») to the end of

the next segment to be tested. As soon as the GLRT condition
becomes false, line 23 eventually produces the output \aflue
the rebuilt image at pixe(i, j), that is, the average gray-level
value along the poly-isoline.

D. Hybrid PI-PD : ker nel _edge_det ect or ()

As introduced in section VI-C, the aim of kernel
kernel _edge_detector () is to divide pixels into two



Algorithm 3: PI-PD lengthening process Algorithm 4: edge detector and pixel classifier
kernel _PI PIX) kernel _edge_det ector ()
1. foreach pixel (i, 7) do [+ in parallel =/ 1. foreach pixel (¢, 7) do /= in parallel =/
2 (CL,CL) « 2(i,5); I+ starting pixel =/ 22 | ©+«0; I+ direction index */
3 (i1,J1) < (4,7) ; I+ first segnent =/ 3 edgeCount + 0;
4 (CL,CL) « Is(i1,51); [+ read matrix =/ 4 sumEdge + 0;
5: dy < Io(i,7) ; [+ read matrix */ 5 nH < 5l +1,
6 lh+1; /+ isoline length =/ 6: nL < 31,
7 g1 < (0;2/11 — C;)/ll, 7 while (@ < 32) do
8 (i2,j2) < end of first segment; 8: sumH < (Ingex (1, 5), 12100 (1, 5));
o: (C2?,02) < Is(iz,j2) ; I+ 27 segment =/ o sumL + (0,0);
10: dy + Ig(ia, j2); 10: for (¢ = O to a« = © + 16 by step4) do
i o2 (C2/1—-C)/1; 11 sPat + Z Intex (1 +y,j + x);
12: Whl|le GLZRT(lo—l,ch,ll,l) </Tmalm dot o / (©,2) € Proo(i27)
s Ll x engihening x/ g, sPat2 12, +y,j+ )
o || (€LCY) € (Ol + (G, 2, Imalitng+a)
- — (Cly/li—CH/L ;s Ix update */ e
15: g1+ ( IQ/, 17 Ve /s P 13: sumH <+ sumH + (sPat, sPat2);
16: (i1,41) « (i2,742) ; [+ step forward */ 14 end
17 Ei_l < ;lz’ Lof neat . 15: for (¢ = © + 20 to a = O© + 28 by step4) do
18: 12, J2) < end of next segment, ' . . .
/* next segment */ 16: sPat<—( )XP: . .)Intez(l‘Fya.]‘i‘I);
(C2.C2y) « I(iz, jo); Lt L
1o: dy I (iz, jo); 17: sPat2 + Z 2, (i+y,j+x),
20: o9+ (C% /1 - C2) /1 ; (y,2) €0 (1.7)
01 end 18: sumlL < sumL + (sPat, sPat2);
22: end 19: ?nd
2 T(1.J) = CL/1 /+ isoline value «/ @ | | I (GLRT(umHnt,sumL,nL)> T2nar)
21: edgeCount < edgeCount + 1,
22: sumFEdge + sumH.x;

classes according to their belonging to a LSR or not. Algg-
rithm 4 explains the detailled procedure. Lines 2 to 6 ifit& ,,.
values of the direction indexXg)), the number of edges detected.
(edgeCount), the gray-level sum along the pixels that defines
the H half-plane {umFdge) and the number of pixels thag.
defines both half-planes H and wf, nL). Then the loop

starting at line 7 performs the GLRT for every consideréd
direction index®. ValuessumH and sumlIL are vectors of 2s:
two parameters: andy, parameter: being the sum of gray-2e:
level values and; the sum of square gray-level values. Vallétoa_
sumH is computed along the pixels of half-plane H and s
obtained by loop at lines 10 to 14; ValsamL is computed 3%
along the pixels of half-plane L and is obtained by loop %t
lines 15 to 19. Valud,.;... (i, j) refers to the gray-level value ag3:
pixel (i,j) previously stored in texture memory. Eventyathe 34

end
O+ 0+4;
end
[+ outputs isoline value */
if (edgeCount == 0) then
~ (sumH.x + sumL.x) |
1(i,5) + T ; /* LSR */
end
if (edgeCount == 1) then
. (sumEdge)
163 ===
end
if (edgeCount > 1) then
| 10,4) < Iripp(i,); [+ Pl-PD */
end

isoline level value is output at line 27, 30 or 33 depending &n end

the situation (see VI-C for details about the decision psee

VIIl. RESULTS

The proposed hybrid PI-PD model has been evaluated witiPst often reflects the direction of the most likely segment
the 512x512 pixel sample images used by [12] in order which could have been selected by a constrained PI-LD model
make relevant comparisons with other filtering techniqées. Where X' = 1 (denoted PI-LGx—,). It mostly confirms our
we aim to address image processing in very noisy conditioR§SUmption that computing the primary direction at eacklpix
(as in [15]), we focused on the noisiest versions, degraged 2N be considered sufficient provided it can be done with
AWGN of standard deviation = 25. enough robustness.

First, as an experimental verification, we analyzed ouputFigure 9 shows an example histogram of the differences
images produced by PI-LD and it reveals that the primary din primary directions according to the PI-LD model between
rection of a poly-isolinei(e. the direction of its first segment) maximum number of segmeni§ = 1 (i.e. PI-PD) andK = 8



(I = 4 in both cases). It appears that more than 60% of tlimage before denoising. BM3D ( [7]) is taken as a reference
isolines share the same direction and more than 80% diffarterms of denoising quality, while the average filter isetak

by less than 22.5 degrees. The same histogram’s shape wadd reference in terms of processing time. The window size of
be obtained with all thirteen images in the panel, withdittI5x5 pixels has been choosen to achieve PSNR values similar
variation. The estimation of isoline directions of the rémitag to those obtained by PI-PD.

40% pixels is not robust and leads to different directiorugal ~ BM3D code is run on a quad-core Xeon E31245 at 3.3GHz
as pixels involved belong to low slope regions. In such negjo and 8GByte RAM under linux kernel 3.2 (64bits), while PI-
PI-PD model is not relevant and is replaced by the averaB® as well as average filter codes is run on a Nvidia C2070
value of all pixels involved in edge detection, which repr@s GPU hosted by a PC running linux kernel 2.6.18 (64bits). The
the best compromise, as long as the detector window is smeaterage filter used is an efficient parallel GPU implemenitati

and the slope value is low. that we developped. It is a generic and versatile separable
convolution kernel that outputs more than 700MPixels per
number of second in the 5x5 averaging configuration.

pixels (%)

Hybrid PI-PD measurements were performed witk= 25,

Il =5, Thar = 1 and T72,,,. = 2. BM3D measurements
have been performed with the freely available BM3D software
proposed in [7].

The hybrid PI-PD model, though it does not achieve such
impressive PSNR values as BM3D does, proves to be much
faster than BM3D and better than the average 5x5 filter.
Processing the thirteen images of the database reveals that

60

50

40

30

20 hybrid PI-PD brings an average improvement of 1.5dB (PSNR)
and 7.2% (MSSIM) against the average filter at the cost of

10 35 times its computational duration. Against hybrid PI-PD,
BM3D achieves an average improvement of 2.4dB and 4.6%

0 225450  “owdce at the cost of 350 times as much duration. Actually, the 5x5

average filter takes arourid35 msto process an image while
Fig. 9. Example of angular differences between the resil®ld.Dx—;,  hybrid PI-PD needs arountili msand BM3D around.3 s
andPI-LD g _g variants of the model (= 4). The above histogram represents It must be noticed that the parameter valigs,, = 1 and
the number of pixels as a function of the angular differericepércentage * .
of the total number of pixels of the image). The mandrill imag the input 1 2maz = 2 have been chosen as a compromise. In certain
image processed in the example. cases, a better result is obtained with a slightly differettie
of T2,,... FOr example peppers or zelda rebuilt images can
Quality measurements of the rebuilt images in comparisebtain a MSSIM index of 0.90. Most of the computational time
with reference images have been obtained by the evaluatisinhybrid PI-PD is spent by the edge detector, which clearly
of: does not fit GPU requirements to achieve good performance.
a) Peak Signal to Noise Ratio (PSNR) that quantifies tf@r information, the simple PI-PD model runs in less than
mean square error between rebuilt and reference imagégns in the same conditions.

~

MSE(I, T). We used the following expression: Figure 11 shows rebuilt images produced by hybrid PI-PD
R model compared with the output of the BM3D and the average

PSNR = 10.logio mafC(I)A 5x5 filters. The figure illustrates the merits and dr_awbacks
MSE(I,I) of each model: edges are well preserved by hybrid PI-PD,

. ) ) but astaircaseeffect is clearly visible, a well-known artefact
PSNR values are given in dB and highest values megiherent to this type of neighborhood filters (see [17]).

best PSNR.
b) The Mean Structure Similarity Index (MSSIM, defined
in [16]), which quantifies local similarities between IX. CONCLUSION, FUTURE WORKS

rebuilt and reference images inside a sliding window. From the start, our approach, unlike quite a few others, has
MSSIM values belong to an intervél); 1]; the closer to peen to base this study on the conception and characteristic
1 the better. of the targeted hardware (Nvidia Graphic cards).
PSNR is widely used to measure image quality but can beSo as to get high execution speeds, we chose, for example,
misleading when used by itself: as demonstrated in [16], the find a method that remains local (concentrating on the
processing of noisy images can bring a high PSNR value botmediate neighborhood of the center pixel), but still pdes
very bad visual quality. This is avoided by the use of theery significant benefits, using our technique of progressiv
MSSIM index along with the PSNR value: when both of thertengthening.
show high values, the overall quality can be considered.high Nevertheless, our method has proved slightly sub-optimal
Result figure 10 provides the PSNR and MSSIM of evergnd lacking robustness fitat regions (see above, Low Slope
image, rebuilt with three different filters: average 5x5btig Regions), even if the actual visual effect may be considered
PI-PD and BM3D. Thaoisycolumn shows the values for eachquite satisfactory.
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Image Noisy averggg rglt_ngg BM3D Definition: 1920x1080 pixels).
aiplane | 19.49dB | 263908 | 28.464B | 30.880B With th|s_ method, searching for best improvement factors
0.58 0.84 0.88 0.93 leads to different parameters values (GLRT thresholds) for
barbara 20-00433 22-70532 24-20635 30-60085 each image processed, which prompts to studying some way
boa 503348 | 255848 | 275448 | 30.02dB of overr|d|.ng such parameters. To fqrther improve the dyali
0.66 0.81 0.87 0.91 of output images, we are also working on a efficient parallel
couple | 20.28dB | 25.25dB | 27.33dB | 29.77dB implementation of the staircase effect reduction techmiqu
0.69 0.79 0.87 0.91 ;
elaine 19.85dB | 28.71dB | 28.94dB | 30.60dB presented In [17]' -, .
0.59 0.86 0.87 0.91 Our study so far has been based on additive noise; we are
fingerprint | 20.34dB | 23.33dB | 26.07dB | 27.93dB currently working on transposing criteria to various npllta-
: 0.93 0.87 0.95 0.96 tive noise types. We also extended the process to color isnage
goldhill 19.59dB | 26.47dB | 27.43dB | 29.22dB ith ; . . | | b fi d bv th
0.67 0.82 0.87 0.88 wit \{ery mterestlng visual results t(_) e confirme Yy the
lena 19.92dB | 27.99dB | 29.14dB | 31.80dB experimental measurement currently in progress.
0.60 0.84 0.88 0.93
man 20.38dB | 24.74dB | 26.74dB | 28.14dB
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