
Fine-tuned high-speed implementation

of a GPU-based median filter.

February 22, 2013

Abstract

Median filtering is a well-known method used in a wide range of application frameworks
as well as a standalone filter, especially for salt-and-pepper denoising. It is able to highly
reduce the power of noise while minimizing edge blurring. Currently, existing algorithms
and implementations are quite efficient but may be improved as far as processing speed is
concerned, which has led us to further investigate the specificities of modern GPUs. In this
paper, we propose the GPU implementation of fixed-size kernel median filters, able to output
up to 1.85 billion pixels per second on C2070 Tesla cards. Based on a Branchless Vectorized
Median class algorithm and implemented through memory fine tuning and the use of GPU
registers, our median drastically outperforms existing implementations, resulting, as far as we
know, in the fastest median filter to date.

1 Introduction

First introduced by Tukey in [6], median fil-
tering has been widely studied since then, and
many researchers have proposed efficient im-
plementations of it, adapted to various hypoth-
esis, architectures and processors. Originally,
its main drawbacks were its compute complex-
ity, its non linearity and its data-dependent
runtime. Several researchers have addressed
these issues and designed, for example, effi-
cient histogram-based median filters featuring
predictable runtimes [2, 7]. More recently, au-
thors have managed to take advantage of the
newly opened perspectives offered by modern
GPUs, to develop CUDA-based filters such as
the Branchless Vectorized Median filter (BVM)
[3, 1] which allows very interesting runtimes
and the histogram-based, PCMF median filter
[4] which was the fastest median filter imple-
mentation to our knowledge.

The use of a GPU as a general-purpose com-

puting processor raises the issue of data trans-
fers, especially when kernel runtime is fast
and/or when large data sets are processed. In
certain cases, data transfers between GPU and
CPU are slower than the actual computation
on GPU, even though global GPU processes
can prove faster than similar ones run on CPU.
In the following section, we propose the overall
code structure to be used with our median ker-
nels. For more concision and readability, our
coding will be restricted to 8 or 16 bit gray-
level input images whose height (H) and width
(W ) are both multiples of 512 pixels. Let us
also point out that the following implementa-
tion, targeted on Nvidia Tesla GPU (Fermi ar-
chitecture, compute capability 2.x), may easily
be adapted to other models e.g. those of com-
pute capability 1.3.

1



2 General structure

Algorithm 1 describes how data is handled in
our code. Input image data is stored in the
GPU’s texture memory so as to benefit from
the 2-D caching mechanism. After kernel ex-
ecution, copying output image back to CPU
memory is done by use of pinned memory,
which drastically accelerates data transfer.

Algorithm 1: Global memory manage-
ment on CPU and GPU sides.

textbf: allocate and populate CPU memory1

h in;
allocate CPU pinned-memory h out;2

allocate GPU global memory d out;3

declare GPU texture reference tex img in;4

allocate GPU array array img in;5

bind array img in to texture tex img in;6

copy data from h in to array img in;7

kernel gridDim,blockDim /* to d out */;8

copy data from d out to h out ;9

3 Implementing a fast median
filter

3.1 Basic principles

Designing a 2-D median filter basically consists
in defining a square window H(i, j) for each
pixel I(i, j) of the input image, containing n =
k×k pixels and centered on I(i, j). The output
value I ′(i, j) is the median value of the gray
level values of the k×k pixels of H(i, j). Figure
1 illustrates this principle with an example of
a 5x5 median filter applied on pixel I(5, 6).

Obviously, one key issue is the selection
method that identifies the median value, which
can be done using either histogram-based or
sorting methods. But, as shown in figure 1,
since two neighboring pixels share part of the
values to be sorted, a second key issue is how to
rule redundancy between consecutive positions
of the running window H(i, j).

(a) 5 × 5 median filtering applied on pixel
of coordinates (5,6)

(b) window overlapping in
5× 5 median filtering

Figure 1: Illustration of 5× 5 median filtering

3.2 Using registers

As register access is at least 20 times faster
than all the other memory types available on
the GPU, it is natural to turn to the use of
registers as a means to store temporary data,
keeping in mind that on the fermi architecture,
each individual thread can use a maximum of
63 registers within the limit of 32K per thread
block. Consequently, it is important to use reg-
isters sparingly in order to preserve high pixel
throughput values: to do so, we use the itera-
tive forgetful selection algorithm. Its principle
is, at each iteration, to identify and then to
eliminate (forget) both elements showing the
maximum and the minimum values among the
current list, then to add the next candidate el-
ement left in the original list, till none is left;
the last value remaining actually is the global
median value. Figure 2 illustrates the forgetful
selection process applied to a 3 × 3 pixel me-
dian filter. For clarity reasons, the nine values

2



Figure 2: Determination of the Median value
by the forgetful selection process, applied to a
3× 3 neighborhood window.

have been represented in a row. The minimum
register count Rn needed to start this iterative
selection process among k × k values is given
by:

Rn = dn
2
e+ 1

The selection of both extrema is implemented
through a basic 2-element swapping function.
This ensures that the GPU kernel code is free
of divergent branches liable to severely impact
performances.

3.3 Hiding Latencies

Optimizing a GPU kernel also means hiding la-
tencies. The offered massive thread parallelism
helps in doing so transparently but, consider-
ing the actual computation performed by each
thread, optimization may be taken a few steps
further:
First, we maximized the Instruction Level Par-

allelism inside the forgetful selection method
by re-arranging the instruction sequence of an
incomplete bitonic sort [?, ?] so as to reduce
the data dependency of consecutive instruc-
tions.
Second, we divided thread block size by 2, hav-
ing each thread perform the computation of
two neighbor input pixels instead of just one,
thus keeping the grid size unchanged while re-
ducing the effect of global memory access la-
tency. Additionally, window overlapping also
had to be managed, as illustrated by Figure
1, in order to minimize the increase of regis-
ter count per thread brought by the new com-
puting organization. Two k × k consecutive
neighboring windows share Sn = n −

√
n pix-

els, which is more than the number of regis-
ters needed to perform the median selection,
i.e. Rn (or equal for 3× 3 median filter). The
(Sn−Rn + 1) first selection stages can then be
considered common to both windows, leaving
only the k non-shared pixels of each window to
be processed separately. The above technique
saves k+1 registers for each pair of input pixels,
which means that each thread block now uses
fewer registers while processing the same pixel
count, thus allowing a higher level of paral-
lelism. Figure 3 illustrates this by representing
the different classes of pixels in the 5×5 median
example: the first R25 = 14 common pixels are
used to generate the vector to be sorted at the
first iteration, 6 more iterations are carried out
with the remaining common pixels before en-
tering into separate sorting processes.

3.4 Compute complexity

Arithmetic instructions and texture fetches are
easy to count but the number of element swaps
needed to select the median value is data de-
pendent and only its maximum can be eval-
uated. The incomplete sorting (forgetful se-
lection) and the redundancy management per-
formed when outputing two pixels per thread

3



lead to the instruction count below:

• 5 integer multiplications and 5 integer ad-
ditions to compute thread indexes and
ouput pixel coordinates.

• 2n−1 additions to compute neighbor pixel
coordinates.

• n −
√
n texture fetches to load gray-level

values.

• within a m-element vector and according
to our selection method, the maximum
number of element swaps needed to move
the minimum value to the first position
and the maximum to the last position is
given by:

sc(m) = −2 + d3.m
2
e

Consequently, the number of element
swaps needed by the entire selection of two
median values performed by one thread is
inferior or equal to: n−

√
n∑

i=dn
2
e+1

sc(i)

 + 2

 n∑
i=n−

√
n+1

sc(i)


The above sum equals 42,156 and 474 for
typical window sizes of 3 × 3, 5 × 5 and
7× 7. The total instruction count is thus
kept near a O(nlog(n)) rule.

4 Experiments

Runtimes have been obtained by averaging
1000 executions on a C2070 GPU card hosted
by a system with one Xeon E56202.40GHz pro-
cessor running a linux kernel 2.6.18x86 64 and
CUDA v4.0. Each kernel has been run on im-
ages of sizes 512×512, 1024×1024, 2048×2048
and 4096×4096. Like many authors, we have
used the pixel throughput value as our main

Figure 3: Reducing register count in a 5×5
register-only median kernel processing 2 input
pixels. The first 7 forgetful selection stages are
common to both processed center pixels: the
first one needs 14 pixels, leaving 6 more pixels
to be processedone after another.

performance indicator. It includes kernel run-
time as well as transfer times to and from the
GPU. We have also measured the maximum
effective pixel throughput that our GPU/host
couple is able to achieve, by running an iden-
tity kernel that fetches the gray-level of each
pixel in texture memory and outputs it into
global memory exclusive of any other instruc-
tion. Knowing this peak value allows us to
evaluate the potential for improvement of each
kernel and helps in deciding on further investi-
gation. Those peak values are detailed in Table
2, which shows that the larger the image is, the
higher the expected throughput is.

5 Results

The main contribution of this work is to show
how to tune a CUDA GPU implementation in
order to achieve the highest pixel throughput
values. Runtimes, as well as pixel through-
put values are gathered in Table 3. Figure 4
compares the throughput values of several im-
plementations against ours, labeled PRMF for
Parallel Register-only Median Filter. Due to
the lack of available source code, our compar-

4



Gray level format 8 bits 16 bits

time costs→
image size (pixels)↓

to GPU
(ms)

from GPU
(ms)

Total
(ms)

→GPU
(ms)

→GPU
(ms)

Total
(ms)

512×512 0.08 0.06 0.14 0.14 0.10 0.24

1024×1024 0.24 0.19 0.43 0.45 0.35 0.80

2048×2048 0.85 0.68 1.53 1.59 1.32 2.91

4096×4096 3.27 2.61 5.88 6.21 5.21 11.42

Table 1: Time cost of data transfer for each image size and gray-level format on C2070 GPU.

(a) 512×512 pixel input image.

(b) 4096×4096 pixel input image

Figure 4: Pixel throughput value comparison,
in million pixels per second, of several imple-
mentation against our PRMF. From left to
right: PCMF, BVM, PRMF, ArrayFire (im-
possible with 4096×4096)

ison is based on the most recent results pub-
lished in [5], obtained with the same GPU as
ours and with 8 bit-coded gray-level images.
While the algorithm implemented here is sim-
ilar to the one in ArrayFire, what makes the
difference is our fine tuning of the implemen-
tation that leads to the fastest GPU median
filter known to date with 1854 MPix/s. Let
us also note that such considerable through-
put values come very close to the peak effective
pixel throughput value of 2444 Mpix/s allowed
by our developpement platform. Consequently
further investigation would likely bring little
performance improvement.

Gray-level format→
image size↓ T8 T16

512×512 1598 975

1024×1024 2101 1200

2048×2048 2359 1308

4096×4096 2444 1335

Table 2: Maximum effective pixel throughput
values for T8 and T16 (in MPixel per second)
on C2070, achieved when processing 8 and 16
bit-coded gray-level images.

5



Window size→
Image size - perf.↓ 3×3 5×5 7×7

5
1
2
2

t (ms) 0.05 0.19 0.60

T8 (Mpix/s) 1291 773 348

T16 (Mpix/s) 865 607 307

1
0
2
4
2

t (ms) 0.20 0.74 2.39

T8 (Mpix/s) 1644 889 371

T16 (Mpix/s) 1045 692 329

2
0
4
8
2

t (ms) 0.79 2.95 9.53

T8 (Mpix/s) 1805 936 379

T16 (Mpix/s) 1130 729 338

4
0
9
6
2

t (ms) 3.17 11.77 38.06

T8 (Mpix/s) 1854 951 382

T16 (Mpix/s) 1151 738 340

Table 3: Runtime and pixel throughput of fast
median kernels processing 8 and 16 bit-coded
gray-level images and run by C2070 GPU.

References

[1] Wei Chen, M. Beister, Y. Kyriakou, and
M. Kachelries. High performance median
filtering using commodity graphics hard-
ware. In Nuclear Science Symposium Con-
ference Record (NSS/MIC), 2009 IEEE,
pages 4142–4147, 24 2009-nov. 1 2009.

[2] Thomas S. Huang. Two-Dimensional Dig-
ital Signal Processing II: Transforms and
Median Filters. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 1981.

[3] M. Kachelriess. Branchless vectorized me-
dian filtering. In Nuclear Science Sympo-
sium Conference Record (NSS/MIC), 2009
IEEE, pages 4099 –4105, 24 2009-nov. 1
2009.

[4] R.M. Sanchez and P.A. Rodriguez. Bidi-
mensional median filter for parallel com-
puting architectures. In Acoustics, Speech

and Signal Processing (ICASSP), 2012
IEEE International Conference on, pages
1549 –1552, march 2012.

[5] RicardoM. Snchez and PaulA. Rodrguez.
Highly parallelable bidimensional median
filter for modern parallel programming
models. Journal of Signal Processing Sys-
tems, pages 1–15, 2012.

[6] John Wilder Tukey. Exploratory Data
Analysis. Addison-Wesley, 1977.

[7] Ben Weiss. Fast median and bilateral fil-
tering. In ACM SIGGRAPH 2006 Papers,
SIGGRAPH ’06, pages 519–526, New York,
NY, USA, 2006. ACM.

6


