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ABSTRACT: Segmentation of medical images is an important step in various applications such 

as visualization, quantitative analysis and image-guided surgery. Numerous segmentation 

methods have been developed in the past two decades for extraction of organ contours on medical 

images. Low-level segmentation methods, such as pixel-based clustering, region growing, and 

filter-based edge detection, require additional pre-processing and post-processing as well as 

considerable amounts of expert intervention or information of the objects of interest. Furthermore 

the subsequent analysis of segmented objects is hampered by the primitive, pixel or voxel level 

representations from those region-based segmentation [1]. 

Deformable models, on the other hand, provide an explicit representation of the boundary and the 

shape of the object. They combine several desirable features such as inherent connectivity and 

smoothness, which counteract noise and boundary irregularities, as well as the ability to 

incorporate knowledge about the object of interest [2, 3] [4]. However, parametric deformable 

models have two main limitations. First, in situations where the initial model and desired object 

boundary differ greatly in size and shape, the model must be re-parameterized dynamically to 

faithfully recover the object boundary. The second limitation is that it has difficulty dealing with 

topological adaptation such as splitting or merging model parts, a useful property for recovering 

either multiple objects or objects with unknown topology. This difficulty is caused by the fact that 



a new parameterization must be constructed whenever topology change occurs, which requires 

sophisticated schemes [5, 6]. Level set deformable models [7, 8], also referred to as geometric 

deformable models, provide an elegant solution to address the primary limitations of parametric 

deformable models. These methods have drawn a great deal of attention since their introduction 

in 1988. Advantages of the contour implicit formulation of the deformable model over parametric 

formulation include: (1) no parameterization of the contour, (2) topological flexibility, (3) good 

numerical  stability, (4) straightforward extension of the 2D formulation to n-D. Recent reviews 

on the subject include papers from Suri [9, 10].  

In this chapter we give a general overview of the level set segmentation methods with emphasize 

on new frameworks recently introduced in the context of medical imaging problems. We then 

introduce novel approaches that aim at combining segmentation and registration in a level set 

formulation. Finally we review a selective set of clinical works with detailed validation of the 

level set methods for several clinical applications. 

A. Level set methods for Segmentation 

A recent paper from Montagnat, Delingette and Ayache review the general family of deformable 

models and surfaces with a classification based on their representation. This classification has 

been reproduced, to some extends in Figure 1. Level set deformable models appear in this 

classification diagram as part of continuous deformable models with implicit representation. 



 

Figure 1:Geometric representations of deformable surfaces. 

A. Level Set Framework 

Segmentation of an image I via active contours, also referred to as snakes [2], operates through an 

energy functional controlling the deformation of an initial contour curve  under 

the influence of internal and external forces achieving a minimum energy state at high-gradient 

locations. The generic energy functional for active contour models is expressed as: 

( ) [ ], 0,C p p ∈ 1
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where  are positive parameters. The first two terms control the rigidity and elasticity of 

the contour (defining the internal energy of the deformable object) while the last term attracts the 

model to high-gradient locations in the image I (defining the external energy of the model).  

( , ,α β λ)

Active contour segmentation via minimization of the energy functional in Equation (1) is 

typically implemented with a parametric framework in which the deformable model is explicitly 

formulated as a parameterized contour on a regular spatial grid, tracking its point positions in a 

Lagrangian framework [11]. 

In their original paper from 1988 [7], Osher and Sethian introduced the concept of geometric 

deformable models, which provide an implicit formulation of the deformable contour in a level 

set framework. To introduce the concept of the level set framework we focus on the boundary-

value problem of a close contour C deforming with a speed V along its normal direction: 
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Their fundamental idea is, instead of tracking in time the positions of the front  on a 

regular grid as: 

( ,C x y)
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to embed the curve into a higher dimension function ( ), ,x y tφ  such that: 

(1) at time zero the initial contour  corresponds to the level zero of the function φ:   0C

 . (4) ( ) ( ){0 , / , ,0 0C x y x yφ= }=

(2) the function φ evolves with the dynamic equation: 

 V
t
φ φ∂ = ∇
∂

. (5) 

In this framework, at any time t, the front implicitly defined by: 

  (6) ( ) ( ) ( ){ , / , , 0t x y x y tφΓ = }=



corresponds to the solution of the initial boundary value problem defined parametrically in 

Equation (3). This result is illustrated in Figure 2.  

 

 

Figure 2: Correspondence between a parametric and implicit level-set formulation of the 

deformation of a contour with a speed term oriented along the normal direction. 

In their pioneer paper, Osher and Sethian focused on motion under mean curvature flow where 

the speed term is expressed as: 

 V div φ
φ

⎛ ⎞∇ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎟⎜ ∇⎝ ⎠
. (7) 

Since its introduction, the concept of deformable models for image segmentation defined in a 

level set framework has motivated the development of several families of method that include: 

geometric active contours based on mean curvature flow, gradient-based implicit active contours 

and geodesic active contours.  

B. Geometric Active Contours 

In their work introducing geometric active contours, Caselles et al. [12] proposed the following 

functional to segment a given image I: 
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where  and G is a Gaussian convolution filter of standard deviation σ . The idea defining 

geometric deformable models is to modify the initial mean curvature flow of Equation (7) by 

adding a constant inflation force term ν  and multiplying the speed by a term inversely 

proportional to the smooth gradient of the image. In this context the model is forced to inflate on 

smooth areas and to stop at high-gradient locations as the speed decreases towards zero. 

0ν ≥ σ

C. Gradient-Based Level Set Active Contours 

In their initial work on applications of the level set framework for segmentation of medical 

images, Malladi, Sethian and Vemuri [8] presented a gradient-based speed function for the 

general Hamilton-Jacobi type equation of motion in Equation (5).  

Their general framework decomposed the speed term into two components: 

   , (10) a GV V V= +

where  is an advection term, independent of the geometry of the front and is a remainder 

term that depends on the front geometry.  

aV GV

The authors studied the design of the speed term to stop the front propagation at high-gradient 

locations depending on the value of .  GV

In the first case, for  they proposed the following speed term: 0GV =
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where ( )1 2,M M  are the maximum and minimum values of the smooth gradient image 

*G Iο∇ .  

In the case where , the speed term needs to be multiplied by a gradient-based term to stop 

the front evolution, as follows: 

0GV ≠

 (1
1 * a GV

G Iσ

⎛ ⎞⎟⎜ ⎟= ⎜ × +⎟⎜ ⎟⎟⎜ + ∇⎝ ⎠
)V V . (12) 

 Numerical schemes for approximation of spatial derivatives with theses speed terms must respect 

the appropriate entropy condition for propagating fronts as discussed in detailed in [13] and [14]. 

This entropy condition ensures that the propagating front corresponds to the boundary of an 

expanding region. An analogy invoked by Sethian to illustrates the entropy principle is to 

consider the moving front as a source for a burning flame and expand the flame so ensuring that 

once a point in the domain is ignited, it stays burnt. The entropy principle puts some constraints 

in the choice of particular numerical schemes for temporal and spatial derivatives of the level set 

function. In their work, Malladi et al. [8] used a forward difference in time, upwind scheme for 

the constant inflation term and central differences for the remainder term.  

A second issue with this framework arises from the fact the image-based speed terms are only 

defined on the zero-level of the moving front, as it was designed to stop the evolution of this level 

at high-gradient locations. On the other hand the energy functional is defined over the entire 

domain and the speed term must have a consistent definition over all values of the level set 

function. This is done by extending the speed term from its values defined only on the level zero. 

There are several methods available to perform the extension. One of the most popular methods 

assigns the values of the closest point on the level zero to a given point of the domain.     



 

Figure 3: Illustration of extension for gradient-based speed terms.  (a) Region of interest from a chest 

MRI scan with a level set curve initialized inside the spine. (b) Gradient map of the MRI image with 

prior smoothing with a Gaussian filter. (c) Multiplying term for speed function, proportional to the 

inverse edge map from (b). (d) Extension of the speed term in (c) from values under the zero level 

contour.     

D. Geodesic Active Contours 

Geodesic active contours were introduced simultaneously by Kichenassamy and al. [15] and 

Caselles et al. [16] as a segmentation framework, derived from energy-based snakes active 

contours, performing contour extraction via the computation of geodesics, i.e. minimal distance 

curves in a Riemannian space derived from the image. Given an image I and for a given 

differentiable curve ( ) [, 0,C p p ∈ ]1  they define the following energy: 
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where is a positive decreasing function. Segmentation is achieved via minimization of this 

energy functional equivalent to the computation of geodesics in a Riemannian space according to 

a metric that weights the Euclidian length of the curve with the term 

g

( )( )( )g I C p∇ .  

Minimization of the functional is performed via derivation of the Euler-Lagrange system: 

 ( ) ( )( ).C g I N g I N N
t

κ∂ = ∇ − ∇ ∇
∂

, (14) 

where is the Euclidian curvature of the curve C and κ N  is the unit normal vector to the curve. 

Implementation with a level set framework is performed by embedding the curve  into a level 

set function φ . Using the following property on the curvature term: 

C

 div φκ
φ
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, (15) 

and the following equivalence of relationships between a curve C and its associated level set 

function φ : 
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the level set formulation is expressed as: 

  

 

. (17) 



To improve convergence speed and allow the detection of non-convex objects, the authors also 

introduced a modification of the initial formulation with the introduction of a constant inflation 

term ( )g Iν ∇ ∇φ  leading to the following functional: 
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Applications of the geodesic deformable model to medical imaging have been tested by both 

groups of pioneering authors. Yezzi et al. tested their geodesic deformable model in [17] on 2D 

images for cardiac MRI, breast ultrasound with a cyst and bone CT. No clinical validation was 

performed. Caselles, with Malladi et al. in [18] compared 2D geometric and 3D geodesic 

deformable models with applications on 3D CT of human thighs and 3D cardiac MRI data sets. 

Measurement of soft tissue and ventricular cavity volumes are reported but no clinical validation 

was performed. A recent review of the use of geodesic deformable models for medical image 

analysis is provided in [19] with comparison of performance between geometric and parametric 

deformable models.  

E. Tuning Level Set Speed Functions for Segmentation 

The main problem of boundary-based level set segmentation methods is related to contour 

leakage at locations of weak or missing boundary data information. An illustration of the 

phenomenon is provided in Figure 4 for segmentation of a high-resolution abdominal MRI slice. 



 

Figure 4: Leakage of level set deformable model at location of weak edges with gradient-based speed 

terms. (a) T2-weighted abdominal MRI with region of interest selected to contain sub-cutaneous fat. 

(b) Edge map derived from gradient computation to define speed term. (c) Leakage of front outside 

the fat compartment at two locations due to interstices with poor edge contrast.  The level zero curve 

used to initialize the segmentation is displayed with a thick line.  

Several efforts have been performed to add stopping criteria on the entire front [20, 21] and local 

pixel freezing rules [21], or combine gradient with region information [22, 23] to make the 

segmentation process more robust to poor edge definition. When dealing with weak boundaries 

the most radical solution to leaking problems is to remove the expansion term at the cost of 

requiring an initialization close to the final solution [24]. An alternative to this approach was 

proposed by Jin et al. [25] initially keeping the expansion term for pushing the model and turning 

it off as it approaches the object boundary. Detection of the boundary location was performed 

using a homogeneity map derived from scale-based fuzzy connectivity [26]. A more recent effort 

to address the problem of segmentation of an object with missing boundaries was  presented by 

Sarti, Malladi and Sethian in [27] introducing a new geometric model for subjective surfaces. 

Starting from a reference point inside the object to segment, the ‘point of view’, a geometric 



deformable model is evolved with mean curvature flow and image-derived speed terms until a 

piecewise constant solution is reached. This piecewise constant solution is the subjective surface 

defined by the segmentation process that is flat inside the object and has boundaries defined by 

geodesic curves. The authors also introduced the notion of “modal” contours which are contours 

that are perceived in the visual context and “amodal” contours which are associated with partially 

occluded objects. Segmentation of amodal contours can be performed with their subjective 

surface framework through iterations of edge-map computation and contour extraction. The 

authors produced very nice illustrations of the performance of their subjective surface 

segmentation on three-dimensional ultrasound data with a fetal echogram, recovering the shape of 

the fetus.  

All the level set segmentation methods presented above are based on image gradient intensity 

making them prone to leaking problems in areas with low contrast. A second problem related to 

the use of the image gradient as the only image-derived speed term is that it makes the 

segmentation process very sensitive to the initial position of the level set function as the model is 

prone to converge to false edges that correspond to local minima of the functional. Medical 

images typically suffer from insufficient and spurious edges inherent to physics of acquisition and 

machine noise from different modalities.  

Two approaches can be followed to address these limitations. The first approach is to fuse 

regularizer terms in the speed function as reviewed in [9]. A second approach is to reformulate 

the problem in terms of region-based segmentation methods derived from the Mumford-Shah 

functional implemented in a level set framework. We give an overview of these two families of 

methods in the next section.     

F. Level Set Speed Functions with Regularizers 

Suri et al. review in [9] recent works on the fusion of classical geometric and geodesic 

deformable models speed terms with regularizers, i.e. regional statistics information from the 



image. Regularization of the level set speed term is desirable to add prior information on the 

object to segment and prevent segmentation errors when using only gradient-based information in 

the definition of the speed. Four main types of regularizers were identified by the authors of the 

review:  

(1) Clustering-based regularizers. 

(2) Bayesian-based regularizers. 

(3) Shape-based regularizers. 

(4) Coupling-surfaces regularizers. 

We give in the next cession a brief overview of each method. 

(1) Clustering-Based Regularizers: Suri proposed in [28] the following energy functional for 

level set segmentation: 

 ( )p extV V
t
φ εκ φ φ∂ = + ∇ − ∇
∂

 (19) 

where  is a regional force term expressed as a combination of the inside and outside regional 

area of the propagating curve. This term is proportional to a region indicator taking value between 

0 and 1, derived from a fuzzy membership measure as described in [29].  

pV

(2) Bayesian-Based Regularizers: Recent work from Baillard et al. [30] proposed an approach 

similar to the previous one where the level set energy functional expressed as: 

 ( )( )0g I V
t
φ κ∂ = ∇ + ∇
∂

φ  (20) 

uses a modified propagation term  as a local force term. This term was derived from the 

probability density functions inside and outside the structure to segment. The authors also 

modified the data consistency term 

0V

( )g I∇  as expressed in Equation (9) using a transitional 

probability from going inside to outside the object to be segmented. 



(3) Shape-Based Regularizers: Leventon et al. [31] introduced shape-based regularizers where 

curvature profiles act as boundary regularization terms more specific to the shape to extract than 

standard curvature terms. A shape model is built from a set of segmented exemplars using  

principle component analysis applied to the signed-distance level set functions derived from the 

training shapes. The principal modes of variation around a mean shape are computed. Projection 

coefficients of a shape on the identified principal vectors are referred to as shape parameters. 

Rigid transformation parameters aligning the evolving curve and the shape model are referred to 

as pose parameters. To be able to include a global shape constraint in the level set speed term, 

shape and pose parameters of the final curve ( )tφ* are estimated using maximum a posteriori 

estimation. The new functional is derived with a geodesic formulation as in Equation (18) with 

solution for the evolving surface expressed as: 

 ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )*
1 21 .t t g I c t g I t t tφ φ λ κ φ φ λ φ φ+ = + ∇ + ∇ +∇ ∇ ∇ + − , (21) 

where are two parameters that balance the influence of the gradient-curvature term and 

the shape-model term. In more recent work, Leventon at al. [32] introduced further refinements of 

their method by introducing prior intensity and curvature models using statistical image-surface 

relationships in the regularizer terms. Limited clinical validation have been reported using this 

method but some illustrations on various applications including segmentation of the femur bone, 

the corpus callosum and vertebral bodies of the spine showed efficient and robust performance of 

the method. 

( 1 2,λ λ )

 (4) Coupling-Surfaces Regularizers: Segmentation of embedded organs such as the cortical 

gray matter in the brain have motivated the introduction of a level set segmentation framework to 

perform simultaneous segmentation of the inner and outer organ surfaces with coupled level set 

functions. Such method was proposed by Zeng et al. in [33]. In this framework, segmentation is 

performed with the following system of equations: 
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where the speed terms ( are functions of the surface normal direction (e.g. curvature of 

the surface), image-derived information and the distance between the two surfaces. When this 

distance is within the desired range, the two surfaces propagate according to the first two terms of 

the speed term. When the distance is out of the desired range, the speed term based on the 

distance controls the deformation as to correct for the surface positions.   

),in outV V

When defining the initial level set function as the signed distance function to its level zero, and 

ensuring that the distance function is preserved during the deformation process of the front 

through reinitialization, the distance of any point on the inner surface to the outer surface is 

directly read as the value of the outer level set function and vice versa.   

Defining the speed terms as: 

  (23) 
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with ( ),in outF F  speed terms derived from image and curvature properties and  a smooth 

approximating the windowing step function defined for a range of distance [  that is  equal 

to one inside this interval and 0 outside.    

( )h

]

)
)
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Zeng et al. [33] applied this framework for the segmentation of brain cortical gray matter (GM) 

surfaces. In this application, the speed terms were defined as: 

  (24) 
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φ ε
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− +
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where I  is the intensity of the MRI, inI is a threshold value corresponding to the white matter 

and outI  a threshold value corresponding to the gray matter, ε is the desired thickness of the gray 



matter layer, ( ),S S− +  are two sigmoid functions respectively decreasing and increasing with 

bounded value between [ ]1,1− . If the curve evolution is implemented with Equation (5), the 

magnitude of the gradients ( ,in outφ φ∇ ∇ )  will increase and the estimation of the distance 

between the zero-levels of the two functions will be overestimated, leading ( ),in outφ φ to get 

closer as they evolve and eventually collide until the level set functions are reinitialized. Results 

are illustrated on three regions of interest from three MRI slices and show very interesting results 

but no quantitative evaluation of the accuracy of the method was performed. 

G. Reconciling Level Set and Distance Function 

In a recent paper [34], Gomes and Faugeras introduced a reformulation of the Hamilton-Jacobi 

equation of Equation (5) underlying the level set initial formulation from Osher and Sethian [7] to 

eliminate problems related to reinitialization of the distance function and the need to extend the 

velocity field away from the level zero.  

The fact that the solution to Hamilton-Jacobi equations of the form in Equation (5) are not 

distance functions has been demonstrated formally in [35]. The authors is [34] provide two 

simple examples illustrating this result. There are both theoretical and practical reasons pointed 

out by the authors to motivate the preservation of the signed distance function during the 

segmentation process. Theoretically, the signed distance function gives a unique equivalence to 

the implicit description of the moving front. From a practical point of view, the use of a signed 

distance function enables to directly extract from the level set function geometrical properties of 

the front and guarantees bounded values of the level set function gradient, ensuring numerical 

stability of the segmentation iterative process.  

To derive the new dynamic equation, the authors initialize the level set function ( )0 ,0xφ φ=  



at t=0 as the signed distance function from the initial front. The goal is to redefine a speed 

function F such that F
t
φ∂ =
∂

 which (1) preserves φ  as the signed distance function from the 

level zero, and (2) ensures that the level zero of φ  evolves as in Equation (2). These constraints 

are expressed mathematically as: 
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 (25) 

where  denotes the restriction of  to the zero-level of . The authors derived the 

following dynamic equation as the solution to this system: 

/ 0F φ= F φ

 (V x
t
φ φ φ∂ = − ∇
∂

)  (26) 

for any point , which is not a Hamilton-Jacobi equation.  3x ∈

Implementation of the equation is proposed with a narrow-band framework, shock-detecting 

gradient computation and as described in [14].  

The authors provide a very nice application for segmentation of cortical gray matter surfaces from 

MRIs derived from the initial work of Zeng et al. [33]. With this method, if the curve evolution in 

Equation (24) is implemented with model in Equation (5), the magnitude of the gradients 

( ,in outφ φ∇ ∇ )  will increase and the estimation of the distance between the zero-levels of the 

two functions will be overestimated, leading ( ),in outφ φ to get closer as they evolve and eventually 

collide until the level set functions are reinitialized. Results are illustrated on three regions of 

interest from three MRI slices and show very interesting results but no quantitative evaluation of 

the accuracy of the method was performed. 



H. Region-Based Level Set Active Contours  

Region-based active contour were derived from the Mumford-Shah segmentation framework 

initially proposed in [36]. In their initial work, Mumford and Shah defined a new segmentation 

framework performing segmentation of a given image I  into a set of contours  and a smooth 

approximation of the image via minimization of the following framework: 

S

f

 ( ) ( ) ( )2 1

\
, n

S
E S f f I dx f dx H Sα β −

Ω Ω
= − + ∇ +∫ ∫ , (27) 

where ( )1nH S− is the (n-1) dimensional Hausdorff measure, and ( ),α β  are positive real 

parameters. In this functional, the first term ensures that  is a good approximation of the 

original image 

f

I , the second term ensures that  is smooth and the last term minimizes the 

length of the set of contours of the segmentation.  This type of region-based segmentation method 

relies on the homogeneity of the object to segment. This assumption is often violated with 

medical images due to motion of the organ, presence of corrupting machine noise or acquisition 

artifacts that introduce flat field inhomogeneities.   

f

 

Based on the Mumford-Shah segmentation framework, Chan and Vese introduced in a series of 

papers a new type of active contour models without gradient information [37-41]. In the simplest 

case, assume that an image I defined on Ω  is composed of two regions (e.g. an object and a 

background) with homogeneous intensities around values  and . Given a curve C that defines 

the boundary of a region inside the image I, they introduce the following homogeneity-based 

functional: 

0c 1c

 ( ) 2
0

insideC outsideC

2
1E C I C d I C= − Ω+ −∫ ∫ dΩ , (28) 

where ( )0 1,C C  are the average intensity values of I  inside and outside the curve C.  With this 

functional the boundary between the two regions is defined by its minimum state. They further 



combined this homogeneity-based fitting term with regularizing terms that put constraints on the 

length and the area of the curve with the following functional: 

 ( ) 2 2
0 1 0 0 1, , 1 ( ) ( )

insideC outsideC

E C C C I C d I C d length C Area Cλ λ µ µ= − Ω+ − Ω+ +∫ ∫ .(29) 

Details for the mathematical definitions of the length and the area of the boundary curve C  can 

be found in [40]. 

In a level-set framework implementation, the functional (29) is expressed as: 

  
( ) ( ) ( )( )

( ) ( )

2 2
0 1 0 0 1 1, , 1E C C I C H d I C H d

d H d

φ λ φ λ φ

µ δ φ φ ν φ

= − Ω+ − − Ω+

∇ Ω+ Ω

∫ ∫
∫ ∫

 (30) 

 

Advantages of this method include the possibility of segmenting objects with discontinuous edges 

and robustness of the method to arbitrary initialization, avoiding the problem of local minima at 

spurious edge locations or leakage of the model at missing edge locations. The initial work from 

these authors have generated many applicative research works for segmentation of medical 

images, starting with works from the authors themselves in [37] with illustration of their method 

on brain MRI. three-dimensional ultrasound  

 

A simultaneous and parallel effort to the work of Chan and Vese, from Tsai, Yezzi et al. [42] 

proposed a reformulation of the Mumford-Shah functional from a curve evolution perspective 

using a gradient flow formulation and a level set framework implementation. Recent works 

applying this segmentation method to three-dimensional cardiac ultrasound include Angelini et 

al. [43], and Lin et al. [44].   

 

 We note two powerful extensions of this region-based implicit deformable model for 

applications to medical images: 



(1) This method is easily extended to segmentation of vectorial images with integration of the 

multiple channels information in the homogeneity measure. This property, described in details in 

[45], has potential applications in segmentation of multi-protocols MRI brain data sets or any co-

registered multi-modality data sets where combination of spatial information can assist the 

definition of a particular organ contours.   

(2) This method is extensible to multi-phases segmentation using a system of n coupled dynamic 

PDEs with { level set functions defining phases in the segmented data. Extensive 

description of the multi-phase method is provided in [41]. Potential applications of the multi-

phase formulation include again segmentation of brain MRIs into multiple tissue types.  An 

illustration of this application is provided in   

}1,..., nφ φ 2n

 

Figure 5: Multi-phase segmentation of brain MRI with region-based implicit deformable model. (a) 

Diagram illustrating the definition of two phases with one level set function. (b) Diagram illustrating 



the definition of 4 phases with 2 level set functions. (c) Original axial slice from 3D brain MRI data 

set with initialization of the two level set functions. (d) Results of implicit deformable model for from 

each phase: WM (1rst line), GM (2nd line), CSF (3rd line) and background (4th line). (e) Manually 

labeled data. (f) TP/FP error maps. 

B. Joint Image Registration and Segmentation 

A. Motivations 

Combining registration and segmentation has been motivated by the need to incorporate prior 

information to guide and constrain the segmentation process. The quality of the images acquired 

by the various medical screening modalities is often poor due to the presence of multiple noise 

sources in the acquisition system, degradation of data content during reconstruction processes 

(e.g. tomographic reconstruction with Radon transform), motion and respiratory artifacts 

introduced by motion of the patient, and inherent limitations of system acquisition accuracy. The 

combination of these factors degrade the signal to noise ratio of the data, limit the spatial 

resolution, introduce inhomogeneities in the tissue appearance across volumetric slices, and 

deteriorate boundary definitions between specific organs and their surrounding tissues. These 

issues are encountered with other medical imaging modalities such as ultrasound, MRI, PET and 

SPECT and CT.  

In the context of brain MRI segmentation for example, incorporation of atlas information to assist 

the segmentation task of a particular data set has been a very successful and popular approach for 

many years as reviewed in [46]. For organs with very characteristics shapes such as cardiac 

ventricles, the corpus callosum in the brain, or cartilages of the knee, shape priors (including 

active shape models, active appearance models and statistical shape descriptors) have been used 

with great success in the context of constrained segmentation [47-50].  

 



The use of an atlas (or a shape model) to assist the segmentation process requires that the target 

image data and the atlas (or the model) are being aligned via either pre-registration or via a new 

concept of combined registration and segmentation. When considering registration as a pre-

processing step, common atlas-based segmentation methods use warping of the atlas to the target 

data via minimization of mean square errors of image pair intensities at control points. 

Alternative popular techniques use robust estimators, optimization of correlation ratios, optical 

flow, fluid-flow non-rigid deformation models and mutual information methods to construct 

statistical deformation models. A extensive review of registration methods applied to medical 

imaging can be found in [51]. Among recent work in this area we mention here the method of 

Vemuri et al. [52] who derived a novel curve evolution approach in a level set framework for 

image intensity morphing and non-linear associated PDE for the corresponding coordinate 

registration between an atlas and an image. Applications of the method included a clinical study 

on segmentation of the corpus callosum via morphing of a shape model defined in the atlas space, 

after registration of the data with the proposed method.  

 

We focus in this chapter on methods that explicitly combine segmentation and registration in a 

variational framework. By combining registration and segmentation, one can recover the image 

region that corresponds to the organ of interest, given a model of this structure. Level set 

deformable models offer a very flexible framework to propagate a moving front with 

segmentation-driven constraints while registering the segmentation result (i.e. the level zero 

curve) to a given model. Distance transforms have bee successfully applied in the past to 

registration problems [53-55]. In a level set framework, Paragios has published several papers 

recently focusing on matching geometric shapes in a variational framework for global as well as 

local registration [56-58]. The first attempt at combining segmentation and registration in a single 

geometric deformable model framework might be attributed to Yezzi et al. in [59]. Their key 

observation is that multiple images may be segmented by evolving a single contour as well as the 



mappings of that contour into each image. In the context of level set framework, multiple recent 

works can be referenced that incorporate shape priors in the segmentation process as reviewed in 

[60]. The main trend of the reported efforts uses a shape model and incorporates a constraint in 

the energy of the geometric deformable model that forces the evolving contour to fit  to the shape 

model [56, 61, 62]. In an effort to derive a rigorous and complete scheme, Paragios and Rousson 

[56] focused on the integration of a shape model, defined directly in a level set space, to derive a 

shape prior in an energetic form and integrate it with a data-driven variational segmentation 

framework. Applications of their combined registration and segmentation framework focused on 

the segmentation of physically corrupted of incomplete natural images.  

In this chapter we selected to focus on recent works applied to segmentation and registration of 

medical images as this application typically involves tuning of a general framework to the 

specificity of the task at hand. We describe in details two different approaches in the next 

sections. 

B. Shape Priors into a Variational Segmentation 

Framework 

 Several applications in medical imaging can benefit from the introduction of shape priors in the 

segmentation process using deformable models [49, 63-65]. Only few works on segmentation of 

medical imaging with level set framework attempted to perform simultaneous registration and 

segmentation into a single energy functional and we review three of them in this section. 

 

We first review the work of Chen et al. [60, 66, 67] that proposes a Mumford-Shah type energy 

functional plus a parameterized registration term embedded in a level set formulation for 

segmentation of brain MRI. Their approach consists of constraining the segmentation process 

with a level set framework by incorporating an explicit registration term between the detected 



shape and a prior shape model. They proposed two approaches either with a geodesic, gradient-

based active contour or with a Mumford-Shah region-based functional.  

The geodesic active contour minimizes the following functional: 
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with  a differentiable curve parameterized with  defined on image I, g a positive 

decreasing function, 

( )C p [ ]( 0,1p ∈ )

( ), ,s R T  are rigid transformation parameters for scale, rotation and 

translation and  is the distance between a point  on the curve C 

and the curve  representing the shape prior for the segmentation task. A level set formulation 

is derived by embedding the curve C into a level set function φ  positive inside the curve. Let 

introduce the Heaviside function and the Dirac measure 
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( ) ( )'z H zδ =  (with derivative in the distribution sense), the energy functional in Equation (31) 

is reformulated as: 

 ( ) ( ) ( ) ( )2, , ,
2

E R T g I d Rx Tλφ µ δ φ µ φ
Ω

⎛ ⎞⎟⎜= ∇ + + ∇⎟⎜ ⎟⎜⎝ ⎠∫ . (32) 

Four evolution equations are derived for the Euler-Lagrange system for temporal derivatives of 

the level set function φ  and the rigid registration parameters ( ), ,R Tµ  with detailed numerical 

implementation described in [68]. In this paper the authors also report on experiments performed 

with this method to segment the endocardial borders of the left ventricle on an ultrasound image 

and segment the corpus callosum on mis-aligned functional MRI images in a time series.    

In [60], the authors proposed a second functional for combining registration and segmentation in 

an implicit deformable model framework where the image gradient term is replaced by an 

homogeneity measure. Their approach is derived from the Mumford-Shah functional [36] in a 



similar fashion as described in the previous section of region-based level set methods. They 

proposed the following functional: 
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with ( ),S S+ − smooth approximations of the image I on respectively  and 

 and 

( ){ }/x xφ > 0

( ){ }/ 0x xφ < ( ),α β  a set of positive parameters. 

In a similar effort to combine registration and segmentation Paragios et al. [69] proposed a level-

set approach for knowledge-based registration and segmentation of the left ventricle. In their 

method a level set framework was used to perform simultaneous segmentation of the epicardial 

and the endocardial surfaces of the myocardium muscle via coupling two level set functions 

( )0 1,φ φ . The proposed functional is generalized as: 
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This functional integrates four components: 

(1)  is a constraint on the regularity of the contour via minimization of its length. GE

(2)  is an intensity-based region component. This component identifies the partition of the 

image into regions that maximizes the posterior segmentation probability given a priori 

gray level histogram distribution for the endocardium, the epicardium and the 

background;  

RE

(3)  is an anatomy-driven constraint. It preserves the distance between the myocardium 

border surfaces within an admissible range of values.  

AE

(4)  is a shape-driven global consistency constraint. This knowledge-based term performs 

a registration of the evolving contour to a prior shape model (

SE

0 1,A A  via rigid 



deformation. The prior shape models were defined in a pixel-wise stochastic level set 

representation [56].   

The authors reported some experiments on segmentation of the endocardium from 2D cardiac 

MRI images. These experiments revealed that the anatomical constraint played a minor role in 

controlling the deformation of the segmenting surface and that the regularity term was 

overwritten by the shape prior term. Final segmentation results showed a reliable performance of 

the method but no quantitative validation was performed. It was pointed out by the authors that 

the integration of the different modules was difficult and that future refinements of the approach 

were considered such as the use of a single level set function for segmentation of the 

myocardium, and tracking contours in time by replacing the prior shape- model with the 

segmentation from the previous frame in the context of consecutive time frames segmentation 

over a cardiac cycle. 

In two related papers, Paragios [63, 70] proposed modified versions of the method.  

In [70] Paragios had proposed a version of the method where the regularity term consisted of a 

boundary component derived from gradient vector flow [71] to detect cardiac boundaries and 

curvature constraints on the segmented shape. No shape-driven constraint was proposed in this 

early work. 

In a posterior work [63] Paragios modified the method for segmentation of the endocardial 

surface on ultrasound. The model was first modified to replace the regularity term  by a 

boundary constraint  derived from a geodesic active contour formulation [16]. The model was 

further modified to integrate temporal tracking of the segmented contours between consecutive 

time frames. A time-tracking constraint, in the form of a bounded error function using a robust 

norm  was introduced as: 

RE

BE

ρ

 
( ) ( ) ( )( )

( ) ( )( )

1 1

1 1 1

, ,t t t t t
T

t t t

E T H I I T d

H I T I

φ φ φ ρ

φ ρ

+ +

+ − +

= − Ω+

− Ωd

∫
∫

 (35) 



where H  refers to the Heaviside function (equal to 1 for negative values and 0 on positive 

values) and T is an optimal transformation to track the targeted structure of interest between to 

consecutive time-frames images tI  and 1tI +  satisfying the visual consistency constraint:  

  (36) ( ) ( ) ( ) ( )( )1, , , , / ,t t tI x y I x y x y H x yφ+≈ ∀ 0≥

 with φ  defined with negative values inside the object to segment (i.e. the ventricle blood cavity 

in this case).  

This work uses a shape-model defined in a level set framework. Several interesting recent efforts 

have focused on the use of level set framework for shape modeling and registration towards 

model-based shape-driven object extraction as reviewed in [58].  

C. Registering Contours for Multi-Modalities Segmentation  

In a recent paper Yezzi et al. [59] introduced a new variational deformable model framework that 

interleaves segmentation and feature-based registration for combined segmentation of a single 

organ from multiple screening modalities (e.g. skin surface from head CT and MRI).    

They defined their problem as follows: They want to find closed surfaces and  to segment an 

object in images 

S Ŝ

I and Î  so that the curves, segmenting a same organ, are related through a 

geometrical mapping: ( )Ŝ g S= . The authors used rigid registration for the mapping (i.e. 

combination of rotation and translation) and defined the following coupled functionals for the 

surface and the registration parameters  : S [ ]1 2, ,..., ng g g g=

 

( ) ( )( )( )

( )( ) ( )

ˆ

ˆ ˆ,i

S
i

S f x f g x N N
t

g xdg f g x N dA
dt g

κ∂ = + −
∂

∂
=

∂∫
 (37) 



where and denote the mean curvature and area element of the surface , (  are the 

unit normals of 

κ dA S )ˆ,N N

( )ˆ,S S . The registration vector is modelized as: 

  (38) ( )g x Rx T= +

with X Y ZR R R R=  is the combination of rotations around the three orthogonal axis ( ) 

defining the 3D domain, and  is the translation vector in each axis direction. 
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The function ( )f x is defined in a homogeneity-based framework [40] as: 

 ( ) ( ) ( )in outf x f x f x= − . (39) 

The functions inf  and outf  are defined as: 
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where and  denote the mean values of the image u v I  inside and outside the surface . 

Analogous definitions of 

S

f̂ with statistics on Î are also derived. 

The authors reported three experiments on simultaneous segmentation and registration of 

MRI/CT images of the head and the spine both in 2D and 3D.  Validation via visual inspection 

showed accurate contour extraction for these limited experiments. 

C. Review of Clinical Validations 

In this section we review in details several recent papers that apply level set segmentation and 

registration methods to medical images and provide a detailed validation of their method through 

a clinical study for qualitative and quantitative assessment of the accuracy of the method in 

assisting or performing a particular clinical diagnosis task. 



A. Important clinical segmentation problems 

We introduce in some details the two major applications in the domain of segmentation of clinical 

images: Segmentation of the brain and segmentation of the left ventricular cardiac cavity.  

1. Segmentation of Brain Images 

The two major modalities used for brain screening are MRI and SPECT/PET.   

 

Regarding MRI brain imaging, the paper in  [72] gives a very nice review of the potential 

applications of MRI in quantification of brain disease. The brain cortex is a highly convoluted 

layer of gray matter that lies between the white matter and the cerebrospinal fluid (CSF). Clinical 

applications require reconstruction of the cerebral cortex from MRI data for:  

(5) brain visualization 

(6) analysis of brain geometry 

(7) registration with other data sets (multimodality or repetitive scans of a single patient) 

(8) surgical planning 

(9) cortex mapping 

The interface between WM and GM is clearly visible on T1-weighted MRIs. Difficulties of MRI 

segmentation arise from imaging noise, inhomogeneities, partial volume effects and the highly 

convoluted geometry of the cortex. 

Regarding quantitative measurements of the brain anatomy [33] using MRI, whole brain volume, 

cortical gray matter volume, white matter volume, cortical surface area, cortical shape 

characteristics and cortical thickness map are among the most interesting to study brain anatomy 

and function. Such measurements can typically assist in characterizing, predicting or assessing 

neurological and psychiatric disorders via correlation to abnormality in the measurements.  These 

measurements are all easily derived from the final level set function in a distance-preserving 



framework (typically ensured by reinitialization of the level set function during the iterative 

deformation process).  

 

Two sources of MRI brain data for testing segmentation algorithms are available as open source 

databases on the web: 

• The Internet Brain Segmentation Repository (IBSR) available at: 

http://www.cma.mgh.harvard.edu/ibsr/. This repository provides manually-guided expert 

segmentation results along with magnetic resonance brain image data. Its purpose is to 

encourage the evaluation and development of segmentation methods. The IBSR is 

supported by the  National Institute of Neurological Disorders and Stroke at the NIH part 

of a grant that funds research in MR brain segmentation by researchers at Boston 

University, Draper Laboratory, Northeastern University, Massachusetts Institute of 

Technology, and Massachusetts General Hospital / Harvard Medical School. The IBSR is 

a World Wide Web resource providing access to magnetic resonance brain image data 

and segmentation results contributed and utilized by researchers from all over the world. 

Its purpose is to encourage the development and evaluation of segmentation methods by 

providing raw test and image data, human expert segmentation results, and methods for 

comparing segmentation results.  

• The BrainWeb: Simulated Brain Database (SBD) from the McConnell Brain Imaging 

Centre Montréal Neurological Institute, at McGill University 

(http://www.bic.mni.mcgill.ca/brainweb/). This database contains a set of realistic MRI 

data volumes produced by an MRI simulator [73-76]. These data can be used by the 

neuro-imaging community to evaluate the performance of various image analysis 

methods in a setting where the truth is known. Currently, the SBD contains simulated 

brain MRI data based on two anatomical models: normal and multiple sclerosis (MS). 

Full 3-dimensional data volumes have been simulated using three sequences (T1-, T2-, 

http://www.cma.mgh.harvard.edu/ibsr/
http://www.nih.gov/
http://www.bic.mni.mcgill.ca/brainweb/
http://www.bic.mni.mcgill.ca/brainweb/mri_sim.html
http://www.bic.mni.mcgill.ca/brainweb/anatomic_normal.html
http://www.bic.mni.mcgill.ca/brainweb/anatomic_ms.html


and proton-density- (PD-) weighted) and a variety of slice thicknesses, noise levels, and 

levels of intensity non-uniformity. These data are available for viewing in three 

orthogonal views (transversal, sagittal, and coronal), and for downloading. Customization 

of the MRI simulations is also available allowing the user to run his own custom MRI 

simulation with any of several pulse sequences and source digital phantoms, and arbitrary 

values of the acquisition artifacts.  

Regarding PET imaging, this modality uses small amounts of tracer drugs chemically attached to 

glucose or other compounds injected to the patient. As the tracer travels through the body, it emits 

signals and eventually collects in the organs targeted for examination. If an area in an organ is 

cancerous, the signals will be stronger than in the surrounding tissue. A scanner records these 

signals and transforms them into pictures of chemistry and function. 

PET modality is used for brain screening for: 

- diagnosis of Alzheimer's disease, 

- location of tumors and scar tissue in the brain, 

- location of seizures focus for patients with epilepsy, 

- accurate assessment of tumor sites in the brain for surgery planning. 

In practice, segmentation of PET brain data is difficult to perform in an automatic fashion 

because of the poor contrast and high noise level in the images. A standard procedure to 

delineate structures from PET brain images is to segment structures from the corresponding 

anatomical magnetic resonance images and then to superimpose them on the PET images. 

This method relies on an accurate registration between the two imaging modalities, handling 

the incongruity of structures and functions. Thresholding methods can provide a direct way to 

segment PET images with locally uniform radioactivity concentration and consistent 

structures. For more noisy data advanced methods such as deformable models have been 



studied for segmentation of cortical structure [77]. These methods must adapt to changes in 

individual radioactivity concentrations.  

2. Segmentation of Cardiac Images 

A reliable noninvasive imaging modality is essential for evaluating and monitoring patients with 

cardiac disease. Traditional screening techniques for quantitative assessment of cardiac function 

include the following modalities: 

• Multi-Gated Angiography (MUGA): This is a slow screening modality that requires the 

injection of a radiopharmaceutical agent by a clinician.  The purpose of MUGA screening 

is to examine the pumping function of the heart. After injection of a radioactive agent that 

labels red blood cells, a nuclear camera creates an image of the heart’s chambers by 

counting these cells over numerous cardiac cycles. The information obtained can quantify 

ejection fraction but not ventricular volumes. 

• Magnetic Resonance Imaging (MRI): Because of its complexity and even though MRI 

machines abound in the United States, cardiac MRI has largely been limited to university 

hospitals where there is a strong interest for research. This screening modality has proven 

very useful in evaluating patients’ cardiac anatomy prior to surgery, in locating and 

characterizing cardiac tumors and in identifying and treating cardiac abnormalities for 

children with complex congenital heart disease. These clinical situations are relatively 

rare and cardiac MRI has yet to become a commonly used tool in clinical medicine. 

• Computerized Tomography (CT): Multi-detector technology has made cardiac CT 

possible enabling angiography, perfusion and function studies. The main limitation of 

this screening modality remains the acquisition time with multi-row detectors, which may 

be solved with upcoming spiral CT, Electron Beam CT and Ultrafast CT technologies.  

• Single Photon Emission Computed Tomography (SPECT): Commonly referred to as 

myocardial perfusion imaging, this technique is used to visualize myocardial blood flow 



distribution using intravenous injection of a radionuclide detected by single crystal 

gamma camera rotating around the patient’s body. This modality can be used to assess 

ejection fraction and regional wall motion but cannot provide detailed views of 

anatomical structures. 

• Positive Emission Tomography (PET): Similarly to SPECT, this technique visualizes 

myocardial blood flow using intravenous injection of positron-emitting tracers detected 

by multiple rings of stationary detectors encircling the patient’s body to produce a series 

of multiple tomographic images encompassing the heart. Specific tracers have been 

developed for the evaluation and quantification of numerous physiological processes, 

including regional myocardial blood flow, metabolic processes, oxygen consumption, 

receptor activity, and membrane function. When comparing to SPECT, PET images have 

been shown to be more accurate in clinical studies but PET scanners remain costly and 

therefore less widely available than standard SPECT systems. 

• Two-dimensional Echocardiography (2DE): Two-dimensional echocardiography is the 

fastest, least expensive, and least invasive screening modality for imaging the heart. 

Because of the three-dimensional structure and deformation of the heart muscle during 

the cardiac cycle, analysis of irregularly shaped cardiac chambers or description of valve 

morphology using 2D images is inherently limited. A second existing problem with 2DE, 

constrained to planar views, is that highly trained clinicians are required to perform the 

studies. But, despite its limited image quality and its limitation to planar acquisition, 2DE 

is one of the most popular cardiac screening modalities, available at hospitals, medical 

centers and cardiologist’s offices. Critical information for assessment of cardiac 

pathology such as ventricular shape, wall deformation, valve motion, and blood flow (via 

Doppler acquisition mode) can be quickly assessed with this non-invasive, portable and 

relatively inexpensive screening modality.   



• Three-dimensional Echocardiography (3DUS): Three-dimensional ultrasound has been 

introduced in the late 1980s with off-line 3D medical ultrasound imaging systems. Many 

review articles have been published over the past decade, assessing the progresses and 

limitations of 3D ultrasound technology for clinical screening [78-81]. These articles 

reflect the diversity of 3D systems that were developed for both image acquisition and 

reconstruction. The evolution of 3D ultrasound acquisition systems can be divided into 

three generations:  

- Freehand scanning. With freehand probes, planar images are acquired at arbitrary 

spatial positions and orientation with a 2D transducer. A positioning device, attached 

to the transducer, tracks its location in space and time during the acquisition. A three 

dimensional volume can then be reconstructed by associating each acquired image 

with its 3D spatial position and integrating in 3D space. This method offers a great 

scanning flexibility and provides high quality images. The principal limitations of the 

method are related to the precision of the positioning device (either mechanic, 

acoustic or magnetic) and the experience of the clinician in positioning the device to 

acquire sufficient amount of information for an accurate 3D reconstruction. These 

issues are most critical when scanning small moving structures such as valves and 

myocardium wall defect in cardiac applications. 

- Mechanical scanning. With mechanical scanning, a 2D transducer is moved at 

regular intervals along a specified path, ensuring an accurate sampling of the volume 

to reconstruct with a probe whose position is controlled in space and time. The three 

most common scanning paradigms use linear, fan and rotational sweep. This 

technology provides a more accurate three-dimensional reconstruction of the 

anatomy than freehand scanning at the cost of a slower acquisition rate, and a smaller 

field of view. When screening the beating heart, gating is necessary for both 

modalities in order to acquire data corresponding to similar instants in the cardiac 



cycle, so that the anatomy is approximately the same, assuming a periodic movement, 

for each planar view.  

- Phased arrays. Real-time three-dimensional (RT3D) volumetric imaging is the only 

true three-dimensional ultrasound modality [82-87]. This technology, pioneered by 

Dr. Olaf Von Ramm and Dr. Stephen Smith at Duke University, is fundamentally 

different from the former generations of 3D systems as a volume is acquired with a 

2D array of pulse transmitter and receiver elements, enabling the cardiologist to view 

moving cardiac structures from any given plane in real-time [82, 87-91].  Electronic 

scanning controls the acquisition depth allowing real-time signal acquisition through 

a pyramidal shape volume. This existing technique is still limited by hardware 

component size and speed. The low spatial resolution and high noise level have 

prevented this technology from meeting its initial expectation and reaching its full 

potential. It remains, nevertheless, the only true 3D ultrasound modality that can 

enable accurate temporal visualization of cardiac deformation during a single cardiac 

cycle.  

In current clinical practice, cardiologists use anatomical images from CT, US and MRI modalities 

to quantify cardiac function through measurements of ventricular volumes at end diastole (ED) 

which corresponds to the end of the blood filling phase in the cardiac cycle, and end systole (ES) 

which corresponds to the end of the blood ejection phase, stroke volume (SV) which is equal to 

the difference of blood volumes and ED and ES and ejection fraction (EF) which is equal to SV 

over ED volume. These measurements are performed via simple visual inspection or manual 

tracing of 2D slices extracted from the 3D data. A second phase of analysis of the images aims at 

analyzing myocardium wall deformation and localization of abnormalities. Physiological images 

provided by MUGA, SPECT and PET/SPECT modalities aim at quantifying myocardium tissue 

blood perfusion for localization of ischemic tissue.  



All these diagnostic tasks require the intervention of an expert cardiologist familiar with the 

modality for quick visual inspection. A more detailed processing of the data always require 

segmentation of the myocardium tissue versus the blood pool and sometimes the outside tissues. 

Few automated segmentation algorithms, with minimal manual intervention, are available on 

clinical consoles to assist the segmentation task with a significant saving of time. Segmentation of 

cardiac images is still a very active research area and level set segmentation methods have proved 

in the recent years to offer a very flexible three-dimensional tool that can handle the volumetric 

and dynamic nature of the data.  

B. Free Software for Level set Segmentation 

1. Snake Automatic Partitioning (SNAP) 

This software was developed by the Medical Image Display and Analysis Group at the University 

of North Carolina and is available for download at midag.cs.unc.edu. SNAP is a segmentation 

tool for volumetric image data using 3D level set methods with either a region-probability 

deformable model or a gradient-based deformable model framework. Some interaction with 

parameter settings of the segmentation method and prior-filtering is available. Interactive 

visualization of the deformation process in provided.   

2. Insight Segmentation and Registration Toolkit (ITK) 

The National Library of Medicine Insight Segmentation and Registration Toolkit (ITK) is an 

open-source software system to support the Visible Human Project. The toolkit is available for 

free download at www.itk.org. Under active development, ITK employs leading-edge 

segmentation and registration algorithms in multiple dimensions. The Insight Toolkit was 

developed by six principal organizations, three commercial (Kitware, GE Corporate R&D, and 

Insightful) and three academic (UNC Chapel Hill, University of Utah, and University of 

http://www.nlm.nih.gov/research/visible/visible_human.html
http://www.kitware.com/
http://www.crd.ge.com/
http://www.insightful.com/
http://www.unc.edu/
http://www.utah.edu/
http://www.upenn.edu/


Pennsylvania). Additional team members include Harvard Brigham & Women's Hospital, 

University of Pittsburgh, and Columbia University. The funding for the project is from the 

National Library of Medicine at the National Institutes of Health. NLM in turn was supported by 

member institutions of NIH (see sponsors). Several level set segmentation methods are 

implemented in this toolkit including: fast marching methods, shape detection segmentation, 

geodesic active contours, threshold level set, canny-edge level set and Laplacian level set 

methods. 

C. Review of Applications to Clinical Studies 

1. Robust Adaptive Segmentation of 3D Medical Images 

with Level Sets 

This work was published by Baillard,  Barillot and Bouthemy in [30]. 

Method: The proposed method uses a 3D level set algorithm with the introduction of an adaptive 

adjustment of the time step and the external propagation force at each iteration. A region-based 

force is derived from intensity probability density functions over the data. Assumptions are made 

on the input data which is modeled as a mixture of distributions. Mixture of Gaussian 

distributions for MRI and Gaussian and Rayleigh distributions for ultrasound data are validated 

through two experiments. Each distribution defines a class through a parameter vector that 

contains the distribution parameters and the probability 

kc

kp  that a voxel belongs to class . The 

parameters vector is estimated from the data using the stochastic expectation-maximization 

(SEM) algorithm [92], which is a stochastic version of the EM algorithm that utilizes 

probabilistic learning stage. Advantages of the SEM over the EM algorithm include: (1) Only an 

over estimation of the number of classes is required, (2) it is less dependent on the initialization. 

kc

http://www.upenn.edu/
http://www.itk.org/HTML/Sponsors.htm


The stopping criterion for the deformation process is based on the stabilization of the average 

segmented volume size. 

Experiments: Experiments were performed on brain MRI volumes. The statistical model was 

initialized with 7 classes.  

1. A first experiment used simulated brain MRIs from the MNI group [93]. Brain MRI volumes 

of size (181×217×181) simulating WM, GM and CSF were generated under noiseless conditions 

and three different combinations of noise and inhomogeneities. The segmentation method was 

applied to extract together GM and WM volumes. Initialization was performed by defining a 

large cube of size (100×70×70) inside the data volume. Gaussian distribution parameters for WM 

+ GM were automatically estimated prior to segmentation. Quantitative validation was performed 

using overlapping measurements [94] between the result and the known ground truth on these 

phantom data sets. The measures included estimation of the number of true-positive (TP) true-

negative (TN), false-positive (FP) and false negative (FN) voxels and the definition of the 

following measures: 

 

( )
( )

( ) ( )

sensitivity TP TP FN

specificity TN FP TN

total performance TP TN TP FP TN FN

= +

= +

= + + + +

 (41) 

These measures are very helpful to assess the global performance of a segmentation method such 

as under-segmentation characterized by a low sensitivity of over-segmentation characterized by a 

low specificity. The total performance of the proposed algorithm stabilized around 98.3% under 

all noise conditions. The authors further compared their segmentation performance to 

morphological operators performance and reported an improvement of sensitivity performance 

with the level set method. 

2. A Second set of experiments with a database of 18 real brain MRIs of size (256×256×176) 

was performed.  Results reported a 94% success ratio of segmentation convergence (one case 

failed), requiring on average 1,000 iterations. Segmentation of individual tissue classes (WM, 



GM and CSF) required a coarse approximation of tissue segmentation for class definition and 

computation of a priori statistical models. 

Limitations: The proposed segmentation method has a performance limited by the fact that the 

SEM algorithm does not guarantee an optimal solution. In practice, an initial partitioning roughly 

representative of the inside and outside distributions of the organs to segment lead to a correct 

solution. This means that tissue classes need to be initialized with relatively accurate average 

intensity values. 

2. Topology Preserving Geometric Deformable Models for 

Brain Reconstruction.  

This research work was published by Han, Xu and Prince in [72]. 

Method: The authors proposed a 3D level set segmentation method with a speed term based on 

binary flow forces, mean curvature flow and gradient vector flow. The originality of the method 

was to focus on the topology of the evolving front and use the notion of simple points and update 

the front deformation only at their locations. Given a set of points defining a 3D surface, a point 

is simple if its addition or removal from the object does not change the topology of either the 

object or the background. The topology of an object is defined through its number of connected 

components, cavities and handles. The algorithm was implemented with a narrow-band update 

and 3D level set fast marching propagation scheme for computational efficiency. The final object 

surface, which corresponds to the zero-level of the level set function is extracted with a 

connectivity consistent marching cubes algorithm (CCMC) [95, 96]. This algorithm is a 

modification of the standard marching cubes algorithm where the resolution of ambiguous cubes 

depends on pre-defined digital connectivity rules. 

Experiments: The authors performed two sets of experiments on brain MRIs. 

1. A first experiment compared visual quality of segmented data with the topology preserving 

deformable model to a standard geometric deformable model and a parametric deformable model 



using the same initialization scheme. Results showed very similar looking surfaces for the three 

methods but close inspection revealed critical differences:  

- The parametric deformable model surface had self-intersection points, 

- The number of handles with the simple geometric deformable model was 40 versus 0 

for the two other methods (corresponding to the correct manifold). 

In this experiment the authors also provided an example from a brain MRI data set where part of 

the WM seemed to display a handle when viewed in 3D corresponding to an incorrect topology. 

This type of errors, mostly due to MRI noise, can only be corrected with a topology preserving 

segmentation method such as the proposed level set framework.  

2. A second set of experiments employed 21 T1-weighted MRI volumes with voxel size 

(0.9375×0.9375×1.5 mm) from the public database of the Baltimore study on aging [97]. 

Volumes were pre-processed to remove extra-cranial tissues, cerebellum and brain stem. The 

experiments were performed with digital connectivity defined as: 18-connectivity for the object 

(WM) and 6-connectivity for the background. The experiments focused on the extraction of 

central cortical surfaces. Prior to segmentation, the volumes were processed with fuzzy 

connectedness [98] for labeling  into memberships to different tissue types. The result of this 

labeling was used as an initial segmentation of the WM and used to fill the ventricles and the sub 

cortical structures (including the thalamus, hypothalamus, caudate nucleus and putamen). The 

filled WM volume was then binarized via thresholding of the fuzzy values at 0.5. This binary 

volume was further processed for topology correction with a multiscale graph-based algorithm 

[99]. The CCMC was then used to extract the WM surface of the volume. At this point, the WM 

surface was used as the initial level zero of the level set segmentation to extract three cortical 

surfaces: WM/GM surface, central cortical surface and pial (CM/CSF) surface.  

Segmentation accuracy was assessed through error measurements at 10 landmark points manually 

selected on major sulci and gyri on six MRI cases. Landmark error was measured as the 

minimum distance between the landmark points and the segmented surfaces. The overall average 



error was 0.87 mm (std 0.5 mm) outperforming a previous method from the same group based on 

a parametric deformable model that produced an average error of 1.22mm (std 1.01mm) [100]. 

Visual inspection of the segmented data did not reveal any self-intersection on the extracted 

surfaces. The algorithm computational time was about 40 minutes on a SGI O2 workstation for 

reconstruction of the three surfaces. This performance compares favorably to typical deformable 

model algorithms with arbitrary initialization as claimed by the authors. 

Limitations: The main limitation of this algorithm is the involvement of the pre-processing for 

initialization of the WM that make the process difficult to reproduce. 

3. Segmentation and Measurement of the cortex from 3-D 

MR images using coupled-surfaces propagation  

This research was published by Zeng, Staib, Schultz and Duncan in [33]. 

Method: The authors proposed the segmentation and measurement of the cortical GM thickness 

from brain MRI data with a level set method using coupled-surfaces propagation. As stated by the 

authors, coupling surfaces can prevent two problems: 

- The inner cortical surface can collapse with the CSF due to higher contrast at the 

CSF/GM interface than at the WM/GM interface.  

- The presence of eye sockets with no CSF signal can drive the outer cortical surface to 

expend outward from the brain. 

Constraining the cortical thickness during the segmentation process prevent the collapse of 

leakage of the surfaces. 

The level set segmentation method with surface coupling is described in the first Section of this 

chapter. The traditional gradient features in the speed term were replaced with tissue interface 

probability measurements based on statistical priors summarized here. The statistical models are 

based on the assumption of Gaussian independent distribution functions of voxel intensities in 

MRI volume data for WM, GM and CSF. Let assume the presence of two tissue types A and B in 



the data with independent Gaussian probabilities ( ),A AG µ σ  and . For each voxel , 

a set of 26 immediate 3D-neighborhood voxels can be defined. For each neighbor voxel, a normal 

direction  along the line passing through the center voxel and the neighbor voxel is computed 

which defines a plane that separates the neighborhood into two regions ( . The probability 

of the center voxel belonging to an interface between the two tissue types 

( ,B BG µ σ )

)

s

θ

1 2,R R

( ),A B  is then 

computed as:  
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where ( )I r is the intensity value of the data at neighbor voxel r. The final density probability at 

voxel  is set to the highest value of s ( )ABp θ  over all the 26 directions. An illustration of a 

feature map based on this tissue interface probability measure is provided on a single brain MRI 

slice computed with (  containing only one voxel. The example illustrates well the better 

performance of the interface probability feature at extracting locations of tissue transitions for 

WM, GM and CSF when compared to standard gradient maps. 

)1 2,R R

Experiments: Validation was performed on T1-weighted MRIs. The segmentation process was 

initialized with several pairs of concentric spheres with a constraint on starting inside the WM for 

robust behavior.  

1. A first experiment used simulated MRI data from the McConnell Brain Imaging Center at the 

Montreal Neurological Institute [93].  The authors simulated T1-weighted brain MRIs with 3% 

noise and 1mm3 voxel size. Distance range between two surfaces was set to [1.5mm 5.5mm] 

leading to bandwidth ranges for the inner and outer surfaces of [-3mm 6mm] and [-6mm 3mm] 

respectively. Segmentation was validated by comparing the binary segmented volumes to the 

thresholded membership values of the corresponding voxels (with reference to WM, GM and 



CSF) above 0.5 from the data base ground truth data. The authors computed TP, FP rates and 

total volume ratios (VR) to compare segmented volumes and thresholded ground truth volumes. 

Results with [TP FP VR] were: [92.3% 2.0% 96.3%] for (WM+GM), [92.8% 6.0% 103.2%] for 

cortical GM and [92.4% 3.3% 98.1%] for WM showing good performance of the algorithm in 

isolating brain tissue and segmenting the cortex.  

2. A second experiment was performed using 20 T1-weighted spoiled gradient MRIs of normal 

brain subject from the Internet Brain Segmentation Repository (IBSR) of the Center for 

Morphometric Analysis at the Massachusetts General Hospital [101]. Cases were acquired with 

two different scanners and all registered to a standard 3D brain coordinate system. Manual 

segmentation from medical experts wais available. An overlap metric was defined by the IBSR to 

evaluate the performance of automatic segmentation methods, measuring the ratio TP/(1+FP). 

Such ratio ranges from 0 for no agreement to 1 for perfect agreement with the manual 

segmentation considered as the ground truth.  MRI data was interpolated from 3mm thick coronal 

slices (as provided) to 1mm thickness, achieving isotropic voxels. The GM overlap metric on the 

whole brain was 0.657. It outperformed other reported segmentation performances on the same 

data sets from [102] with overlap ranking from 0.47 to 0.56. Overlap metric specifically 

computed on the cerebral cortex (excluding brain stem and cerebellum) was further improved to 

0.701. The authors pointed out that if applied to the phantom data, the overlap metric was 0.875 

that compared to the manual segmentation variability of 0.876 reported in the IBSR database. 

3. A third experiment was performed for a study of the frontal lobe anatomy on 7 high-

resolution MRI data sets acquired with SPGR with isotropic voxel size of 1.2mm3. The patient 

population of this study included young autistic and control subjects for comparison of frontal 

lobe volumes. The MRI volumes were pre-processed for inhomogeneity correction. Segmentation 

was performed with coupled level set functions and the frontal lobe was manually isolated with 

anatomical landmarks. Segmentation accuracy was compared to expert manual tracing. TP and 

FP on entire frontal lobe averaged 94.1% and 2.1%. TP and FP for cortical GM on frontal lobe 



averaged 86.7% and 20.8%. The authors further evaluated the reliability statistics on the volume 

measurements obtained on the segmented frontal lobe volumes using the method proposed by 

Schultz and Chakraborty [103]. The agreement between the expert tracing and the level set 

segmentation method was very strong for both the entire frontal lobe and only the GM but the 

level set algorithm systematically under estimated the frontal lobe volume with a mean difference 

of 4%.  

4. In a fourth experiment, regional cortical thickness was quantitatively analyzed on 7 high-

resolution MRI data sets acquired with SPGR and isotropic voxel size of 1.2mm3. Cortical 

measurements were performed in 4 lobes to compare level set segmentation and expert manual 

tracing. The authors first compared the mean thickness of each lobe to the results from the study 

of 63 post-mortem males by Pakkenberg and Gundersen [104]. The new segmentation produced 

similar results with a frontal cortex thicker than the occipital cortex. On overall, post-mortem data 

was 5-14% thinner than the new results while variability of thickness was equal to 1.5 mm for 

both studies. Statistical tests also showed that frontal and temporal lobes were thicker than 

parietal and occipital lobes.  

This method relies on prior statistics for WM, GM and CSF for the construction of interface 

probability maps. The method also requires manual initialization by clicking center points of 

concentric spheres on slices. The authors demonstrated on one example that the number of 

spheres or their localization does not have a critical influence on the accuracy or reproducibility 

of the method. On the other hand major advantages of the method include the fact that it does not 

require stripping of non-brain data, its performance was demonstrated on a wide range of MRI 

image quality and it offers fast computation times compared to existing methods. 

4. Segmentation Of RT3D Ultrasound With Geodesic 

Deformable Models 

This research was published by Corsi, Saracino, Sarti and Lamberti in [105]. 



Method: The proposed method uses a geodesic deformable model as defined in Equation (17), 

with weighting parameters associated with the two terms and a function ( )g  defined as in [8]. 

To handle the noisy nature of the ultrasound data and the poor definition of the myocardium wall 

borders in some frames, the authors did not use any inflationary force in the speed term. This type 

of model requires an initialization close to the final endocardial surface to ensure that the moving 

front is attracted to local high data gradient locations. The algorithm was implemented with the 

narrow-band technique for computation efficiency. 

Experiments: The authors performed 3D segmentation of echocardiographic real-time three 

dimensional (RT3D) ultrasound data for extraction of ventricular volumes. Prior to segmentation, 

a clinician roughly defined endocardial contours on a limited set of short-axis views. The 

polygonal surface defined by this manual tracing was then used to initialize the level set 

segmentation process. Deformation of the moving front required about 40s for a single volume on 

a PC and initial manual tracing less than a 1 minute. The authors performed three experiments for 

assessment of the method accuracy and robustness to the initialization: 

1. In a first experiment the authors performed multiple segmentation of the same RT3D volume 

using manual initialization from six different users. Comparing volume measurements to precise 

manual tracing they report a mean square error of 3.8% and a maximum error of 4.38%. They 

concluded from these results that the segmentation is rather sensitive to the manual initialization. 

2. In a second experiment, the authors segmented in-vitro phantom data of eighteen balloons 

filled with water and immerged in a tank of water. To take into account the sensitivity of the 

segmentation technique to the initialization, two operators performed two separate tracings and 

the segmentation was run with these different initializations. A linear regression coefficient of 

0.99 was reported between true volume values and measurements from seventy level set 

segmentations. The standard error of estimate was equal to 9.35 ml, the average error of 

measurement was -2.63ml (std 10.81ml). Intra-observer variability was estimated for each 



operator as: 1.66% and -1.36%. Inter-observer variability was estimated as 1.63%. This 

experiment reported a maximum error of measurement of 40ml for large volumes (above 200ml). 

Errors of measurements decreased significantly with balloons true volumes suggesting that 

ventricular volumes can be accurately measured with this technique for physiological volume 

ranges.   

3. An in-vivo study was also performed on about 18 RT3D cases (exact number not specified in 

the paper) using again two different manual tracings from two operators. The ventricular volume 

range for this study was [151ml-467ml] which suggest that it included dilated cardiomyopathy 

patients with enlarged ventricular cavity. Volume measurements were compared to measurement 

from manual tracing on MRI. Linear regression was performed with a correlation coefficient of 

0.97. The standard error of estimate was 20.13ml, average error was -15.58ml (std 20.55ml). 

Intra-observer variability was 0.16% and -2.04%, and inter-observer variability was -2.16%.  

Ejection fraction measurements were performed on nine RT3D cases. The correlation coefficient 

was 0.87 when comparing to MRI measurement. The main limitation of this study is the absence 

of testing on normal physiological ventricular volume in the range [40ml 150ml] for which the 

behavior of the level set segmentation can be significantly different as these volumes are much 

smaller.  

5. Segmentation Of RT3D Ultrasound With Implicit 

Deformable Models Without Gradients 

This research was published by Angelini, Holmes, Laine and Homma in [43]. 

Method: This study focused on the same clinical problem as the previous study for segmentation 

of echocardiographic RT3D ultrasound data. The proposed method uses the homogeneity-based 

implicit deformable model proposed by Chan and Vese in [40] as an extension of the Mumford-

Shah segmentation functional. Motivations for selection this method include robustness with 

arbitrary initialization of the object anywhere in the image, topology adaptation for multi-object 



segmentation (for potential co-segmentation of ventricles and atria for example), self-adaptation 

of the deformation flow to inward and outward flows. Minor modifications of the method were 

performed to adapt the design to the specificity of the 3D ultrasound data. The homogeneity terms 

from Equation (28) were weighted by the mean intensity value as: 

 ( )
2 2
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c c
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A similar approach was followed by Lin et al. [44] for segmentation of 3D echocardiographic 

data where they normalized the homogeneity term by the variance of the data inside and outside 

the object segmented, after pre-processing with multi-scale Gaussian filtering. 

No and the weight associated with the definition on the segmentation process. Parameters were 

set to υ = 0 (no constant inflation force was used), µ = 1, λ1 = 0.25, λ2 = 0 (no homogeneity 

constraint on the outside of the ventricle to reduce the effect of the noisy myocardium texture), 

∆x = ∆y = ∆z = 1, ∆t = min(∆x,∆y,∆z)/|υ+µ+ λ1+ λ2| (to respect CFL condition with explicit 

numerical scheme). The system was let to deform over 20 iterations.  

Experiments: A clinical study was performed on 10 patients with primary hypertension to 

segment both right and left ventricular volumes. A 2D parametric deformable model and a 3D 

Level set deformable model were used for segmentation of the ultrasound data after denoising 

with a spatio-temporal brushlet expansion [106]. The model was initialized with a cone which 

dimensions were defined manually on slices at the base and apex. Manual tracing on ultrasound 

data was performed by an expert clinician. MRI data were also acquired on the patients and 

manually traced by a second expert. Absolute errors of measures were computed for RV and LV 

ejection-fraction. Mean-error values and standard deviation over the ten cases for the two 

ventricles were equal to [Mean Std Min Max]: [8.6% 5.7% 17.8% 0.3%] for Manual tracing on 

ultrasound vs. MRI, [4.9% 4.1% 12.21% 0.2%] for 2D parametric deformable model vs. MRI, 

[4.6% 4.2% 13.9% 0.8%] for 3D level set deformable model vs. MRI. Improvement of 



correlation measurements with deformable models (with good statistical significance) was 

reported when compared to MRI as well as better accuracy with a Bland-Altman analysis. The 

study concluded that errors of EF measurements using deformable models were within the range 

of inter- and intra- observer variability for both ventricles and compared favorably to similar 

studies performed by other groups using RT3D ultrasound for quantification of cardiac function. 

Manual tracing measures were significantly less reliable with large standard deviation of errors 

and low correlation coefficients. Finally, the 3D level set deformable model achieved the highest 

degree of accuracy, which can be explained by a more accurate segmentation of small and 

distorted ventricular shapes when integrating the third spatial dimension.  

 

Figure 6: Segmentation of right and left ventricular volumes with a 3D implicit deformable model on 

RT3D ultrasound data. (a) Initialization of the segmentation with a cone shape surface (dashed line) 

and final position of the contour (continuous line) on the endocardial surface. (b) Illustration of 

diversity of right and left ventricular shapes and sizes extracted for the clinical study reported in 

[43].  



D. Conclusion 

Level set methods for segmentation and registration of medical images have been the focus of 

intense research for the past decade producing very promising results. Major advantages of the 

method include its robustness to noisy conditions, its aptitude in extracting curved objects with 

complex topology and its clean numerical framework of multi-dimensional implementation. 

Despite their success, these methods still need to be refined to address two limitations: 

(1) computation time needs to be further reduced, for viability of the method in clinical 

application where interactivity (and therefore close to real time computation) is critical. This 

optimization will have to handle the constant increase in data size observed in medical imaging 

applications with improvements of spatial resolution, temporal resolution and now the 

introduction of combo scanners such as PET/CT machines. 

(2) Robustness to variation in image quality and organ anatomy needs to be studied. 

Unfortunately, the methods described in this chapter were only rarely validated in clinical studies. 

On the other hand it is well known that these methods require tuning of their parameters to adapt 

to the nature of the image data to segment. In that optic, it is therefore critical to evaluate 

robustness of the performance on a set of data that covers the range of quality encountered in 

clinical practice for a particular examination. For methods based on shape models, it is also 

critical to test the method on a variety of abnormal (e.g. disease) cases that differ from the 

average anatomy that they typically represent. Such validation for medical application should 

always clearly specify the context of the problem at hand in terms of anatomy of interest (e.g. 

endocardial surface of myocardium muscle), imaging modality (e.g. three-dimensional real-time 

ultrasound) and clinical application targeted (e.g. quantification of volume). Only in this context 

can a segmentation method be really tuned, tested and validated for clinical application [107].  
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