\select@language {french} \addvspace {10\p@ } \addvspace {10\p@ } \contentsline {figure}{\numberline {2.1}{\ignorespaces Comparaison des structures d'un c\oe ur de GPU et d'un c\oe ur de CPU (d'apr\IeC {\`e}s \cite {CUDAPG}).}}{13}{figure.2.1} \contentsline {figure}{\numberline {2.2}{\ignorespaces Comparaison des performances des GPUs Nvidia et des CPU Intel (d'apr\IeC {\`e}s \cite {CUDAPG}).}}{14}{figure.2.2} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Nombre maximum th\IeC {\'e}orique d'op\IeC {\'e}rations en virgule flottante par seconde en fonction de l'ann\IeC {\'e}e et de l'architecture.}}}{14}{figure.2.2} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Bande passante th\IeC {\'e}orique maximale des diverses architectures.}}}{14}{figure.2.2} \contentsline {figure}{\numberline {2.3}{\ignorespaces Organisation des GPU d'architecture Fermi, comme le C2070 (d'apr\IeC {\`e}s www.hpcresearch.nl).}}{15}{figure.2.3} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Organisation en groupes de SMs }}}{15}{figure.2.3} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Constitution d'un SM.}}}{15}{figure.2.3} \contentsline {figure}{\numberline {2.4}{\ignorespaces Repr\IeC {\'e}sentation d'une grille de calcul en 2D et des blocs de threads, \IeC {\`a} 2 dimensions, qui la composent.}}{16}{figure.2.4} \addvspace {10\p@ } \contentsline {figure}{\numberline {3.1}{\ignorespaces Images 256$\times $256 en niveau de gris 8 bits utilis\IeC {\'e}es pour l'illustration des propri\IeC {\'e}t\IeC {\'e}s des filtres. a) l'image de r\IeC {\'e}f\IeC {\'e}rence non bruit\IeC {\'e}e. b) l'image corrompue par un bruit gaussien d'\IeC {\'e}cart type $\sigma =25$. c) l'image corrompue par un bruit impulsionnel \IeC {\`a} 25\%.}}{22}{figure.3.1} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Sans bruit}}}{22}{figure.3.1} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Bruit gaussien $\sigma =25$, PSNR=22.3~dB MSSIM=0.16}}}{22}{figure.3.1} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {Bruit impulsionnel 25\%, PSNR=9.48~dB MSSIM=0.04}}}{22}{figure.3.1} \contentsline {figure}{\numberline {3.2}{\ignorespaces Filtrage par convolution.}}{23}{figure.3.2} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Moyenneur 3$\times $3, PSNR=27.6dB MSSIM=0.34}}}{23}{figure.3.2} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Moyenneur 5$\times $5, PSNR=27.7dB MSSIM=0.38}}}{23}{figure.3.2} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {Filtre gaussien 3$\times $3, PSNR=27.4dB MSSIM=0.33}}}{23}{figure.3.2} \contentsline {figure}{\numberline {3.3}{\ignorespaces R\IeC {\'e}duction du bruit impulsionnel par filtre m\IeC {\'e}dian.}}{24}{figure.3.3} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {M\IeC {\'e}dian 3$\times $3 une passe, PSNR=26.4~dB MSSIM=0.90}}}{24}{figure.3.3} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {M\IeC {\'e}dian 3$\times $3 deux passes, PSNR=34.4~dB MSSIM=0.98}}}{24}{figure.3.3} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {M\IeC {\'e}dian 5$\times $5 une passe, PSNR=35.1~dB MSSIM=0.98}}}{24}{figure.3.3} \contentsline {figure}{\numberline {3.4}{\ignorespaces R\IeC {\'e}duction de bruit gaussien par filtrage bilat\IeC {\'e}ral de voisinage 5$\times $5. $\sigma _S$ et $\sigma _I$ sont les \IeC {\'e}carts type des fonctions gaussiennes de pond\IeC {\'e}ration spatiale et d'intensit\IeC {\'e}.}}{25}{figure.3.4} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {$\sigma _S=1.0$ et $\sigma _I=0.1$, PSNR=25.6~dB MSSIM=0.25}}}{25}{figure.3.4} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {$\sigma _S=1.0$ et $\sigma _I=0.5$, PSNR=28.0~dB MSSIM=0.36}}}{25}{figure.3.4} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {$\sigma _S=1.0$ et $\sigma _I=1.0$, PSNR=27.9~dB MSSIM=0.36}}}{25}{figure.3.4} \contentsline {subfigure}{\numberline {(d)}{\ignorespaces {$\sigma _S=2.0$ et $\sigma _I=0.1$, PSNR=26.7~dB MSSIM=0.29}}}{25}{figure.3.4} \contentsline {subfigure}{\numberline {(e)}{\ignorespaces {$\sigma _S=2.0$ et $\sigma _I=0.5$, PSNR=27.9~dB MSSIM=0.39}}}{25}{figure.3.4} \contentsline {subfigure}{\numberline {(f)}{\ignorespaces {$\sigma _S=2.0$ et $\sigma _I=1.0$, PSNR=27.5~dB MSSIM=0.38}}}{25}{figure.3.4} \contentsline {subfigure}{\numberline {(g)}{\ignorespaces {$\sigma _S=5.0$ et $\sigma _I=0.1$, PSNR=26.8~dB MSSIM=0.29}}}{25}{figure.3.4} \contentsline {subfigure}{\numberline {(h)}{\ignorespaces {$\sigma _S=5.0$ et $\sigma _I=0.5$, PSNR=26.8~dB MSSIM=0.37}}}{25}{figure.3.4} \contentsline {subfigure}{\numberline {(i)}{\ignorespaces {$\sigma _S=5.0$ et $\sigma _I=1.0$, PSNR=25.9~dB MSSIM=0.36}}}{25}{figure.3.4} \contentsline {figure}{\numberline {3.5}{\ignorespaces Filtrage par d\IeC {\'e}composition en ondelettes et seuillage dur des coefficients inf\IeC {\'e}rieurs au seuil $T$.}}{26}{figure.3.5} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {$T=20$, PSNR=26.9~dB MSSIM=0.30}}}{26}{figure.3.5} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {$T=35$, PSNR=27.6~dB MSSIM=0.36}}}{26}{figure.3.5} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {$T=70$, PSNR=26.7~dB MSSIM=0.37}}}{26}{figure.3.5} \contentsline {figure}{\numberline {3.6}{\ignorespaces Filtrage par NL-means pour diff\IeC {\'e}rentes combinaisons des param\IeC {\`e}tres de similarit\IeC {\'e} $f$ et de non localit\IeC {\'e} $t$.}}{27}{figure.3.6} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {$f=2$ et $t=2$, PSNR=28.5~dB MSSIM=0.37}}}{27}{figure.3.6} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {$f=2$ et $t=5$, PSNR=28.6~dB MSSIM=0.38}}}{27}{figure.3.6} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {$f=5$ et $t=2$, PSNR=29.0~dB MSSIM=0.39}}}{27}{figure.3.6} \contentsline {subfigure}{\numberline {(d)}{\ignorespaces {$f=5$ et $t=5$, PSNR=29.0~dB MSSIM=0.40}}}{27}{figure.3.6} \contentsline {figure}{\numberline {3.7}{\ignorespaces Filtrage par BM3D, PSNR=29.3~dB MSSIM=0.41}}{27}{figure.3.7} \contentsline {figure}{\numberline {3.8}{\ignorespaces Performances relatives des filtres m\IeC {\'e}dians impl\IeC {\'e}ment\IeC {\'e}s sur GPU dans libJacket/ArrayFire, PCMF et BVM et ex\IeC {\'e}cut\IeC {\'e}s sur deux mod\IeC {\`e}le de g\IeC {\'e}n\IeC {\'e}rations diff\IeC {\'e}rentes.}}{29}{figure.3.8} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Sur GPU GTX260. Courbe tir\IeC {\'e}e de \cite {5402362}}}}{29}{figure.3.8} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Sur GPU C2075. Courbe tir\IeC {\'e}e de \cite {sanchez2013highly}}}}{29}{figure.3.8} \contentsline {figure}{\numberline {3.9}{\ignorespaces Illustration pr\IeC {\'e}-chargement en m\IeC {\'e}moire partag\IeC {\'e}e mise en \oe uvre dans \cite {zheng2011performance} pour l'impl\IeC {\'e}mentation, entre autres, du filtre bilat\IeC {\'e}ral. a) en vert le bloc de threads associ\IeC {\'e} aux pixels centraux. b-e) les blocs de pixels successivement pr\IeC {\'e}-charg\IeC {\'e}s en m\IeC {\'e}moire partag\IeC {\'e}e. f) la configuration finale de la ROI en m\IeC {\'e}moire partag\IeC {\'e}e.}}{30}{figure.3.9} \contentsline {figure}{\numberline {3.10}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par analyse simple d'histogramme. Colonne de gauche : image d'entr\IeC {\'e}e. Colonne centrale : histogramme des niveaux de gris. Colonne de droite : r\IeC {\'e}sultat de la segmentation.}}{33}{figure.3.10} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Image initiale comportant deux zones : le fond et le cochon (la cible)}}}{33}{figure.3.10} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Histogramme des niveaux de gris}}}{33}{figure.3.10} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {Image binaire repr\IeC {\'e}sentant la segmentation. Seuil estim\IeC {\'e} \IeC {\`a} 101 apr\IeC {\`e}s 4 it\IeC {\'e}rations.}}}{33}{figure.3.10} \contentsline {subfigure}{\numberline {(d)}{\ignorespaces {Image initiale bruit\IeC {\'e}e}}}{33}{figure.3.10} \contentsline {subfigure}{\numberline {(e)}{\ignorespaces {Histogramme des niveaux de gris}}}{33}{figure.3.10} \contentsline {subfigure}{\numberline {(f)}{\ignorespaces {Image binaire repr\IeC {\'e}sentant la segmentation. Seuil estim\IeC {\'e} \IeC {\`a} 99 apr\IeC {\`e}s 5 it\IeC {\'e}rations.}}}{33}{figure.3.10} \contentsline {figure}{\numberline {3.11}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par simplification de graphe de type \textit {Normalized cut} pour un nombre $s$ de segments variant de 2 \IeC {\`a} 5.}}{35}{figure.3.11} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {$s = 2$}}}{35}{figure.3.11} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {$s = 3$}}}{35}{figure.3.11} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {$s = 4$}}}{35}{figure.3.11} \contentsline {subfigure}{\numberline {(d)}{\ignorespaces {$s = 5$}}}{35}{figure.3.11} \contentsline {figure}{\numberline {3.12}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme \textit {k-means} pour un nombre $s$ de segments variant de 2 \IeC {\`a} 5. Chaque couleur est associ\IeC {\'e}e \IeC {\`a} un segment. Les couleurs sont choisies pour une meilleure visualisation des diff\IeC {\'e}rents segments.}}{36}{figure.3.12} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {$s = 2$}}}{36}{figure.3.12} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {$s = 3$}}}{36}{figure.3.12} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {$s = 4$}}}{36}{figure.3.12} \contentsline {subfigure}{\numberline {(d)}{\ignorespaces {$s = 5$}}}{36}{figure.3.12} \contentsline {figure}{\numberline {3.13}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme \textit {mean-shift} pour un rayon de voisinage $r$ de 100, 50, 35 et 25 pixels permettant d'obtenir un nombre $s$ de segments variant respectivement de 2 \IeC {\`a} 5. Le volume minimal admis pour un segment est fix\IeC {\'e} \IeC {\`a} 100 pixels. Chaque couleur est associ\IeC {\'e}e \IeC {\`a} un segment. Les couleurs sont choisies pour une meilleure visualisation des diff\IeC {\'e}rents segments.}}{37}{figure.3.13} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {$r=100 \Rightarrow s = 2$}}}{37}{figure.3.13} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {$r=50 \Rightarrow s = 3$}}}{37}{figure.3.13} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {$r=35 \Rightarrow s = 4$}}}{37}{figure.3.13} \contentsline {subfigure}{\numberline {(d)}{\ignorespaces {$r=25 \Rightarrow s = 5$}}}{37}{figure.3.13} \contentsline {figure}{\numberline {3.14}{\ignorespaces Segmentation d'une image en niveaux de gris de 128 $\times $ 128 pixels par algorithme dit du \textit {snake}, dans sa version originale. Les param\IeC {\`e}tres d'\IeC {\'e}lasticit\IeC {\'e}, de raideur et d'attraction ont \IeC {\'e}t\IeC {\'e} fix\IeC {\'e}s respectivement aux valeurs 5, 0.1 et 5. }}{38}{figure.3.14} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Les \IeC {\'e}tats initial et suivant chacune des trois premi\IeC {\`e}res it\IeC {\'e}rations}}}{38}{figure.3.14} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {L'\IeC {\'e}tat du contour apr\IeC {\`e}s la septi\IeC {\`e}me it\IeC {\'e}ration}}}{38}{figure.3.14} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {L'\IeC {\'e}tat du contour apr\IeC {\`e}s la dixi\IeC {\`e}me it\IeC {\'e}ration}}}{38}{figure.3.14} \contentsline {subfigure}{\numberline {(d)}{\ignorespaces {L'\IeC {\'e}tat du contour apr\IeC {\`e}s la centi\IeC {\`e}me it\IeC {\'e}ration. C'est le contour final.}}}{38}{figure.3.14} \contentsline {figure}{\numberline {3.15}{\ignorespaces \IeC {\'E}volution du nombre de pixels actifs pour les it\IeC {\'e}ration successives de l'impl\IeC {\'e}mentation de l'algorithme push-relabel de \cite {graphcutscuda}. Les petites images montrent la localisation des pixels actifs apr\IeC {\`e}s chaque it\IeC {\'e}ration, en blanc.}}{41}{figure.3.15} \contentsline {figure}{\numberline {3.16}{\ignorespaces Segmentation d'une image couleur de 512$\times $512 pixels par l'impl\IeC {\'e}mentation GPU quick-shift de \cite {fulkerson2012really}.}}{43}{figure.3.16} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Image originale}}}{43}{figure.3.16} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {$\tau =10$ et $\sigma =2$}}}{43}{figure.3.16} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {$\tau =10$ et $\sigma =10$}}}{43}{figure.3.16} \contentsline {subfigure}{\numberline {(d)}{\ignorespaces {$\tau =20$ et $\sigma =10$}}}{43}{figure.3.16} \contentsline {figure}{\numberline {3.17}{\ignorespaces Segmentation d'une image couleur de 2256$\times $3008 pixels.}}{43}{figure.3.17} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Image originale}}}{43}{figure.3.17} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Image segment\IeC {\'e}e par mean-shift standard}}}{43}{figure.3.17} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {Image segment\IeC {\'e}e par mean-shift kd-tree}}}{43}{figure.3.17} \contentsline {figure}{\numberline {3.18}{\ignorespaces Segmentation d'images issues d'examens IRM par la m\IeC {\'e}thode des level set \IeC {\`a} bande \IeC {\'e}troite.}}{45}{figure.3.18} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Cerveau 256$\times $256$\times $256 en 7~s}}}{45}{figure.3.18} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Reins et aorte, 256$\times $256$\times $272 en 16~s}}}{45}{figure.3.18} \contentsline {figure}{\numberline {3.19}{\ignorespaces Segmentation d'une image d'\IeC {\'e}paule en 1024$^2$ pixels issue d'un examen IRM par l'impl\IeC {\'e}mentation du snake GVF de \cite {snakegvf06}. Le contour est repr\IeC {\'e}sent\IeC {\'e} en rougeet le contour final est obtenu en 11~s. }}{45}{figure.3.19} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Contour initial}}}{45}{figure.3.19} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Contour final}}}{45}{figure.3.19} \contentsline {figure}{\numberline {3.20}{\ignorespaces Extraction de contour par la version GPU de l'algorithme gPb. Les images sont issues de la base BSDS \cite {martin2001database}}}{46}{figure.3.20} \addvspace {10\p@ } \contentsline {figure}{\numberline {4.1}{\ignorespaces \IeC {\`A} gauche : d\IeC {\'e}termination des vecteurs $f_{in}$ et $f_{out}$. \IeC {\`A} droite : code de Freeman d'un vecteur en fonction de sa direction, l'origine \IeC {\'e}tant suppos\IeC {\'e}e au pixel central, en noir. }}{51}{figure.4.1} \contentsline {figure}{\numberline {4.2}{\ignorespaces \IeC {\'E}volution du contour lors de la segmentation d'une image de 512$^2$ pixels. La convergence est obtenue \IeC {\`a} l'it\IeC {\'e}ration 14 apr\IeC {\`e}s 44~ms pour un total de 256 n\oe uds.}}{54}{figure.4.2} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Initialisation : 4 n\oe uds}}}{54}{figure.4.2} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {It\IeC {\'e}ration 1 : 8 n\oe uds 3~ms}}}{54}{figure.4.2} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {It\IeC {\'e}ration 2 : 16 n\oe uds 1~ms}}}{54}{figure.4.2} \contentsline {subfigure}{\numberline {(d)}{\ignorespaces {It\IeC {\'e}ration 3, 32 n\oe uds 1~ms}}}{54}{figure.4.2} \contentsline {subfigure}{\numberline {(e)}{\ignorespaces {It\IeC {\'e}ration 7 : 223 n\oe uds 3~ms}}}{54}{figure.4.2} \contentsline {subfigure}{\numberline {(f)}{\ignorespaces {It\IeC {\'e}ration 10 : 244 n\oe uds 3~ms}}}{54}{figure.4.2} \contentsline {subfigure}{\numberline {(g)}{\ignorespaces {It\IeC {\'e}ration 13 : 256 n\oe uds 3~ms}}}{54}{figure.4.2} \contentsline {subfigure}{\numberline {(h)}{\ignorespaces {It\IeC {\'e}ration 14 : 256 n\oe uds 3~ms}}}{54}{figure.4.2} \contentsline {figure}{\numberline {4.3}{\ignorespaces Influence du contour initial sur la segmentation. Le contour final 1 est celui de la figure \ref {fig-snakecpu-cochon512}.}}{54}{figure.4.3} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Initialisation 2 }}}{54}{figure.4.3} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Contour final 2 : 273 n\oe uds 87~ms}}}{54}{figure.4.3} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {Contour final 1 : 256 n\oe uds 44~ms}}}{54}{figure.4.3} \contentsline {figure}{\numberline {4.4}{\ignorespaces Segmentation de l'image de test en 4000$^2$ pixels.}}{55}{figure.4.4} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {$d_{max}=16$ et $l_{min}=8$, 1246 n\oe uds en 1.3~s}}}{55}{figure.4.4} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {$d_{max}=128$ et $l_{min}=32$, 447 n\oe uds en 0.7~s}}}{55}{figure.4.4} \contentsline {figure}{\numberline {4.5}{\ignorespaces Segmentation de l'image de test en 4000$^2$ pixels avec une cible de petite taille. Le contour initial est celui utilis\IeC {\'e} \IeC {\`a} la figure \ref {fig-snakecpu-cochon4k}.}}{55}{figure.4.5} \contentsline {figure}{\numberline {4.6}{\ignorespaces \IeC {\'E}volution du co\IeC {\^u}t relatif des trois fonctions les plus consommatrices en temps de calcul en fonction de la taille de l'image \IeC {\`a} traiter.}}{56}{figure.4.6} \contentsline {figure}{\numberline {4.7}{\ignorespaces Calcul des images cumul\IeC {\'e}es $S_x$ et $S_x^2$ en trois \IeC {\'e}tapes successives. a) cumul partiel bloc par bloc et m\IeC {\'e}morisation de la somme de chaque bloc. b) cumul sur le vecteur des sommes partielles. c) ajout des sommes partielles \IeC {\`a} chaque \IeC {\'e}l\IeC {\'e}ment des blocs cumul\IeC {\'e}s.}}{58}{figure.4.7} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {D\IeC {\'e}tail des op\IeC {\'e}rations effectu\IeC {\'e}es par le \textit {kernel} \texttt {compute\_block\_prefixes()}. La valeur $bs$ correspond au nombre de pixels de chaque bloc, qui est aussi le nombre de threads ex\IeC {\'e}cut\IeC {\'e} par chaque bloc de la grille de calcul.}}}{58}{figure.4.7} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {D\IeC {\'e}tail des op\IeC {\'e}rations effectu\IeC {\'e}es par le \textit {kernel} \texttt {scan\_blocksums()}.}}}{58}{figure.4.7} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {D\IeC {\'e}tail des op\IeC {\'e}rations effectu\IeC {\'e}es par le \textit {kernel} \texttt {add\_sums2prefixes()}.}}}{58}{figure.4.7} \contentsline {figure}{\numberline {4.8}{\ignorespaces Structuration des donn\IeC {\'e}es en m\IeC {\'e}moire du GPU pour l'\IeC {\'e}valuation en parall\IeC {\`e}le de l'ensemble des \IeC {\'e}volutions possibles du contour.}}{59}{figure.4.8} \contentsline {figure}{\numberline {4.9}{\ignorespaces Comparaison des cycles de d\IeC {\'e}placement des n\oe uds. Ligne du haut : version s\IeC {\'e}quentielle. Ligne du bas : version parall\IeC {\`e}le. Les segments en rouge sont des segments du contour non \IeC {\'e}valu\IeC {\'e}s, alors que ceux en pointill\IeC {\'e}s sont les paires ayant re\IeC {\c c}u les meilleures \IeC {\'e}valuations parmi les 8 d\IeC {\'e}placements possibles des n\oe uds correspondant.}}{60}{figure.4.9} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Contour de r\IeC {\'e}f\IeC {\'e}rence.}}}{60}{figure.4.9} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {D\IeC {\'e}placement du n\oe ud $N_1$. Le crit\IeC {\`e}re est am\IeC {\'e}lior\IeC {\'e}.}}}{60}{figure.4.9} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {D\IeC {\'e}placement du n\oe ud $N_2$. Le crit\IeC {\`e}re est am\IeC {\'e}lior\IeC {\'e}.}}}{60}{figure.4.9} \contentsline {subfigure}{\numberline {(d)}{\ignorespaces {D\IeC {\'e}placement en parall\IeC {\`e}le de tous les n\oe uds. Les segments du contour n'ont pas \IeC {\'e}t\IeC {\'e} \IeC {\'e}valu\IeC {\'e}s. On ne peut pas dire, a priori si le crit\IeC {\`e}re est am\IeC {\'e}lior\IeC {\'e}.}}}{60}{figure.4.9} \contentsline {subfigure}{\numberline {(e)}{\ignorespaces {D\IeC {\'e}placement en parall\IeC {\`e}le des n\oe uds impairs. Le crit\IeC {\`e}re est am\IeC {\'e}lior\IeC {\'e}.}}}{60}{figure.4.9} \contentsline {subfigure}{\numberline {(f)}{\ignorespaces {D\IeC {\'e}placement en parall\IeC {\`e}le des n\oe uds pairs. Un seul segment n'a pas \IeC {\'e}t\IeC {\'e} \IeC {\'e}valu\IeC {\'e}.}}}{60}{figure.4.9} \contentsline {figure}{\numberline {4.10}{\ignorespaces D\IeC {\'e}termination des coefficients $C(i,j)$ des pixels du contour.}}{62}{figure.4.10} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Quadrants 1 et 4}}}{62}{figure.4.10} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Quadrants 2 et 3}}}{62}{figure.4.10} \contentsline {figure}{\numberline {4.11}{\ignorespaces Segmentations de grandes images, avec le contour intial transpos\IeC {\'e} de celui de la figure \ref {fig-snakecpu-cochon512}. a) image de 100~MP. b) image de 150~MP.}}{63}{figure.4.11} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {5 it\IeC {\'e}rations en 0,59~s}}}{63}{figure.4.11} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {3 it\IeC {\'e}rations en 0,35~s}}}{63}{figure.4.11} \contentsline {figure}{\numberline {4.12}{\ignorespaces D\IeC {\'e}termination intelligente du contour initial en deux phases successives. a) La premi\IeC {\`e}re \IeC {\'e}tape repose sur un \IeC {\'e}chantillonnage horizontal. b) La seconde \IeC {\'e}tape repose sur un \IeC {\'e}chantillonnage vertical. }}{64}{figure.4.12} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {D\IeC {\'e}termination de $j_L$ et $j_H$.}}}{64}{figure.4.12} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {D\IeC {\'e}termination de $i_L$ et $i_H$.}}}{64}{figure.4.12} \addvspace {10\p@ } \contentsline {figure}{\numberline {5.1}{\ignorespaces D\IeC {\'e}tail des motifs et de leur repr\IeC {\'e}sentation interne, pour la taille $d=5$. }}{72}{figure.5.1} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Les 8 premi\IeC {\`e}res lignes de la table $P_5$ dont les \IeC {\'e}l\IeC {\'e}ments sont les positions relatives des pixels de chaque motif par rapport au pixel central.}}}{72}{figure.5.1} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Motifs des 8 premier segments candidats pour. Les pixels noirs representent le pixel trait\IeC {\'e} (ou pixel central), qui n'appartient pas au motif. Les pixels gris sont ceux qui constituent le motif.}}}{72}{figure.5.1} \contentsline {figure}{\numberline {5.2}{\ignorespaces . Exemple de la r\IeC {\'e}partition des pixels dans la r\IeC {\'e}gion $\omega $ pour le calcul de la vraisemblance, pour $n=6$.}}{72}{figure.5.2} \contentsline {figure}{\numberline {5.3}{\ignorespaces Allongement du segment $S^n$. Deux candidats $S^{p'}$ et $S^{p''}$ sont \IeC {\'e}valu\IeC {\'e}s au travers du crit\IeC {\`e}re GLRT de l'\IeC {\'e}quation \textup {\hbox {\mathsurround \z@ \normalfont (\ignorespaces \ref {GLRT}\unskip \@@italiccorr )}} que seul $S^{p''}$ s'av\IeC {\`e}re satisfaire. a) Repr\IeC {\'e}sentation dans le plan de l'image. b) \IeC {\'E}volution des niveaux de gris en fonction de la position des pixels dans les lignes bris\IeC {\'e}es ainsi form\IeC {\'e}es.}}{74}{figure.5.3} \contentsline {figure}{\numberline {5.4}{\ignorespaces Processus de s\IeC {\'e}lection lors de l'allongement d'une \textit {isoline} comportant initialement deux segment $s_1$ et $s_2$. Dans cet exemple $d=5$ et $\Delta d_{max}=2$. Chaque segment \IeC {\'e}valu\IeC {\'e} est soumis au crit\IeC {\`e}re GLRT. Si au moins un des segments pr\IeC {\'e}sente un test GLRT positif, alors l'allongement est r\IeC {\'e}alis\IeC {\'e} avec le segment qui forme l'\textit {isoline} la plus vraisemblable.}}{76}{figure.5.4} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Isoline comprenant deux segments $s_1$ et $s_2$.}}}{76}{figure.5.4} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Premier segment \IeC {\'e}valu\IeC {\'e}, associ\IeC {\'e} au motif $p_{5,0}$.}}}{76}{figure.5.4} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {Deuxi\IeC {\`e}me segment \IeC {\'e}valu\IeC {\'e}, associ\IeC {\'e} au motif $p_{5,1}$.}}}{76}{figure.5.4} \contentsline {subfigure}{\numberline {(d)}{\ignorespaces {Troisi\IeC {\`e}me segment \IeC {\'e}valu\IeC {\'e}, associ\IeC {\'e} au motif $p_{5,2}$.}}}{76}{figure.5.4} \contentsline {subfigure}{\numberline {(e)}{\ignorespaces {Quatri\IeC {\`e}me segment \IeC {\'e}valu\IeC {\'e}, associ\IeC {\'e} au motif $p_{5,3}$.}}}{76}{figure.5.4} \contentsline {subfigure}{\numberline {(f)}{\ignorespaces {Cinqui\IeC {\`e}me segment \IeC {\'e}valu\IeC {\'e}, associ\IeC {\'e} au motif $p_{5,4}$.}}}{76}{figure.5.4} \contentsline {figure}{\numberline {5.5}{\ignorespaces Histogramme des \IeC {\'e}carts angulaires entre la direction primaire de l'\textit {isoline} optimale et celle de l'\textit {isoline} s\IeC {\'e}lectionn\IeC {\'e}e, pour l'image du singe (Mandrill). Pour la tr\IeC {\`e}s grande majorit\IeC {\'e} des pixels, le mode de s\IeC {\'e}lection de l'\textit {isoline} ne g\IeC {\'e}n\IeC {\'e}re pas d'erreur sur la direction du premier segment.}}{77}{figure.5.5} \contentsline {figure}{\numberline {5.6}{\ignorespaces Histogrammes des \IeC {\'e}carts angulaires entre la direction primaire de l'\textit {isoline} optimale et celle de l'\textit {isoline} s\IeC {\'e}lectionn\IeC {\'e}e, pour les images de l'ensemble de test de S. Lansel. La r\IeC {\'e}partition des erreurs est semblable dans toutes ces images naturelles.}}{77}{figure.5.6} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Airplane}}}{77}{figure.5.6} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Barbara}}}{77}{figure.5.6} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {Boat}}}{77}{figure.5.6} \contentsline {subfigure}{\numberline {(d)}{\ignorespaces {Couple}}}{77}{figure.5.6} \contentsline {subfigure}{\numberline {(e)}{\ignorespaces {Elaine}}}{77}{figure.5.6} \contentsline {subfigure}{\numberline {(f)}{\ignorespaces {Finger}}}{77}{figure.5.6} \contentsline {subfigure}{\numberline {(g)}{\ignorespaces {Goldhill}}}{77}{figure.5.6} \contentsline {subfigure}{\numberline {(h)}{\ignorespaces {Lena}}}{77}{figure.5.6} \contentsline {subfigure}{\numberline {(i)}{\ignorespaces {Man}}}{77}{figure.5.6} \contentsline {subfigure}{\numberline {(j)}{\ignorespaces {Peppers}}}{77}{figure.5.6} \contentsline {subfigure}{\numberline {(k)}{\ignorespaces {Stream}}}{77}{figure.5.6} \contentsline {subfigure}{\numberline {(l)}{\ignorespaces {Zelda}}}{77}{figure.5.6} \contentsline {figure}{\numberline {5.7}{\ignorespaces Exemple d'application du proc\IeC {\'e}d\IeC {\'e} d'allongement \IeC {\`a} une \textit {isoline} comprenant initialement 2 segments. la longueur des segments est $d=5$. Le proc\IeC {\'e}d\IeC {\'e} se r\IeC {\'e}p\IeC {\`e}te jusqu'\IeC {\`a} ce que le test GLRT \IeC {\'e}choue.}}{78}{figure.5.7} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Isoline avec 2 segments $s_1$ et $s_2$ d\IeC {\'e}j\IeC {\`a} valid\IeC {\'e}s.}}}{78}{figure.5.7} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {La direction de $s_3$ est l'\IeC {\'e}l\IeC {\'e}ment $(i_2,j_2)$ de $I_{\Theta }$.}}}{78}{figure.5.7} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {Le motif de $s_3$ est lu dans $p_5$ et appliqu\IeC {\'e} en $(i_2,j_2)$. $C_x$ et $C_{x^2}$ sont donn\IeC {\'e}es par $I_{\Sigma }(i_2,j_2)$ et le test GLRT est effectu\IeC {\'e}.}}}{78}{figure.5.7} \contentsline {subfigure}{\numberline {(d)}{\ignorespaces {Si l'allongement est valid\IeC {\'e}, $s_3$ est d\IeC {\'e}finitivement int\IeC {\'e}gr\IeC {\'e}.}}}{78}{figure.5.7} \contentsline {figure}{\numberline {5.8}{\ignorespaces Situation de la r\IeC {\'e}gion servant \IeC {\`a} illustrer le comportant du mod\IeC {\`e}le PI-PD dans les zones \IeC {\`a} faible pente (LSR).}}{79}{figure.5.8} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Image de r\IeC {\'e}f\IeC {\'e}rence non bruit\IeC {\'e}e.}}}{79}{figure.5.8} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {La r\IeC {\'e}gion de 11$\times $11 pixels \IeC {\'e}tudi\IeC {\'e}e.}}}{79}{figure.5.8} \contentsline {figure}{\numberline {5.9}{\ignorespaces Comportement du mod\IeC {\`e}le PI-PD dans les zones de faible et \IeC {\`a} forte pente. On constate un manque de robustesse dans les zones \IeC {\`a} faible pente : les directions ne sont pas reproduites d'un tirage \IeC {\`a} l'autre, contrairement \IeC {\`a} celles de la zone de transition.}}{82}{figure.5.9} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Image de r\IeC {\'e}f\IeC {\'e}rence.}}}{82}{figure.5.9} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Image corrompue par le tirage de bruit $n^{\circ }1$}}}{82}{figure.5.9} \contentsline {subfigure}{\numberline {(c)}{\ignorespaces {Image corrompue par le tirage de bruit $n^{\circ }2$}}}{82}{figure.5.9} \contentsline {subfigure}{\numberline {(d)}{\ignorespaces {Directions d\IeC {\'e}termin\IeC {\'e}es par le PI-PD pour le tirage $n^{\circ }1$}}}{82}{figure.5.9} \contentsline {subfigure}{\numberline {(e)}{\ignorespaces {Directions d\IeC {\'e}termin\IeC {\'e}e par le PI-PD pour le tirage $n^{\circ }2$}}}{82}{figure.5.9} \contentsline {figure}{\numberline {5.10}{\ignorespaces Classification des pixels d'une image bruit\IeC {\'e}e, pour une valeur de seuil $T2=2$ du d\IeC {\'e}tecteur. b) Les pixels en noir sont ceux \IeC {\`a} qui le PI-PD sera appliqu\IeC {\'e}. Les pixels en blancs se verront appliquer une moyenne sur tout ou partie du voisinage.}}{83}{figure.5.10} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Image bruit\IeC {\'e}e}}}{83}{figure.5.10} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Classification des pixels. }}}{83}{figure.5.10} \addvspace {10\p@ } \contentsline {figure}{\numberline {6.1}{\ignorespaces Application de la s\IeC {\'e}lection de m\IeC {\'e}diane par oubli. a) \IeC {\`a} une fen\IeC {\^e}tre de $3\times 3$ pixels. b) Maximisation de l'ILP pour l'identification des extrema. }}{92}{figure.6.1} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {\IeC {\'E}tapes de la s\IeC {\'e}lection par oubli pour un filtre 3$\times $3.}}}{92}{figure.6.1} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Premi\IeC {\`e}re \IeC {\'e}tape d'identification des extrema pour un filtre 5$\times $5.}}}{92}{figure.6.1} \contentsline {figure}{\numberline {6.2}{\ignorespaces Gestion des \IeC {\'e}l\IeC {\'e}ments communs aux fen\IeC {\^e}tres de deux pixels centraux voisins dans un filtre m\IeC {\'e}dian 5$\times $5. La liste initiale comprend les 14 premiers \IeC {\'e}l\IeC {\'e}ments communs, puis les 7 premi\IeC {\`e}res \IeC {\'e}tapes de s\IeC {\'e}lection sont conduites en commun avant que les 5 derni\IeC {\`e}res le soient en parall\IeC {\`e}le, mais de mani\IeC {\`e}re disjointe.}}{94}{figure.6.2} \contentsline {figure}{\numberline {6.3}{\ignorespaces Comparaison des d\IeC {\'e}bits (MP/s) atteints par notre impl\IeC {\'e}mentation not\IeC {\'e}e PRMF, avec les principales solutions de r\IeC {\'e}f\IeC {\'e}rence. De gauche \IeC {\`a} droite : PCMF, BVM, PRMF, ArrayFire (impossible en 4096$\times $4096)}}{95}{figure.6.3} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {image 512$\times $512 pixels.}}}{95}{figure.6.3} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {image 4096$\times $4096 pixels.}}}{95}{figure.6.3} \addvspace {10\p@ } \contentsline {figure}{\numberline {7.1}{\ignorespaces Multiplicit\IeC {\'e} des implications des pixels de la zone d'int\IeC {\'e}r\IeC {\^e}t d'un thread dans les calculs de convolution. Le nombre de calculs dans lequel est impliqu\IeC {\'e} un pixel est inscrit en son centre. Le premier pixel du paquet, ou pixel de base, est rep\IeC {\'e}r\IeC {\'e} par ses coordonn\IeC {\'e}es $(x, y)$ ; le dernier a pour coordonn\IeC {\'e}es $(x+7,y)$}}{102}{figure.7.1} \contentsline {subfigure}{\numberline {(a)}{\ignorespaces {Cas d'un masque de taille 3$\times $3 ($k=1$) o\IeC {\`u} l'on d\IeC {\'e}nombre 6 colonnes centrales, soit 18 pixels de multiplicit\IeC {\'e} maximale 3.}}}{102}{figure.7.1} \contentsline {subfigure}{\numberline {(b)}{\ignorespaces {Cas d'un masque de taille 5$\times $5 ($k=2$) o\IeC {\`u} l'on d\IeC {\'e}nombre 4 colonnes centrales, soit 20 pixels de multiplicit\IeC {\'e} maximale 5.}}}{102}{figure.7.1} \addvspace {10\p@ }