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l.  INTRODUCTION AND BACKGROUND
A. Introduction

Target detection with large detection probability
and constant false alarm rate in thermal noise and
clutter! is of high practical interest in RADAR
systems [1-5]. However, the control of the false alarm
probability is difficult and subject to environmental
conditions [6-9].

The cell-averaging (CA) constant false alarm rate
(CFAR) processor, introduced by Finn and Johnson
in 1968 [10] is the most popular CFAR processor
adapted for gamma-distributed noise [11]. It uses a
local noise power estimation from a reference region
to compute an adaptive detection ratio threshold [10].
Gandhi and Kassam proved in [12] that the CA-CFAR
processor is optimal in the sense that it maximizes
the detection probability for a given false alarm
probability for detecting Swerling I target [13-15]
when the reference cells contain independent and
identically distributed (IID) observations governed
by an exponential distribution. Furthermore, in
homogeneous gamma-distributed backgrounds,
when the size of the reference region increases, the
CA-CFAR processor performance tends towards the
performance of the ideal detector {161, for which the
mean value of the background and of the noise power
is assumed to be a priori known. The ideal detector
is based on the comparison with a ratio threshold of
the pixel value under test divided by the statistical
mean value of the background. Such a detector is not
applicable in practice in general since the background
statistical mean is rarely known a priori, but it can
be considered as a reference to which other detectors
can be compared. In the presence of nonhomogeneous
backgrounds, the CA-CFAR performance is severely
degraded, leading to excessive false alarms and/or
target masking [16, 17]. Furthermore, it has been
demonstrated that the choice of the reference region
has a strong impact on the CA-CFAR performance
(1, 18-20], and its optimization is difficult to realize
in nonhomogeneous backgrounds. These difficulties,
in general, result in nonhomogeneous backgrounds to
non-CFAR of the CA-CFAR processor.

In this paper, we propose a new approach
for target detection in range-Doppler maps
acquired by airborne RADARs [2] which results
in two-dimensional (2-D) maps that are analogous
to images. More precisely, Swerling-I model
target [13-15] is assumed embedded in 2-D
nonhomogeneous gamma-distributed backgrounds
of known order L. The proposed technique is
based on a CA-CFAR detection test for which both
the ratio threshold and the reference regions are
adaptively optimized in order to improve the false

'The clutter refers to any undesired signal echo that is reflected
back to the receiver.
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alarm regulation rate and the detection probability.
The ratio threshold value and the reference region
shape are determined from an analysis of the
CA-CFAR behavior in nonhomogeneous background.
More precisely, it is shown that it is possible to
determine the ratio threshold value that leads to an
approximative CFAR and to select the reference
region in order to optimize the detection probability
when background values are known. We then
demonstrate that a first rough estimation of the mean
value of the background still allows one to improve
the false alarm regulation and the detection probability
in comparison with existing detection methods such
as CA-CFAR [10], ordered statistics CFAR [21] and
- trimmed-mean (TM) CFAR [16] detection techniques.
After a brief introduction and description of the
background and of the data model used in Section I,
an original theoretical analysis of the standard
CA-CFAR detector is performed in Section II.
This analysis will allow one to understand the
motivations of the new technique we propose
and which is described in Section III. The results
of this approach are presented in Section IV in
comparison with other standard detection techniques,
and the limits of the proposed approach is also
investigated in this section. This analysis shows the
key point for future improvements introduced in the
perspectives that are discussed with the conclusion in
Section V.

B. Background and Data Model

A range-Doppler map [2, 4] is obtained with
a time-frequency analysis performed on the
complex RADAR signals. This analysis results in a
time-frequency map which is a 2-D image with one
direction that corresponds to range and the other
to Doppler. In general L time-frequency maps are
acquired before processing and the squared modulus
of these L maps are added providing a real valued
intensity range-Doppler map. Each range-Doppler
map is perturbed by fluctuations that are due to
the thermal noise of the receiver and/or to clutter
echoes. A usual approximation to describe these
fluctuations is to consider that the complex RADAR
signals are circular complex Gaussian random values
with zero mean since time-frequency analysis is a
linear operation. The acquisition of the L different
time-frequency maps correspond to different times,
and a fixed point in the scene is observed with
small differences between the incident angles. A
generally good approximation is thus to consider that
the L different time-frequency maps correspond to
independent realizations of circular complex Gaussian
distributed fluctuations. Since the squared modulus of
a circular complex Gaussian noise with zero mean is
distributed with a gamma probability density function
(pdf) of order 1, the addition of L maps leads to
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signal values that are distributed with a gamma pdf
of order L.

In the following, the resulting intensity
range-Doppler map is denoted X and, the order L of
the gamma distribution is assumed known and equal
to the number of time-frequency maps that are added.
Furthermore, although the range-Doppler map X is a
2-D image with N cells, a 1-D lexicographical order
of each cell’s number is used in the following for
simplicity reasons. More precisely, X; is the value
at cell j of the 2-D intensity range-Doppler map
which is assumed to be distributed with a gamma pdf
with mean m; and order L (i.e., X;~ g(mj,L)) and
which corresponds to independent random variables
for different location j. The set {m;} ., y, defines
the background mean value which is considered as
a deterministic unknown variable. More precisely,
different backgrounds that are described by different
values {m;},.(; ) can be observed in intensity
range-Doppler maps. The goal of this paper is to
develop an adaptive detection technique for each
background. The values {m;} ., ) are thus nuisance
parameters in the detection problem we consider.

The target echoes are modeled as Swerling-I
targets [13—15] since their complex RADAR signals
are assumed to be complex Gaussian distributed.

In an intensity range-Doppler map, a target signal

is assumed to result from independent successive
time-frequency maps but fixed over a dwell used

to form one time-frequency map. Furthermore, the
target echo is assumed to be contained in a single cell.
Then a target echo at the jth cell in the range-Doppler |
map is modeled by a random variable with a gamma
pdf of order L and mean m;(1+S), where § >0
denotes the signal-to-noise ratio (SNR) of the target.
In the following, this SNR is expressed in decibels
(Sqg = 10log,((S)).

In conclusion, the values of the range-Doppler
map X; are written as the product of a deterministic
background image with a random variable with
a gamma pdf of unit mean and order L. The
deterministic background image value is equal to m; |
at cells where no target is present and to m (1 +S) at
cells where a target is present. The pdf f;(x) of a cell §
value of mean m and order L can thus be written

-L

where = m/L and where the gamma function is
INE Jo e ldr.

Il.  ANALYSIS OF THE CA-CFAR PROCESSOR IN
NONHOMOGENEOUS BACKGROUNDS

A. Introduction to the CA-CFAR Processor

A uniformly most powerful (UMP) detector can be
obtained [12] when the mean background value m; is ]

4%
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i assumed known [16, 22]. Although this assumption
is unrealistic, the analysis of this case is useful for
. the development of the proposed approach of this
| paper, and it is denominated the “ideal detector” in
the following. In that case, the detection test at the
 cell i of value X; consists in comparing the statistics
X,/m; with a ratio threshold 7; such that the following
decisions are taken:
1) if X;/m; > ; a target is detected,
2) if X,;/m; < 7; no target is detected. .
The false alarm probability F, is the probability
to detect a target when no target is present while the
| detection probability P, is the probability to detect a
i target when a target is indeed present. The detector
| based on the test X,/m; leads to the false alarm
probability [11]

Pi(r;,m;,L) =T (L7, L) 1)

- where I'(x,a) is the incomplete gamma function

oo ,,a—1
T'(x,a) = / %)-exp(ﬂodu )

. and T’ (a) = T"(0,q) is the gamma function. The
 detection probability is

1+8°

t To achieve a constant false alarm probability o fixed
by the user, the ratio threshold 7; is determined

{ with (1) such that Bl(r;,m;,L) = o. In the following,
| the performance of this “ideal processor” is used

i as a benchmark and gives the best achievable

| detection probability for a given false alarm
probability.

] Since in real applications, the mean values m; of
i the background are unknown, the ideal processor

| cannot be implemented in practice. The CA-CFAR

| processor [17, 10, 11] proposes an alternative

| by substituting m; by the arithmetic mean m,, of
reference cell values in a neighborhood w; of the cell i

under test: 1
= 5 2K @

tjew

P/(r,m,L,S)=T ( L L>. 3)

| where N, is the number of cells in w;. The reference

| region w; does not include the cell i under test in order
' not to bias the background value estimation when a
target is present. The detection test thus consists of
detecting a target if X;/m,_, > 7; and not detecting a
target if X;/m,, <.

In general the CA-CFAR detector is implemented
with a sliding window divided in two or three
mutually disjoint regions: 1) the target region x;, that
contains the cell under test of value X;, is limited
to the cell under test; 2) the reference regions w;s
composed of the reference cells {j € w;, j #i} and
used to estimate the background value m; (i.e., to
determine m,, ); 3) additional guard cells can be added

around the target region to prevent a biased noise
power estimation if the target echo is not contained
in a single cell. The size and shape of these regions
are fixed a priori by the user.

In homogeneous backgrounds, the detection
probability of the CA-CFAR processor is given by
[11]

Ti
N1 +S
_NA*D yNE

EiCA-CFAR(Ti’wi,S) =1-7
N +5)

1+

5)
where Z(x,a,b) is the regularized Beta function
[23, 24] defined by Z(x,a,b) = B;(x,a,b)/B(a,b),
which is thus the ratio of the incomplete Beta function
B(x,a,b) = [y u*"1(1 —u)’~'du with the Beta function
which is defined by B(a,b) = B;(1,a,b). The false
alarm probability is obtained with fixing S = 0:

N LNL|. (6)

Ti,sl

N,

l

PSACRAR(r w) =1~
I+

To achieve a constant false alarm probability o
which is fixed by the user, the ratio threshold

7, is determined with (6) such that PSACFAR(7 )
= .

B. CA-CFAR Performance in Nonhomogeneous
Backgrounds

In homogeneous backgrounds, the detection
probability increases with the number of cells
in the reference region and tends asymptotically
towards the detection probability of the ideal
processor described above. However, the CA-CFAR
suffers an ineffective false alarm regulation on
nonhomogeneous backgrounds [16]. We analyze
in this subsection the behavior of the CA-CFAR
processor in nonhomogeneous gamma-distributed
backgrounds with Swerling-I target model. This
analysis is useful to understand the motivations
of the technique that is proposed in the next
section. For that purpose, the expression of the
detection and false alarm probabilities of the
CA-CFAR processor have been determined (see
Appendix):

BEA(T,w;,S)
T m
e 1oz AAED G ng ek
k>0 14 5™
N, m(1 +S)
@)
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where

g

m= mi_n(mj)
JEw;

c- g( ol
eS| (-2 [

JEW;

60= 1.

It appears that the detection probability PFA(7;,w;,S) is
a function of the reference region through m;, {m;}c,,
and N,. Thus, for the sake of clarity, it is also written
PEA(T,w;,8) = PEA(T, my, {m)} jc,» N> S). The false
alarm probability expression can be obtained taking
S=0:

BM(maw) = B (ramy, {m} e, N)

= PCA(r,mi {m} e NS = 0). ()

Equations (7) and (9) determine the exact performance
of the CA test in nonhomogeneous gamma-distributed
backgrounds with order L. However, the physical
situation is analogous to the one of the ideal processor
since (9) needs that the mean background values m;,
are known, which does not correspond to the realistic
case we propose to analyze in this paper.

It is however interesting to analyze the obtained
performance with the detection test X;/m,, when
the ratio threshold is determined with (9) with the
background mean values m; and {m;};,, so that the
false alarm probability is equal to . In that case the
false alarm probability is perfectly regulated, and one
can analyze the influence of the shape and of the size
of w; on the evolution of the probability of detection.

For that purpose, different numerical simulations
have been performed on the background of mean
value m; shown in Fig. 1. Reference regions w,(j)
with j < 10 are homogeneous while they become
nonhomogeneous when j > 10. The target is located
at cell i = 0 (represented with an arrow in Fig. 1) and
has an SNR equal to 7 dB. For each reference region
w;(j) the ratio threshold is fixed so that the false alarm
probability o is equal to 10~* and the probability
of detection is shown in Fig. 1 as a function of the
reference region size j.

It can be observed that when j < 10, the detection
probability increases with j. This behavior is easily
understandable since, in that case, the reference
regions correspond to homogeneous backgrounds.

On the contrary, when j becomes larger than 10,
the detection probability still increases when j <
12, reaches a maximum value when j = 12, and
finally it decreases for j > 12. The decrease of the
detection probability clearly illustrates the influence

JEwi?
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Fig. 1. Evolution as function of j of detection probability of

detection test X, /rh for perfectly regulated false alarm probability
(@=10"%, S5 =7 dB, L = 4). ‘

of nonhomogeneous backgrounds on the detection
performance. This simple simulation shows that for
a false alarm probability equal to 1074, the detection
probability reaches a maximum value when the
reference region is nonhomogeneous.

In the next section, we propose to determine an
optimal reference region and ratio threshold using (7) |
and (9) but with a rough estimation of the background }
mean value since it is not available in real situations.

Ill. DESCRIPTION OF THE PROPOSED DETECTION
TECHNIQUE

A. General Structure of the Proposed Technique

The general structure of the proposed detection »
technique is based on a CA test and a reference region 1
selection method, and it is denoted CARRS processors |
in the following. As for the CA-CFAR processor, the 1}
detection consists of comparing a statistical test with
a ratio threshold. This statistical test is equal to the
ratio of the value X; of the cell under analysis to an
estimation m; of the background mean value m; in a
reference region w; determined in order to optimize
the detection probability for a fixed false alarm rate.
However, such an optimization is rigorously possible
with (9) and (7) only if the mean value m; and the
target SNR § are known. This optimization can be
nevertheless approximated if the mean values m,,
{m;},c., in (9) and (7) are substituted by estimated ‘
mean value i; and {m;},,,. Iterative techniques could 3
have been implemented so to simultaneously estimate
m;, {m;} c,,> and S, but this approach would lead to
large computational time, and also no proof of its
optimality has been proved.

We thus propose to demonstrate that the selection
of the ratio threshold value based on (9) with a first
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 rough estimation of the background mean value

F and using a simpler procedure than optimizing the
detection probability provided by (7) allows one to get
 a selection of the reference region w? which improves
: the detection probability and the regulation of the

¢ false alarm probability in comparison to existing

b techniques. The different steps of the proposed

' technique are described in the following.

‘: B. First Rough Estimation of the Background Mean
. Value

. It is demonstrated in the following that a simple
and fast estimation method based on a Gaussian filter
| is sufficient to improve the detection performance
| in nonhomogeneous backgrounds. The proposed
technique is similar to the one developed in [25].
t The considered Gaussian filter has a 2-D isotropic
Gaussian impulse response excepted at the cell
t under test on which it is centered and where the
| impulse response is set equal to 0. This zero value
is imposed in order to avoid biased background
| estimation that could result from the presence
| of a target. The amplitude of the filter is defined
- such that its integrated value is equal to one so
| that the estimation of the mean value is unbiased
- in homogeneous backgrounds. The width ¢ has
- been determined empirically in order to improve
- the regulation of the false alarm probability on the
¢ considered range-Doppler map (i.e., with numerical
- simulations) which has lead to ¢ = 1.6 cells. Since
filtering is well adapted to additive noise, the filtering
. operation is applied on the logarithm of the cell
values. )
However, although considering the logarithm of
| the cell values transforms the gamma multiplicative
. noise into an additive noise, this additive noise
does not have a symmetrical pdf. Consequently, the
t weighted mean estimation obtained with the Gaussian
- filter does not lead to an unbiased estimation of
the background mean. Indeed, since X; is assumed
- distributed with the gamma pdf G(m,, L), the statistical
| mean value of In(X)) is equal to [26] In(m,) + ¥(L) —
- In(L) where ¢(x) = (d/dx)InI'(x) is the Digamma

8§ function. Thus, if 7); denotes the result of the filtering

of the logarithm of the cell values, the following
estimation of the background mean

m; = Lexplf); — (L)) (10

is used.

C. Threshold Determination

For any a priori reference region w; the ratio
threshold value 7,(w;) that leads to an approximative
value of the false alarm probability can be obtained
with (9). Indeed, using the first rough estimation m,
provided by (10), it is possible to solve the following
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equation:

an

PfEA(;i(wi)’ﬁzi’{ﬁ’lj}jEwi’M) =a.

Numerically, the ratio threshold 7;(w;) is

computed using a bi-section method [27] until
(PfaCA(ﬂ(wi),%i,{r?zj}jEwi,Ni) — a)/a is lower or equal
to one percent. Of course this equation does not
guarantee that the obtained false alarm probability will
be equal to o since the mean values m ; considered

in this equation are only rough estimations. It is
nevertheless shown in the following that this approach
improves the performance in comparison with the
other tested technique in the false alarm probability
regulation.

D. Reference Region Selection Technique

Formally, the detection probability can be
optimized in nonhomogeneous backgrounds for a
fixed false alarm probability. Indeed, the quantity
provided by (7) can be maximized as a function of
w; when the ratio threshold 7,(w;) obtained with (11)
has been injected. This optimization allows us to
determine the reference region w? that maximizes

PdCA(;-i(wi)’ ﬁ1i7 {ﬁlj }jEwi ’IVi’S)

which is obtained with (7) in which the mean values
m; have been replaced by their estimates m;. However,
the result of such an optimization will be a function
of the target SNR S which is a priori unknown.
Furthermore, a search of the optimal reference region
w? over all the cells of the image would be very

time consuming and probably of little interest if the
obtained cells were not located around the cell under
test. We thus propose to implement an optimization in
two steps in order to introduce spatial constraints, to
not have to assume any value for the SNR S, and to
reduce the computational time.

1) First Step of the Reference Region Selection:
The first step consists of determining a set of
reference regions of cells that are in an a priori
determined window around the cell i under test and
finding values that are near the value of this cell.

Let ; C {1,...,N, } be a set of cells in a window
(typically a set of N, = 15 x 15 cells) centered on
the cell i whose mean value 7, has been estimated
with (10). The set of reference regions w;(R) is then
determined as the 8-connected set of cells that are
in €); and that have estimated values 71; between

m;(1 —R) and m,(1 + R) (see Fig. 2), i.e., such that
¥ ojew®),  m(1l—R) < <y(l+R).
(13)

The connectivity of the reference region is ensured
by a region-growing algorithm whose seed is the pixel
under test and that aggregates the cells in €2, which
verifies (13) (see Fig. 3). This approach is analogous

(12)
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Fig. 5. Comparison of detection performance of CARRS processor with other well-known detection techniques for target numbers
1 (1), 4 (4), and 5 (5). For each column, at top, detection probability versus expected false alarm probability o and below, false alarm
probability versus expected false alarm probability a.

probability in nonhomogeneous background with
fluctuations distributed with a gamma pdf.

The computational time of the proposed method
increases with the inhomogeneity of the region
around the tested cell since it is mainly due to the
time needed to select the reference region. Indeed,
this selection requires a truncation of the infinite
sums of (7) and (9). However, for a fixed accuracy
on the performance, the truncation order has to be
increased with the inhomogeneity of the region w;.
For example, this time is smaller than 1 ms at location
of target 1, approximatively equal to 1 ms at location
of target 2, 6 ms at location of target 3, 18 ms at
location of target 4, and 5 ms at location of target
5 with a standard computer (3.2 Ghz, linux 2.6.18,
GCC 4.1.2).

C. Analysis of the CARRS Performance

The improvement of the performance of the
CARRS processor in comparison with other
well-known detection techniques has been
demonstrated in the previous section. We propose
in this subsection to analyze this approach more
precisely.

We first report in Fig. 6 the performance of the
CARRS processor when the limitations on the R
values and on the pixel numbers of the reference
regions discussed in the previous section are not
implemented. It clearly appears that for target 4,
which is embedded in a strongly nonhomogeneous
background, the control of the false alarm rate is
severely degraded without these constraints.

Furthermore, two main approximations have
been considered in the development of the CARRS
processor. The first one is the use of the first rough
estimation m; provided by (10) of the background
value m; in (7) and (9). The second one is the
consequence of the minimization of (19) instead of
the optimization of the detection probability which is
used to automatically determine the reference region
w;(R%).

In the simulations the exact background mean
value can be used in (7) and (9) to determine the
ratio threshold 7,(R) and for the reference region
selection. The obtained modified version of the
CARRS processor for which the reference region is
determined with the exact background mean value,
is denominated CARRS-KNHB processor in the
following presented simulations. Since this processor
uses the exact background mean value, only the
limitation R ,, = 0.6 is applied. The performance of
the ideal processor based on the comparison of the
statistics X;/m; with a ratio threshold 7; determined
with (1) is also reported. Both the results of the
CARRS-KNHB and of the ideal processors are
presented in order to investigate the performance of
the CARRS processor but cannot be implemented in
real situations since they need the knowledge of the
background values m;.

The results obtained for targets 1 (homogeneous
background), 4 and 5 are presented in the Fig. 6. It
can be observed, as expected, that the CARRS-KNHB
processor offers a perfect control of the false
alarm rate. Moreover, the performance of the
CARRS-KNHB processor are approximatively
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Fig. 6. Analysis of CARRS performance for target numbers 1 (1), 4 (4), and 5 (5). Modified version of CARRS processor for which

reference region is determined with exact background mean
performance of CARRS processor and performance of CARRS,
processor when no constraint other than R, = 0.35 and refe

column, at top, detection probability versus expected false alarm

value is denominated CARRS-KNHB processor. For comparison,

no limit. are repdrted. The CARRS, no limit. stands for the CARRS
rence region size smaller than 30 pixels are implemented. For each
probability a and below, false alarm probability versus expected false

alarm probability «.

equal to the one of the ideal processor. This result
demonstrates that the region selection technique

is efficient, and most of the loss in performance
of the CARRS processor is due to the first rough
background estimation m ;- This observation opens
interesting perspectives.

V.  CONCLUSIONS

The expressions of the CA test performance in
nonhomogeneous backgrounds with fluctuations
distributed with gamma pdfs have been presented
for Swerling I target model. Using these expressions,
we have proposed the CARRS detector in order
to improve the regulation of the false alarm rate
in unknown nonhomogeneous gamma-distributed
backgrounds. A comparison of the performance of
the proposed method with other detection processors
(CA-CFAR, OS-CFAR, TM-CFAR) has been
presented. This comparison has demonstrated that
the CARRS detector offers a better control of the
false alarm rate in nonhomogeneous background
with good detection probability but at the expense
of an increase in the computational cost. The results
were obtained using a very simple background
estimation method, and it has been shown that
it is probably the main source of the present
limitations of the CARRS approach. This result opens
interesting perspectives. Indeed, since the CARRS
detector improves the performance in comparison
with standard technique in nonhomogeneous
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background, its improvement with a more precise
background estimation is a challenging problem.
Another motivating perspective is to reduce the
computational cost of the proposed method for
real-time applications.

Finally, the CARRS approach could also be
generalized to nonhomogeneous backgrounds for
which the orders of the gamma pdf is different
for different cells or to other speckle model with
non-gamma pdfs. It will be also interesting to access
the effects of different types of nonhomogeneity
and any limitations to the performance that can be
achieved.

APPENDIX. CA TEST PERFORMANCE

This Appendix is organized as follows. First, the
pdf of the random variable m  is expressed as a single
gamma-series (result obtalned by Moschopoulos
[35D). Secondly, the pdf of the random variable
X;/m,, is derived. Thirdly, the expression of the
detection probability of the CA-CFAR processor in
nonhomogeneous backgrounds is established.

Let us introduce Z; the sum of the reference cell
values Xj, JEw;:

(22)

where X;~ G(m;,L) and Vj € w;, m; € R*\{0}, L€
R*\{0}, N, = card(w,). Instead of m_ , we use the
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random variable Z,, that is more convenient to use for
the calculus.

A. The Density of Z;

First we consider the pdf of Z;. In 1985,
Moschopoulos [35] derived an expression for the pdf
of the sum of gamma variables:

N.L+k— l —
6kz + Zz/l"

fz.(@) = CZ”NL+kF(NL+k) 720 (23)

where [i = m/L and m, C, 6, are defined in (8). We
define the random variable W, as

B. Probability Density Function of W,
The pdf of W, can be expressed as (see [31])
o 0]
fw,-(Wi) =/ |2i|fxi(Wi'Zi)fzi(zi)dzi-

Let X; be a gamma random variable of mean m; and
order L; then

Jww;) = / > &lzw; )dz

k>0
where
BuCem) = 5 sy exp (-2
C 5 MLk g/
aNL+ T (N.L + k)
and p; = m;/L.

PROPOSITION 1  The integration and the summation in
the expression of fy, can be interchanged.

PrOOF In [35], it is proved that

~—N.L 1—-b
zNL_lexp [—zi—:—]
J

f(z) <€ F(NL)

bémax ({1—1n—,j€wi}>.
m;

Using this result, we obtain

where

My H ~NL -1 _L+NL-1
>_8:w) < Crope vy oDt

k20
X exXp [—zi (m + L—?—b)} . 24
H; H

Thanks to the dominated convergence theorem
(see [32]), we establish the dominated convergence
of 3 4>08k(2»w;). Then we can interchange the
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integration and the summation in the expression
of fy.

Introducing the Beta function (defined in
Section ITA), we group together the terms depending
on z; and we get the following form for fy,:

fi (w)—cz_ﬂl;_
W T e M B(L,NL + )

1

X 1 L+N,L+k
(Z"_i + :> L +k
T

o0
X / e e (29

where f, ; . . -(z;) are the pdfs of gamma random
variables of shape parameter L + N.L + k and of scale
parameter (w;/y; + 1/1)~1. Then, the pdf of W, is
given by
c 5kwL 1
Swlw) = ,; WFBLNL +K)

1

X

L+N,L+k

(ﬁ + l) [INL+k
B B

, w; > 0.

C. CA Test Performance

Using the expression of the pdf of W,, we derive

the expression of the CA test performance. For a ratio ]

threshold 7;, the probability of detection is defined as

EjCA(Ti’mi’ {mj}je‘ui’lvi’s)

= / ojv Fuwdw;.

Let us note 7y, = 7;/N; and m; 5 = m;(1 +§) where §is |

the SNR. Substltutlng w; by

m
1+w,—
m;g

the detection probability expression can be rearranged

as:
N, S)

JEw? i

P(W, > 7y, | Hj,m;, {m;}

1

= / s Zek(x,-)dxi

Teny mjm; g k>0
where the functions e, (x;) are such that

6k xiL-—l(l _xi)N,'L+k—l'

) = C BT NL+ B




 PROPOSITION 2 The integration and the summation
in the detection probability expression can be
interchanged.

(NL)kbk

lékl < k!

‘and the following property holds:

(VL)

B(L,ML +k)= m
i~k

B(L,N,L)

where (a), is the Pochhammer symbol defined by
A ke . A ~ .

(@), 2[TZa(a+i) and b =max({l —m/m;, j€w;})
< 1. Then B,(x;) exists such that

lek(x,-)l < Bk(x,')

_ and
x! ni-1 L+ NL) k
B,,(x) 20T oAa L A e LG
Moreover it can be proved that
L-1
y<BY = = =
Bix) < B =Byx) %= pNITE—2

Hence

B),, _ (L+NL+k)b(1-x)
BY L+NL-D (k+D "

The d’ Alembert theorem allows one to prove
| the convergence of the series BY. It implies that
‘ ¢,(x;) converges uniformly (Weierstrass’ criterion
 [24]). Then the integration and summation can be
interchanged in the detection probability expression
| (uniform convergence theorem, see [26]).

Dividing the integral in two parts and using
| the definition of the regularized Beta function (see
Section ITIA), we get

PdCA(Ti’mi’{mj}jew;’Ivi’S)
n_m__
= cZ& - —NT'-"L‘:"S-)—— LNL+k
0 N maes

The numerical computation of the CA test
performance expressions must be carefully studied.

| Particularly the truncation of the summation must be
| correctly realized to ensure accurate results.
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i PROOF  Using the upper bound of §; defined in [35],

For practical purposes, a bound for the truncation
error ex(7;) can be obtained:

ex (1) = Bg Ty, {m;} e, o N

— BSA" (1, my i} s VD)

mm
=c Y §|1-1 N NL+k
k>K+1 1+ nm
N;m,
<C >’ 6k_1—CZ¢9k—5K(O)
k>K+1

where PSAY (7,,m;, {m i} icw» ;) is the sum of the

A
first K terms of BA(T;,m;, {m;} e, N =

%CA(Ti,m,.,{mj}jEwi,Ni,s =0).
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