
Signal Processing Systems manuscript No.
(will be inserted by the editor)

Fine-tuned high-speed implementation
of a GPU-based median filter.

Gilles Perrot · Stéphane Domas · Raphaël Couturier

Received: date / Revised: date

Keywords median, filter, GPU

Abstract Median filtering is a well-known method used

in a wide range of application frameworks as well as

a standalone filter, especially for salt-and-pepper de-

noising. It is able to highly reduce the power of noise

while minimizing edge blurring. Currently, existing al-

gorithms and implementations are quite efficient but

may be improved as far as processing speed is con-

cerned, which has led us to further investigate the speci-

ficities of modern GPUs. In this paper, we propose the

GPU implementation of fixed-size kernel median fil-

ters, able to output up to 1.85 billion pixels per second

on C2070 Tesla cards. Based on a Branchless Vector-

ized Median class algorithm and implemented through

memory fine tuning and the use of GPU registers, our

median drastically outperforms existing implementa-

tions, resulting, as far as we know, in the fastest median

filter to date.

1 Introduction

First introduced by Tukey in [? ], median filtering has

been widely studied since then, and many researchers

have proposed efficient implementations of it, adapted

to various hypothesis, architectures and processors. Orig-

inally, its main drawbacks were its compute complex-

ity, its non linearity and its data-dependent runtime.

Several researchers have addressed these issues and de-

signed, for example, efficient histogram-based median

filters featuring predictable runtimes [? ? ]. More re-

cently, authors have managed to take advantage of the

newly opened perspectives offered by modern GPUs, to

FEMTO-ST institute
Rue Engel Gros, 90000 Belfort, France.
E-mail: forename.name@univ-fcomte.fr

develop CUDA-based filters such as the Branchless Vec-

torized Median filter (BVM) [? ? ] which allows very

interesting runtimes and the histogram-based, PCMF

median filter [? ] which was the fastest median filter

implementation to our knowledge.

The use of a GPU as a general-purpose computing

processor raises the issue of data transfers, especially

when kernel runtime is fast and/or when large data sets

are processed. In certain cases, data transfers between

GPU and CPU are slower than the actual computa-

tion on GPU, even though global GPU processes can

prove faster than similar ones run on CPU. In the fol-

lowing section, we propose the overall code structure

to be used with our median kernels. For more conci-

sion and readability, our coding will be restricted to 8

or 16 bit gray-level input images whose height (H) and

width (W ) are both multiples of 512 pixels. Let us also

point out that the following implementation, targeted

on Nvidia Tesla GPU (Fermi architecture, compute ca-

pability 2.x), may easily be adapted to other models

e.g. those of compute capability 1.3.

2 General structure

Algorithm 1 describes how data is handled in our code.

Input image data is stored in the GPU’s texture mem-

ory so as to benefit from the 2-D caching mechanism.

After kernel execution, copying output image back to

CPU memory is done by use of pinned memory, which

drastically accelerates data transfer.



2 Gilles Perrot et al.

Algorithm 1: Global memory management on

CPU and GPU sides.
allocate and populate CPU memory h in;1

allocate CPU pinned-memory h out;2

allocate GPU global memory d out;3

declare GPU texture reference tex img in;4

allocate GPU array array img in;5

bind array img in to texture tex img in;6

copy data from h in to array img in;7

kernel

kernLeft.jpg

gridDim,blockDim

kernRight.jpg

/* to d out8

*/;
copy data from d out to h out ;9


