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ABSTRACT 

A family of graph-theoretical algorithms based on the minimal spanning 

tree are capable of detecting several kinds of cluster-structure in arbitrary point 

sets; description of the detected clusters is possible in some cases by extensions 

of the method, Development of these clustering algorithms was based on examples 

from two-dimensional space because we wanted to copy the human perception of 

gestalts or point-groupings. On the other hand, all the methods considered apply 

to higher-dimensional spaces and even to general metric spaces, Advantages 

of these methods include determinacy, easy interpretation of the resulting clusters, 

conformity to gestalt principles of perceptual organization and invariance of 

results under monotone transformations of interpoint distance. Brief discussion 

is made of the application of cluster detection to taxonomy and the selection of 

good feature spaces for pattern recognition. Detailed analyses of several planar 

cluster detection problems are illustrated by text and figures. The well-known 

Fisher iris data, in four-dimensional space, have been analyzed by these methods 

also. PL/l programs to implement the minimal spanning tree methods have been 

fully debugged. 
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I. INTRODUCTION 

. 

We shall address ourselves to the problem of detecting inherent separations 

between subsets (clusters) of a given point set S in a metric space governed by a 

distance function p (x, y) . 

The phrase 15nherent separation@ is used to emphasize that any separation 

we detect will depend solely on interpoint distances within the set S. We shall 

strive for cluster methods which are “determinate” in the sense that detection of 

a given cluster does not depend on random choices in the detection algorithm and 

is not. sensitive to the order in which points of S are scrutinized. In short we want an 
- _. -. . ,. .-‘ 

answer to the question <<What does the set S look like in terms of the structure of 
-. - 

the space in which it is imbedded? >> 

To illustrate more concretely what is meant we refer to the point sets of 

Figs. l(a), l(e), l(f) and l(j). In cases (a), (e) and (f) we would like to be told 
‘ 

that the set falls naturally into two distinct point clusters. In case (j) we would 

like to be told that one cluster is present which can be separated into two clusters 
._: _. __.. 

at a small “neck 1’ . 

The cluster detection methods in this paper were motivated by our own personal 

perception of two-dimensional point sets as separate groupings or “gestalts. 1) The 

principle of grouping will be “proximity” as described by Wertheimer [26] . We 

have investigated the behavior of these clustering algorithms on point sets in the 

plane where the set can be “seen” and the reader can get an intuitive feel for what 

the algorithm is doing. It is our hope that the same methods will be useful in higher 

dimensional spaces and this is why we have posed the cluster problem in a general 

metric space. 



II. APPLICATIONS 

The field of taxonomy in biology and the problem of organizing library 

materials into groups in a meaningful manner -these are two good examples 

where cluster detection is useful. In biology one makes measurements on a 

set of organisms and then attempts to group them in a way which reflects simi- 

larity based on these measurements. An interesting example cited by Bonner [ l] 

is encountered in medicine; a set of 350 patients were measured with regard to 

18 symptoms. All these patients had been diagnosed as having the same disease, 

whose lengthy Hellenic name shall remain unidentified. This disease classifica- 

tion is known to be rather loose and hence it is of interest to know if it consists 

of several smaller groupings which can be observed directly from the measure- 

ment space by cluster detection. Then we will have found more natural disease 

categories to replace or subdivide the original disease. 

It must be emphasized that cluster detection will depend in a very sensitive 

way on the particular imbedding of objects in a metric space and this choice will 

almost certainly be made on information outside the scope of this paper. 

Cluster detection and description find their way into pattern recognition in 

two rather surprisingly different ways. In the first the points of a two- 

dimensional pattern constitute the point set to be clustered after which it is de- 

sired to describe the shapes of whatever clusters emerge, An example of this 

is shown in Fig. l(h). Rosenfeld [ 2 ] calls this the smoothing of quantum-limited 

pictures, the point being that connected shapes appear only after some local 

smearing has occurred. This problem is related to the work of Pizer and 

Vetter [ 3] on visual enhancement of quantum-limited pictures. Rosenfeld and 

Pfaltz [ 41 consider algorithms for performing such smearing on sets which are 

subsets of a uniform planar lattice (binary matrix patterns). 
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Another application which can be considered an example of quantum-limited 

smearing is described by Clark and Miller [ 51 and involves the correct linking 

together of spark images from a physics spark-chamber photograph. It is de- 

sired to observe the line-like struuture of the point set in Fig. l(q and detect 

the branch points as well as the order of points along each track. 

The second way that cluster detection is applicable to pattern recognition is 

by providing an answer to the question whether a given set of features constitutes 

a good feature space in which to discriminate a given set of pattern classes. It 

has been observed recently by more than one researcher that the crucial problem 

in pattern recognition is the selection of “good” features rather than sophisticated 

attempts to separate classes in a feature space which may be poorly chosen. We 

feel that a reasonable definition for good feature space in this connection is a 

space and a metric in which the clusters are identical (or nearly so) to the classes 

to be discriminated. It should be clear that the metric space clustering algorithms 

developed in this paper assure good class discrimination via the nearest neighbor [ 6 

classifier whenever the %lasses” are “clusters” in the given feature space with 

its metric. 

Since clustering algorithms give us a yardstick by which to measure the ef- 

ficacy of a given feature space we could in principle attack the problem of feature- 

space selection via the learning approaches which previously have been used to 

select the parameters of the classifier for a given feature space. 

Another application for clustering is Hough’s scheme [32] for recognizing 

the existence of approximately straight dotted lines in a two-dimensional picture 

(bubble-chamber particle tracks, for example). First he transforms each point 

into a line in another plane in such a way that a set of collinear points goes into 

I 
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a pencil of lines through a common point. Such a transformation takes ‘*nearly” 

collinear points into a set of lines whose mutual intersection points form a 

relatively dense cluster - hence the need for a cluster detection algorithm. 

Finally, we mention the use of clustering in visual scene analysis referred 

to by Rosenfeld et al. , [38] and Minsky and Papert [37], When local gradient de- 

tectors are passed over a digital picture and a threshold is used the picture 

points thus extracted usually form dotted curves which trace boundaries between 

faces of objects in the scene. Point clustering algorithms are needed to re- 

construct the curvilinear boundaries formed by these points. 

..y’--L .:. . . 
III. MOTIVATION 

,. .-. : 

Our interest in the general problem of cluster detection was aroused by a 

reading of the survey paper by Nagy [ 7 ] and the little book on pattern recognition 

by Arkadev and Braverman 181. It was further awakened by the survey paper of 

Ball [17] on clustering methods. In particular we were challenged by Nagy’s 

assertion that few clustering methods could handle problems like that in Fig. l(f) 

successfully. It seemed to us that problems l(a), l(e) and l(i) are not substantially 

different in difficulty for the following reason - in each case we have two disjoint 

point-sets P and Q whose distance apart (P, Q) is substantially larger than the 

average distance from a point to the nearest neighbor in its particular point- 

set. This observation suggested that if we connected each point to all other 

points within a suitably chosen radius then the resulting graph would consist of 

two connected components whose points were P and Q respectively. It also 

occurred to us that the algorithm just outlined depends only on the point-set 

belonging to some metric space and hence is general enough to extend to En. 



We were also challenged by the statement in [8] that no algorithm for problem 

1 (j) was known although it posed no difficulty for human percention. Arkadev and 

Braverman call this problem “learning without reward” and ascribe considerable 

importance to its solution. Our perception of two clusters in this case can 

possibly be explained by the fact that the boundary of the point-set contains a 

narrow portion or “neck. 11 If we construct a graph as we suggested for problem 

(a) there will almost certainly be a single connected component but it will be 

possible to disconnect it in a non-trivial fashion by deleting an edge-set of small 

size. In the simplest case the graph might contain a single bridge or cut-vertex. 

Once again this line of attack was generalizable to higher dimensional spaces, 
.a-- .-e . 

Throughout this trend of thinking we were influenced either consciously or 
. 

otherwise by Julesz’s experiments on humanly perceivable texture differences 
I 

[9] and a report by Narasimhan [lo]. Both these references stress the importance 

of the gestalt principles of “proximity, lr and 77similarity17 in perceptual groupings 

j’ 

i 

of points. Julesz’s paper is especially important since the experiments lead to 

the conclusion that ltclusters or lines formed by proximate points of uniform 

brightness play a decisive role” in human discrimination of visual texture. Pattern 

textures of a purely statistical nature (except point density) tend to be impossible 

to discriminate unless such clusters or lines are present. The ability to perceive 

areas of different point density is exemplified by problem l(h). 

The use of the 17minimal spanning tree” of a graph as an aid to detecting and 

describing the structure of point clusters was suggested to us by the processing 

of spark-chamber photographs reported by Clark and Miller [5]. We have dis- 

covered this to be a most powerful and general tool for these tasks and have 
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discovered some theorems which indicate that its success is no accident. It is 

also rather interesting to note that Arkadev and Braverman [8, p. 109-ilO] sketch 

an algorithm for cluster detection which essentially constructs a minimal spanning 

tree (MST) and Johnson’s “minimum method’ of hiearchical clustering [ 28, p, 2481 

is one of the algorithms for constructing an MST. Gower and Ross [36] have in- 

dependently observed the connection between the MST and cluster analysis; their 

paper exhibits Algol programs to construct the MST and use it .to perform the 

single linkage cluster analysis of Sneath [35], 

-. . . 

“i; y- IV. SAMPLE CLUSTER PROBLEMS 

_ We shall briefly describe a set of problems typical of those which will be 

treated in this paper. We think the range of problems indicates the power of 

graph-theoretical methods in the context of detecting and describing inherent 

cluster structure in arbitrary point sets with a distance function. Figure l(a) 

represents a pair of well-separated clusters each having the same relatively 

homogeneous point density. Not unexpectedly, most existing clustering methods 

do well on this problem [7]. The next problem l(b) is almost identical to l(a) 

except that the two point densities are not equal. In l(c) the point density varies 

smoothly within each cluster but the separation is still substantial. The problem 

in l(d) is to describe the cluster as composed of linear pieces with a definite 

branching structure. Problem l(e) is essentially like l(a) but the shape of clusters 

is quite different. 

Problem l(g) represents smoothly varying non-homogeneous cluster densities 

similar to l(c) but here we show that the separation is dependent only on the point 

densities near where the clusters approach each other. Solving this problem 

appears to require some adaptive mechanism. Problem l(h) involves the ability 



to detect sharp gradients in point density as well as to describe the boundary of 

the cluster thus detected. Examples like this show the close relation between 

the processing of grey-scale digital pictures [2] and, the processing of two- 

dimensional point distributions [3] , As pointed out by Rosenfeld [2] distribu- 

tions like l(h) can be considered as quantum-limited versions of grey-scale 

pictures where local point density becomes grey-scale. The converse is also 

true since photographs and especially half-tone images are really only point 

distributions which our eyes average to compute grey-values. Rosenfeld and 

Pfaltz [4] discuss methods for transforming a quantum limited picture to a 

grey-scale picture on a square lattice. 

Problem l(i) is like l(c) except that the clusters touch and are not really 

well separated. We seem to perceive the separation by noticing that the point 

density is at a local minimum near where the clusters touch. In l(j) we actually 

have a single cluster but we notice it contains a very thin section (%eck”) whose 

removal separates it into two .distinct clusters. 

V. GESTALT PRINCIPLES OF PERCEPTUAL ORGANIZATION 

To create the proper setting for the methods to be described in this paper 

we shall give a brief resume of those principles of gestalt psychology which we 

have borrowed and attempted to mechanize. In 1923 Max Wertheimer [26] 

enunciated several principles which were claimed to govern the way in which our 

perceptual processes organize the raw sensory data presented to our eyes. 

Figure 2(a) illustrates proximity which is the most basic of all gestalt principles. 

The point is that human subjects perceive the set of dots as if they were organized 

into two curves as shown in the lower right corner of Fig. 2(a). The only 

reasonable analysis of this observation is that perceptual organization favors 
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groupings which represent smaller interpoint distances. This principle was 

the starting point of all our methods for cluster detection and in some sense 

our methods attempt a precise mathematical formulation of this principle, 

A related principle suggests that organizations which are simple or 

minimal in some sense are preferred as are those organizations which take 

smaller amounts of information to encode the picture. Our nervous system 

seeks the most economical encoding of the data presented. This is discussed 

more fully by Koffka [Zl, Chapter IV] and Hochberg [27 and 203 . 

As we mentioned earlier we owe to Narasimhan [lo] our first acquaintance 

with these gestalt principles as well as the suggestion that they have a strong 

connection with possible algorithms for pattern description. He incorporates 

these principles into a syntactical model of picture description and suggests 

its use to investigate on a more rational basis the separation between %nnate” 

and “learned” perceptual organization. A very suggestive idea indeed was the 

way that the proximity principle was incorporated through a smearing algorithm 

applied to points on a square lattice. Figure 2(b) shows an approximate version 

of 2(a) on a discrete square lattice. Figure 2(c) depicts the smeared version in 

which each black point is replaced by an entire 3 x 3 neighborhood of black points. 

After this the connected sets of points (whose boundaries can be efficiently com- 

puted by the %urvaturepoint” method of Zahn [29, 301) represent the two distinct 

line patterns that correspond to human perceptual organization. 

VI. INTUITIVE METHODS FOR CLUSTER DETECTION 

We shall begin our solution to cluster detection by attacking three problems 

representing the types exemplified in Figs. l(a), l(g) and l(j). Our methods will 

be highly intuitive and directed at each specific problem type. Later we develop 
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a single method to solve all these but the development of this general technique 

resulted from our realization of several defidiencies in these intuitive and some- 

what brute-force methods. In spite of their deficiencies these techniques are a 

good introduction to the later more powerful methods and they illustrate dif- 

ficulties in cluster detection rather well. 

We begin with the simplest case of all - two well-separated clusters each 

with approximately the same homogeneous point density, This is illustrated in 

Fig. 3(a). Computing the distance from each point to its nearest neighbor we 

get a mean value p of 20.5. The standard deviation q of these distances is 1.66 

and the ‘distance between the clusters is 58. The range of values of nearest 

distance is [17.5,24]. The relatively small value for u is what we mean by 

the term “homogeneously and the size of intercluster distance relative to /J 

implies flwell-separated. If It seems reasonable to form a graph from the points 

of 3(a) by connecting any pair whose distance is smaller than a threshold value 

depending on p and o- . Figure 3(b) shows the graph that results using & + 30). 

This graph has exactly two connected components representing the clusters as 

we perceive them. There might possibly be cases in which the values for p, u 

and intercluster distance are known accurately enough a priori and the threshold 

could be pre-computed (such a method was used by Abraham [31] ) . 

Figure 3(c) illustrates two clusters with smoothly varying but non- 

homogeneous densities. They are well-separated as we perceive them because 

the regions of closest approach between the two clusters are regions where 

the density is high compared to the distance between clusters. The fact that 

the left most point of the upper cluster is further from its nearest neighbor than 

the distance between clusters doesn’t confuse us in the slightest; it does, however, 
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\ 
mean that we could never hope to detect these clusters with the method used 

on the previous example. We obviously require some sort of adaptive con- 

necting algorithm and the simplest idea is to connect each point to its K-nearest- 

neighbors regardless of the absolute distances involved. This idea is closely 

related to the variable-aperture method for measuring density at a point found _I. 

by Pizer and Vetter [3] to be statistically more suitable than fixed-aperture 

methods. Figure 3(d) shows how the graph constructed from edges with 3- 

nearest-neighbors detects the two clusters perfectly. 

The “touching clusters” example shown in Fig. 3(e) will appear as a single 

cluster under the previous methods as indeed it should. By the criterion of 

connectivity it 4s a single cluster; we see it as two because it is only connected 

at a small “neck. ‘1 &r intuitive approach is to construct a K-nearest-neighbor 
. - 

graph (we use K = 4 but the choice is probably not critical) as shown in Fig. 3(f) 

and look for cut-points (whose removal disconnects the graph) or bridges (edges 

whose removal disconnects the graph). Harary [33] has described an algorithm 

to detect cut-points and Zahn [34] has recently developed some alternative 

methods suggested by Pohl’s method [15] for detecting bridges, In Fig. 3(f) 

there is a single cut-point at A which reveals the %ecklf at once, In general 

the neck may not be so small and it may be’necessary to find a small set of 

edges (a cut-set) whose removal disconnects the graph like the two edges (e, f) 

in Fig. 3(f), This is not a trivial problem but Pohl [153 describes a reasonable 

heuristic for approaching it, 
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VII. MINIMAL SPANNING TREES 

The’previous section indicated the need for a lllocally adaptive interconnecting 

mechanism” for a point set - one which favors nearest neighbors. We have found 

the minimal spanning tree to be a powerful mechanism in this regard and this 

section will serve to define, exemplify and characterize this graph-theoretical 

construct. Basic definitions of graph theory may be found in Ore [40] but we shall 

attempt to make the discussion as self-contained as possible. Detailed proofs of 

theorems may be found in the Appendix. 

An edge-weighted linear graph is composed of a set of points called nodes . - 

and a, set. of node-pairs called edges with a number called a weight assigned to each 
. 

edge. Graphs are easier to think about in their geometric form so we shall use an 

example to describe.the concepts needed for the theorems of this section. Figure 

4(a) .depicts a weighted graph with 6 nodes and 9 edges. A &i in a graph is a 

sequence of edges joining two nodes as (ABCFE) or (BADF). A circuit is a closed 

path as (ABCA) or (ACFEDA) . A connected graph has paths between any pair of 

nodes. A tree is a connected graph with no circuits and a spanning tree of con- 

nected graph G is a tree in G which contains all nodes of G. Figures 4(b) and 4(c) 

represent spanning trees of the graph in Fig. 4(a). If we define the weight of a 

tree to be the sum of the weights of its constituent edges then a minimal spanning 

tree of graph G is a spanning tree whose weight is minimum among all spanning 

trees of G. Figure 4(c) is the MST for Fig. 4(a). The computational problem of 

constructing an MST has been treated by several authors [ll, 12,131 and is briefly 

discussed in the Appendix of this paper. It is a surprisingly simple computation. 

A partition of the nodes of graph G is a division into two disjoint non-empty 

subsets (P, Q) , For the graph of Fig. 4(a) P = (A, B, C) and Q = (D, E, F) constitute 
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a partition, The distance p(P, Q) across a partition is the smallest weight among 

all edges which have one end node in P the other in Q. The distance p 
t 
(A, B, C), 

(D, E, 9> = 8 f or the example above since the other two edges which span across 

P and Q are CD and CF. with greater weight than edge AD. The set of edges 

C(P, Q) which span a partition will be referred to as the cut-set of (P, Q) and a link 

is any edge in C(P, Q) whose .weight is equal to the distance p (P, Q) . The set of 

all links in C (P, Q) is called the link-set X (I?, Q) . For the sample partition above 

C(P,Q) = (AD,CD,CF) and X(P,Q) = (AD). 

Looking at the graph of Fig. 4(a) it seems plausible to expect that the minimal 

spanning tree would choose edge AD as the bridge spanning from set (A, B, C) to 

(D, E, F) since that edge does the job at minimal expense, This is in fact true’as 

is shown in the following: 

Theorem 1 

Any MST contains at least one edge from each h(P, Q) . 

Furthermore it is true that: 

Theorem 2 -. . 

All MST edges are links of some partition of G. 

The following theorem is important because it reveals the inherent relation- 

ship between the MST and cluster structure. ’ 

Theorem 3 

If S denotes the nodes of G and C is a non-empty subset of S with the property 

that P (P, Q) < p(C, S-C) for all partitions (I?, Q) of C then the restriction of any 
\,’ 

MST to the nodes of C forms a connected subtree of the MST. 

The significance of Theorem 3 for cluster detection is illustrated in Fig. 4(d) 

which depicts the MST for a point set consisting of two clusters Cl and C2. NO 

partition (P,, Q2) of C2 is such that p(J?,, Q2p > 22 and therefore the hypothesis of 
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Theorem 3 holds since p (Cl,, Cl) = 78 > 22. This assures us that the subgraph 

of the MST which spans only the nodes of C2 will be a connected subtree as we 

see in Fig. 4(d). The same is true for Cl also. 

It is quite helpful that the MST does not break up the real clusters in S but 

on the other hand neither does it force breaks where real gaps exist in the 

geometry of the point set. A spanning tree is forced by its very nature to span 

all the points but at least the MST jumps across the smaller gaps first. Theorem 

2 says that any MST edge is the smallest jump from some set to the rest of the 

nodes. We still have the problem of deleting edges from an MST so that the re- 

sulting connected subtrees correspond to the observable clusters. In the example 

of Fig. 4(d) we need an algorithm which can detect the appropriateness of deleting 

the edge AB and no others. 

The following criterion is suggested for this type of two-dimensional cluster- 

ing observable by humans. A tree edge XY whose weight W(XY) is significantly 

larger than the average of nearby edge weights on both sides of the edge XY 

should be deleted. We call such an edge inconsistent. There are two natural 

ways to measure the significance referred to. One is to see how many sample 

standard deviations separate W(XY) from the average edge weights on each side. 

The other is to calculate the factor or ratio between W(XY) and the respective 

averages. See Section XVII for details. 

Edge AB in Fig:4(d) has a length (weight) of 78. There are four edges which 

are within two steps of A and their average length is (21 -t 22 f 19 + 15)/4 = 19.25. 

The sample standard deviation for these four edge lengths is approximately 2.7 

so that the length of edge AB is more than 20 standard deviations in excess of the 

average lengths at A. If we assumed a normal distribution for edge lengths then 

one exceeding 3 or 4 standard deviations would occur less than one percent of the 
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time and hence may be regarded as significant, A similar situation exists for 

’ the neighborhood of node B. The definition of edge inconsistency depends on 

several factors - the size of neighborhood explored for each end node, the 

number of standard deviations and the factor con’sidered as significant and 

whether or not inconsistency is required at both ends. A later section discusses 

our computational experience with these factors including some difficulties en- . 
_ _. 

countered near the fringes of the MST where small sample sizes can give dis, 

torted results. Finally, we should mention that AB is the only edge in Fig. 4(d) 

which meets our criterion at a significance level of two standard deviations. 

Occasionally we shall refer to a factor of inconsistency which is the ratio 

between edge weight and the average of other nearby edge weights. A factor of 
. . . 

2 usually means the separation is quite apparent. The example above suggests 

to us that any uniformly dense point pattern in the plane which is separated from 

other points by an amount significantly larger than the average nearest-distance 

within the pattern can probably be detected by humans as a distinct cluster. It 

also appears that human perception may, be sensitive to the condition stated as 

hypothesis for Theorem 3. We suggest this condition as a first approximation 

to a precise geometrical statement of what makes a point set distinctly observable 

to humans. 

Befo,re stating the next important theorem we need some definitions, It is 

sometimes useful to assign a cost to each path in a weighted graph by taking the 

maximum edge weight of the path. The path (CADE) in Fig. 4(a) has edge-weights 

(5,8,3) and hence a cost of 8. We may think of this as the cost of going from C 

to E along the path CADE. It is natural to ask what path between a pair of nodes 

has the least cost and such a path is called a minimax path because it minimizes 

over all paths the cost, which is the maximum weight in the path. In Fig. 4(a) 
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there are four mimmax paths from C to F - they are (CADF), (CADEF) , 

(CBADF) and (CBADEF) all of cost 8. We see immediately that minimax paths 

are far from unique in general. We might wonder if there exist minimax paths 

each of whose subpaths are also minimax. Among the four minimax paths from 

C to F only the path (CBADF) has this stronger property which we shall refer to 

as strongly minimax. The fact that the strongly minimax path (CBADF) lies .~ -> ._ 

within the $HL’ (see Fig, 4(c)) is more than mere coincidence as shown by the 

following theorem of Kalaba [14] : 

Theorem 4 

If T is an MST for graph G and X, Y are two nodes of G, then the unique 

path in T from X to Y is a minimax path from X to Y. 
-. _ 

_,._. This result has some of the flavor of Theorem 3 because the preference for . . 

minimax paths in the MST forces it to connect two nodes X and Y belonging to a 

tight cluster without straying outside the cluster. Under the condition of 

Theorem 3 the change in cost incurred by routing a path out of a cluster is an 

increase and hence, by Theorem 4, is avoided by the MST. It can also be seen 

i 

that each link of G is a single-edge minimax path joining its end nodes. 

We have taken the trouble to introduce these theorems because they help to . 

characterize the behavior ,of the MST and they indicate why the MSI’ can be a 

good starting point for cluster analysis. The proofs of Theorems l-3 are in the 

Appendix along with discussion of algorithms for constructing the MST. The 

reader is referred to [I4 3 for the proof of Theorem 4 and a more detailed dis- 

cussion of minimax paths. 

We remark in passing that in one-dimensional space the algorithm for cal- 

culating the MST becomes a sort algorithm and relative compactness measures 

the tendency toward longer “runs” of the same class. The actual computation 
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( could be performed more efficiently in this special case by using more traditional 

sort algorithms. 

VIII. A COMPOSITE CLUSTER PROBLEM * 

We shall now apply methods using the MST to several interesting cluster 

problems. To begin we attack a point-set encompassing the peculiar difficulties 
I.. :... 

associated with problems l(a) through l(g). After careful study of this single 

example the reader should be able to convince himself that each of these seven 

problems will succumb to the same MST technique we shall employ for the 

composite problem. 

The point-set is shown in F&5(a) and a possible conceptualization of 5(a) 

is depicted in 5(b). Figure 5(c) shows the MST for the point-set calculated by 

visual inspection but still quite accurate. Using a factor of 2 as the measure of 

significant edge inconsistency we can delete the two edges shown in Fig, 5(d) 

and then determine the diameter (path with most number of edges) of each con- 

nected tree remaining. The near-diameter edges are on a path whose number 

of edges is fairly close to that for a true diameter. Figure 5(e) gives a closer 

look at the two inconsistent edges and 5(f) shows three edges which are con- 

sistent. Figure 5(g) depicts how well the remaining trees of diameter and 

near-diameter edges reflect the cluster separation and geometrical shapes of 

the three clusters. The percentages shown are a crude indicator of the non- 

compactness or linelikeness of the cluster. By calculating the maximum depth 

of branching from each node of a single diameter path we can produce histo- 

grams which reflect geometrical structure more specifically. Long runs of 

zero suggest well-defined line clusters. Line branching can be detected by 

histogramming any deep branch in the midst of an otherwise linear portion of 

the main diameter as is shown in Fig. 5(h). 
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Even the doubly-connectedness of the larger cluster could be detected by 

looking for ends of the diameter tree which are very close in the plane relative 

to their distance apart in the MST. If we visualize the histogram for this cluster 

as being wrapped around to form a cycle -then we obtain an extremely accurate 

description of the cluster’s geometrical and topological properties. The reader 

is reminded that everything we have done here can be done in higher dimensional 
..; 

spaces or, in fact, general metric spaces. 

IX. PARTICLE-TRACK DESCRIPTION 

The next example we shall try is an artificial bubble chamber photo with 

gaps in the tracks and noise points. Figure 6(a) depicts a point-set like one 

that might emerge from the digitization of a simple bubble chamber photograph. 

The l’gaps’l and %oise” are readily visible. The physical interpretation or 

ttperceptioxY’ of this point-set as particle tracks and interaction vertices is 

depicted in Fig. 6(b); this is the correct structure of the image and we would 

hope to find an algorithm which would reveal this connectivity structure without 

any serious prompting. Notice that this is not so much a question of cluster 

detection as it is one of description, A very similar problem for spark-chamber 

imagery was solved by Clark and Miller [5] employing a subtle combination of 

graph theoretical and geometrical concepts. They initially construct a graph 

from the points (sparks) by including edges between pairs of points satisfying 

a criterion which is based primarily on’distance but also emphasizes the degree 

to which the edge in question is parallel to the expected direction of tracks. The 

minimal spanning tree is then computed and *‘hairs*’ are removed; these are 

nodes.of degree 1 connected directly to nodes of degree 3 or greater, Finally, 

certain isolated nodes are incorporated into the tree on an angular criterion. 

We shall show the effect of a somewhat stripped-down version of this 

algorithm on our admittedly simpler example and argue why the MST can be 
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tains the MST of. the complete graph constructed from the point set. The 

llnoisel’ points L, M, N and 0 appear as 1~haiP on the MST andllgaps” like (A, B) 

and (D, E) are bridged as one would have hoped, It is striking how paths in 

the MST between pairs of points follow the basic connectivity perceived in the 

point set in spite of these “gaps!’ and noise points. The path from A to C 

goes through the vertex V2 in spite of the gap (A, B); the path from I to T 

(which has a physical meaning in time) traverses the interaction vertices V1 

and V2 in the correct order in spite of the potential distractions represented 

by noise points L, M, N and gaps (A, B), (D, E), and (F, G). These facts are 

simple results of Theorem 4 of the previous section which states that the 

minimal spanning tree contains minimax paths between pairs of points. 

The MIST can be pruned by eliminating “hairs” as was done by Clark and 

Miller or alternatively by the diameter and near-diameter path techniques used - 
on the composite cluster problem of Fig. 5(a). The resulting tree (shown in 

Fig. S(d) contains precisely the right connectivity to be interpretable along the 

lines of Fig. 6(b). When sequences of degree-2 nodes are interpreted as a 

single edge we are left with a tree whose nodes of degree 2 3 are interaction 

vertices and whose nodes of degree = 1 are track starts or track ends. 

Deletion of inconsistent edges does not play a part here since the l’gapll 

edges would almost invariably be so deleted. The method will not work ef- 

fectively if there are close parallel tracks or crossing tracks, both of 

which phenomena are of frequent occurrence in bubble chamber photo- 

graphs. The latter problem can probably be handled by special techniques 

applied to the MST using edge directions. 

X. TOUCHING CLUSTERS 

In our next example we shall use MST methods on the touching clusters 

problem referred to by Arkadev and Braverman [8] as “learning without reward.” 
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Figure 7(a) is a copy of the cluster set on page 109 of [8]. The authors have 

the following to say about this set: 

<<If asked to draw a line separating two isolated groups of points 

(Fig. 7(a)) one would do it without difficulty. But it would be quite 

difficult, even impossible, to tell how one did it, i. e., to describe 

the algorithm for constructing the separating line. If such an 

algorithm for the separating of compact groups of points could be 

formulated in a sufficiently clear and detailed form, the problem of 

learning to recognize images without rewards would probably be 

solved. >> 

We feel our treatment of this example constitutes a rather general answer to 

their challenge particularly since our method does not depend on performing 

the desired separation with a line (hyperplane in higher dimensional spaces). 

The human perception of Fig. 7(a) as’two clusters joined by a small neck 

may be related to our ability to imagine a boundary for the point-set as de- 

picted in Fig. 7(b). The existence of the neck is clearly visible as a relatively 

small area with opposing concavities in the boundary on two sides. Unfortunately, 

this description of the neck depends on concepts such as boundary concavity and 

opposite directions - concepts involving spaces in which angular measure makes 

sense. If we are to have any success applying graph theoretic and metric space 

techniques to this problem we shall need more general concepts of neck and so 

we propose the following. 

A neck in a graph is any small connected subgraph whose deletion discon- 

nects the graph into components at least two of which are substantially larger 

than the neck itself. The measure of size for the subgraphs (neck and components) 

- 20- 



will be the length of a diameter. The diameter can be defined using edge. 

lengths if they exist or size of path otherwise. The idea of neck is a general- 

ization of the concept of cut-point in a graph. 

For a point-set imbedded in a metric space we shall define neck to be a 

small localized subset of the points whose deletion leaves a set consisting of 
._-_. 

at least two large clusters separate in the sense of the hypothesis to Theorem 

.. 3 and such that our normal MST method will detect a significantly inconsistent 

. edge in the MST for the reduced point-set. The idea of neck in a graph is an 

appropriate one when we have constructed a nearest-neighbor graph from a 

metric point-set but the idea of neck in,a point-set applies if MST techniques 
._ . . . . . . _ 

..-’ are being used. Hence, in this section we use the latter. 

The MST for the point-set is depicted in Fig. 7(c) and one of the diameters . . . _ - 
is -drawn in Fig. 7(4 with the depth of branching off the diameter indicated. 

Figure 7(e) shows a near-diameter subtree of the MST. The associated 

number of a node in a graph is the number of edges in the longest path emanating 

from that node. Any one of these longest paths will be called a relative-diameter 

for the node and the node at the other end of a relative-diameter will be called 

an antipode of the node. A diameter of a graph is of course a relative-diameter 

whose associated number is maximum.. The tree of Fig. 7(e) consists of all 

relative-diameters whose length is within 4 of the diameter length, The as- 

sociated numbers of the end-nodes are indicated. The path (unique in a tree) 

from D to B is a diameter and contains the path (E, F); an antipode for A is the 

node B at distance 21 from A and an antipode for C is node D at distance 22. 

The interesting thing is that the path (E, I?) is the only subpath common to the ,’ 

two relative-diameters (A, B) and C, D) . It turns out to be the intersection of 

all relative-diameters in this near-diameter tree. It seems quite plausible 
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that if there exists a constriction in the original point-set then it will occur 

somewhere around the segment (E, F), The idea of intersecting near-diameter 

paths was suggested by a similar method used by Pohl[15] to detect bridges 

and small cut-sets in a graph. 

In Fig. 7(f) we have depicted the histogram of branching depths along the 

diameter shown in Fig. 7(4; also shown is the common section (E, I?) of relative- 

diameters and within this the best local ‘minimum, Not only do we expect a con- 

striction to be in (E, F) but more specifically we expect it where branch depths 
.‘. 

are small and at a local minimum. According to this reasoning we should test 

the hypothesis that the points G, H and I along with their branches (none in this 

example) represent a “neck11 between t$o otherwise well-defined clusters. To 
i. : 

perform this test we delete the points G, H and I at the local minimum and try 

to detect clusters in the remaining point-set shown in Fig. 7(g). It is visually 

clear that the hypothesis is correct in this case and, therefore, when we con- 

struct the MST for the new point-set (Fig. 7(h)) and then check for inconsistent 

edges, the edge (Q,R) shows up. A more detailed look at this new inconsistent 

edge is provided by Fig. 7(j) in which edge lengths are noted. The edge (Q, R) 

has a factor of inconsistency somewhat larger than 2. The geometrical near- 

ness of the inconsistent edge to the deleted points provides further confirmation 

that a neck exists. 

XI. TOUCHING GAUSSIAN CLUSTERS 

Now we attempt to solve a clustering problem which we call “touching 

gaussian clusters” because each cluster has a point density which varies from 

high values at the center to low values at the boundary as if density had a gaussian 

distribution. Such clusters can be separated even if they are touching over a 
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larger segment of boundary than the previous example, Figure 8(a) depicts 

such a cluster pair and Fig. 8(b) shows the centers and boundaries of the two 

clusters, A cluster center is a point of high density and can be detected by 

its having a low average edge length for edges incident to it in the MST or a 

nearest-neighbor graph. The point should also be a relative maximum of 

density. Figure 8(c) shows the MST for the cluster-set and 8(4 depicts the 

path in the MST joining the two cluster centers selected by this criterion. The 

division between the two clusters is effected by breaking this path between 

centers near the point of sparsest density which will once again be a relative 

minimum also. The “hysteresis smoothing” technique should probably be 

employed in looking for this local minimum. When two gaussian clusters 

overlap slightly rather than just touching then the point density along the path 

of centers will have two local minima on either side of a relative maximum because 

the overlap means density increases. 

Figure 8(e) shows a plot of the edge lengths along the path between centers 

and the dip at edge (A, B) is a slight overlap effect. The point densities plotted 

in 8(e) are gotten by taking the reciprocal of the average length of the two edges 

of the path incident to the point whose density is being calculated. Edge (A, B) 

represents the flattest portion of the relative minimum of point densities and 

edge e = (A, B) also is the relative minimum of edge length between two local 

maxima; when this edge is deleted from the MST the resulting two connected 

subtrees correspond almost exactly to the division in Fig. 8(b) - the only 

error is the misclassification of point C at the periphery. 

For those who still doubt the authenticity of this cluster analysis Fig. S(f) 

shows a diameter of the MST with the point densities plotted along side to in- 

dicate how well they reveal the cluster structure. The branching structure of 
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the MST reveals the gaussian-like point density distribution in the following 

way. Each cluster has a tree structure exhibiting a radial growth away from 

the cluster center. This radial outward growth is essentially a corollary of 

Theorem 3 along with the monotonic decrease in point densities along radial 

lines from the center. 

As a concrete use for this variety of cluster detection we paraphrase Sokal 

and Sneath [35, p. 1741 who point out that two species (the points are vectors of 

measured features of biological specimens) can be recognized as clusters even 

though all intermediate forms are present because the hybrids being less 

frequent represent a saddle point between two mountains (see Fig. 8(f). This 

is clearly a description of the touching gaussian cluster problem. These 
__, -- _._. - .-----.-- . .._ _ 

methods would probably have great difficulty recognizing substantially over- 

lapping gaussian clusters. See Section XVII for details. ‘-. .-. ------.-.-.--.. ___ ,-.._ ___._^_ - -- - 

XII. DENSITY GRADIENT DETECTION 

In our next example we face the problem of detecting a sharp gradient in 

point density between two fairly homogeneous areas of different density as in 

Fig. 9(a). The boundary that one readily perceives in this point-set is drawn 

in Fig. 9(b). The minimal spanning tree shown in Fig. 9(c) is an excellent 

example of the effect of Theorem 3 because the upper denser cluster as de- 

fined by the boundary in Fig. 9(b) satisfies the hypothesis of Theorem 3 and, 

indeed, the restriction of the MST to points of the upper cluster is alfconnected” 

subtree. This MST shows how a sparse cluster near a dense one can be 

severely fragmented by the MST; the restriction of the MST to the lower cluster 

consists of four connected subtrees, two of which are isolated nodes, One 
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answer to this problem is to detect and delete the densest clusters and then 

repeat with the remaining point-set. Detecting the limits of the denser cluster 

involves designing an algorithm which can single out the four dotted MST edges 

in Fig. 9(d). These are the inter-cluster edges connecting points in different 

clusters as defined by Fig. 9(b). By histogramming the values of edge-length 

for the MST (see Fig. 9(e)} we immediately recognize that there is a definite 

and narrow peak around 12.5 and another less definite at about 25. 

Especially significant is the well-defined valley or local minimum in the 

range 16 to 20. We have designated the four inter-cluster edges by a different 

symbol in the histogram. In general we would expect them to occupy the range 

of values between cluster peaks. The idea that inter-cluster edge lengths would 

likely be found at significant local minima of the edge-length histogram is de- 

rived from Prewitt and Mendelsohn [16] who use an analogous idea to determine 

the best quantization levels for grey-scale digitizings of cytological imagery. 

In any case the four inter-cluster edges can be distinguished from the two 

sets of intra-cluster edges in the following way. Select nodes of the MST which 

have incident edge-lengths from both the dense and sparse set determined by 

Fig. 9(e). Such a criterion singles out the nodes (P, Q, R, Sj of Fig. 9(d), Now 

select all edges incident to these nodes whose edge-lengths are not in the dense 

set. We get precisely the dotted edges of Fig. 9(d). In this example it appears 

that the edge-inconsistency criterion applied to one end of an edge would achieve 

the same purpose but this is only because the density change is extremely abrupt 

here. 

When the dense cluster has been determined by the deletion of the edges 

joining it to the sparse cluster, then the nodes of the dense cluster should be 

erased and the MST recalculated for the remaining points. Figure 9(i) depicts 
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the subtree of the original MST which serves to define the dense cluster and 

the new MST for remaining points which defines the sparse cluster. The 

dashed edges are the three edges required to construct the new MST from 

the four fragment subtrees left over when the upper cluster is removed. 

XIII. RATIONALE FOR MST AS CLUSTER DESCRIPTION 

We would like to discuss the capability of the MST of a point-set in En 

(or general metric space) to describe the shape (or topology of near-connectedness) 

of the set. Brief glimpses of this descriptive ability have been afforded us by 

Theorem 3 and several earlier examples, particularly the particle track problem. 

Here we shall try to develop a deeper understanding of what sort of cluster 

structure is embodied in the minimal spanning tree and learn how to detect 

this information in an efficient way. 

Figure 10(a) shows a planar figure with a central blob and four arm-like 

protuberances. A sample point-set from this region is depicted in Fig. 10(b), 

and the MST in Fig. 10(c). In Fig. 10(d) we show the effect of several iterations 

of “hair-removal” as explained for the particle track problem. As can be ob- 

served this has the effect of deleting most shallow branching subtrees off the 

main global paths in the MST. In this case we continued the iteration until 

the number of hairs was the same for two successive iterations. The edges 

remaining are shown as very wide in Fig. 10(d). An obvious defect of the sub- 

tree remaining is the fact that the branching at the end of arm-like structures has 

been deleted. Happily, however, these portions can be reintroduced by adding 

back sequences of hairs starting from the end nodes of the remaining subtree. 

We call the resulting tree an MST skeleton which seems an appropriate name. 

It is shown in Fig. 10(e) enclosed by the original figure boundary to show how it 

reveals some of the geometrical structure of the point-set. 
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It should be clear from this example that arms in the point set will become 

arms in the MST skeleton but that some arms which show up in the skeleton are 

not true revelation of arm-structure, Measuring branch depths and weights 

(number of nodes) along the MST skeleton as we did earlier for near-diameter 

trees will probably reduce this ambiguity somewhat but no general guarantee 

can be made. A somewhat more promising idea is to calculate an MST for a 

slightly perturbed version of the original point set and then any arm-structures 

which show up twice in the same area are not likely to be spurious. Figure 10(f) 

shows such a perturbed version of the set in 10(b) with its MST skeleton. The 
----_-_ 

skeleton arms which show up in 10(f) and 10(e) are the more outstanding features 

of the original region. 

There are situations where the structure of the MST reveals the geometry 

of the point set in a more reliable way and that is when the point-density is 

greater near the internal portions of the region as was the case for the gaussian 

clusters. Indeed, when point density is inversely proportional to distance from 

the boundary the MST skeleton is analogous to the “medial-axis” skeleton of 

Blum [18-j . 

To see the relation between MST and cluster shape under the above con- 

dition we describe a type of region which we call a “gaussian worm” in En and 

discuss what an MST for a sample point-set would look like. Let I’ be a smooth 

rectifiable curve in En and W,(I) the union of all spherical neighborhoods of 

radius r centered at points of I’ . Now’consider a probability density imposed 

on Wr( I) in such a manner that the probability of a point is greater the nearer 

to I7 the point is located. We call this a gaussian worm with axis I. A 

sample point-set S from such a distribution has an MST whose structure serves 

to delineate the axis rather well. Take any point p on I’ and pass a plane 
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(hyperplane) through p perpendicular to the direction of I’ at p. This cut 

divides the sample set S into two pieces’P and Q, a partition of S. Theorem 1 

tells us that the MST for S contains at least one edge from the link-set h (P, Q) ; 

now that edge is most likely to occur near the point p on the axis I’because 

point density is higher on the .axis making nearest distances shorter there than 

at the periphery of the worm. If we took a transverse wafer slice of the worm 

and projected the sample points in the wafer onto the plane of the slice it 

should look something like one of the two clusters in Fig.8(a). This would 

suggest a tendency toward radial MST edges pointing toward the axis, as in 

Fig. 8(c). Combining these two observations we should expect an MST whose 

diameter-path closely approximates the axis I’ with radially branching subtrees 

off this axial path. 

The radial edge phenomenon is quite a bonus; it occurs because edges in the 

MST tend to follow steepest gradients in point density. Connecting a point to its 

nearest neighbor is indeed tantamount to selecting a point where the density is 

most likely higher. 

Any strong tendency for a point-set to satisfy the gaussian worm conditions 

will reflect in the MST and can be detected there. 

XIV. ADVANTAGES OF MST FOR CLUSTER DETECTION 

We feel the principal advantage of the MST is its close conformity to the 

lfproximitytt principle of perceptual organization enunciated by Wertheimer 

[24,26] . Theorems 3 and 4 have a very ltgestaltlt flavor because the hypothesis 

of Theorem 3 and the idea of minimax path both represent a specific formaliza- 

tion of the proximity principle. Another widely held principle of perceptual 
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organization states [20, p. 871 that: 

CK Our nervous systems organize the perceived world in whatever 

way will keep changes and differences to a minimum. >> 

.The MST is a configuration which satisfies a ttminimum principle” and 

so there is an analogy between the organization effected by the MST and that 

effected by our perceptual mechanisms whatever they may be. The MST 

methods described here represent a possible model for certain perceptual 

mechanisms which should be tested in psychological experiments. The minimum 

principle is made more attractive by the demonstrated usefulness in the physical 

sciences of “principles of least effort” associated with stable configurations. 

Another advantage of MST methods is determinacy. This means that the 

.results of applying the method do not depend on random choices in the algorithm 

or the order in which points are scrutinized but are affected solely by the point- 

set given as input. 

The MST of a point-set in the plane is invariant under similarity transfor- 

mations (translations, rotations and changes in size). More generally, it is 

unchanged under any transformation which preserves the ordering of the edge- 

lengths. All this implies that a point-set can retain the same MST under some 

fairly non-linear distortions, 

Finally, the MST is relatively insensitive to small amounts of noise widely 

and randomly spread over the field. We have seen this in the particle-track 

problem but the principle applies much more generally. The noise-points will 

very often be end-nodes of the MST and inconsistent at that. 
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In a recent paper on cluster techniques Johnson [28] argues that good 

clustering algorithms should satisfy the following three properties: 

1 - Input data should consist solely of a point-set and a matrix of 
,’ 

similarities. 

2 - The method should be such that a clear, explicit and intuitive 

description of what the clustering acoomplishes is possible, 

3 - The method should be invariant under monotone transformations 

of similarity measure. 

MST methods for the most part satisfy these principles. We accommodate 1 

by treating cluster problems in the context of a general metric space. The reader 

may in fact have noticed that the triangle inequality is never needed so even a 

metric space is unnecessarily restrictive. Our concentration on two- 

dimensional examples answers 2 and “monotone invariance?’ applies because 

as we have mentioned the MST depends only on the ordering of the lengths of 

edges. This can be seen from Kruskal’s algorithm [ll] immediately. 

XV. HIERARCHICAL CLUSTERS IN TAXONOMY 

In the application of cluster detection methods to the objective classification 

of biological specimens it is usually appropriate to be able to detect what amounts 

to a hierarchy of clusters. For example, specimens tend to be grouped into 

species and these groups are themselves grouped into genera, etc. The point 

distribution in Fig. 11(a) is reproduced from the book by Sokal and Sneath on 

Numerical Taxonomy [35, p, 172) and shows graphically what they mean by 

hierarchical clusters, The two levels of clustering apparent to most observers 

of Fig. 11(a) is illustrated in Fig. 11(b). 
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Once again the MST reveals the hierarchical structure of the clustering in 

Fig. 11(a). In Fig. 11(c) we show the minimal spanning tree for Fig. 11(a). 

The dashed and dotted edges in this figure are all inconsistent so we immediately 

obtain the correct inner level of clustering depicted in Fig. 11(b). If we now 

coalesce thepoints in each cluster we obtain a shrunken version of the MST (a 

homomorphic image in the language of graph theory) consisting of only dashed 

and dotted edges and whose nodes correspond to the inner clusters of Fig. 11(b) e 

In this new MST the inconsistent edges are the dotted ones and the clusters ob- 

tained are the outer clusters of Fig. l$j as desired. This technique is similar 

to but somewhat more sensitive than the dendrograms of [35,36] . 
:_ ,__. ._ 

The degree to which this hierarchy is explicit in the original MST is shown 
::. . 

by histogramming the edge lengths (see Fig. 11(d)) and observing the one- 

dimensional clustering that occurs. 

As an example of what real data may look like we have graphed the 50 

specimens each of Iris Setosa and Iris Versicolor from data tabulated in 

R. A. Fisher [39] . We have for this example used only two of the four vari- 

ables found there. The MST for this‘point distribution is shown in Fig. 11(e) 

and the speciation is reflected in this structure. A later section treats the 

4-dimensional case in full. 

XVI. CLUSTERING, LINEAR SEPARABILLTY ANDRELATIVE COMPACTNESS 

In dealing with problems related to the separability of an n-dimensional 

point-set into distinct classes we have found that there are three different 

criteria for separability which it is useful to carefully distinguish. The first 

two are “cluster detectionlf and “hyperplane separatioiYf ; Fig. 12(a) illustrates 

the distinction. In the hyperplane case we are given the classes (solid and open 
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points) a priori and the question is whether or not a hyperplane (line) exists 

which separates the points into two subsets identical (or approximately so) to 

the given classes. In the cluster case the question is to detect the existence 

of cluster structure (dashed line) based only on the interpoint distances, This 

single example shows clearly that the two questions are quite different. The 

third criterion is “relative compactness” as introduced by Arkadev and 

Braverman [S, pp. 20-261 and is important for pattern recognition in feature 

spaces. In this case we are given a set of points divided into classes and the 

question is to determine to what extent the classes are intermixed in space. 

The upper half of Fig, 12(b) shows two classes which are relatively compact, 

whereas in the lower half the two classes are badly mixed up, It is not an 

easy matter to formulate a rigorous definition of this notion but it seems to be 

related to how smooth a curve (hypersurface) can be drawn separating the 

classes or the ratio between boundary and interior points of the two classes. 

An interior point of a class of points is one which is not very near points of 

the other class. A relative-boundary point is one which is near some point of 

the other class. Once %ear” has been solidly defined the above definition 

partitions each class into interior and boundary points and the degree of relative- 

compactness is reflected in the ratio between the number of boundary and in- 

terior points. This can be seen very quickly in Fig. 12(b) where the mixed set 

contains no clearly interior points. 

The MST can be used to approximate the degree of Y1relative-compactnessll 

of the two classes in a point-set, Just construct the MST (which takes no ac- 

count of classes) and then count the proportion of MST edges joining points in 

different classes. This approximates the ratio of boundary to interior points. 
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Figures 12(c) and 12(d) show MSTs for two point sets each consisting of 

two classes of points. We calculate the relative compactness by counting the 

number of MST edges which join similar points and dividing by one less than 

the total number of MST edges. We take one less because the MST must have 

at least one edge between dissimilar points and we want relative compactness 

to be 1 for separated clusters. In 12(c) the relative compactness is 59% while 

in 12(4 it is 77%. 

The next section has several more examples of this relative compactness 

analysis via the MST. The results obtained there suggest that the simple count 

of crossover edges may be somewhat too crude as a measure of relative compact- 

ness. Occasionally a single node which falls into the area of another class will 

-generate two or three crossover edges and hence is weighted too heavily. 
_ .- _ 

XVII. COMPUTATIONAL EXPERIENCE WITH MST CLUSTERING 
L .- ,z ‘: I. _ . . 

Programs have been written in PL/I to calculate the distance matrix for 

a set in n-space, construct the minimal spanning tree in a plex-structured 

format, compute the relative-compactness assuming each point has been given 

a class designation, calculate approximate point density at each point, determine 

a set of inconsistent edges and partition the point set into clusters based on 

deletion of inconsistent edges from the MST. In its present form the determi- 

nation of edge inconsistency requires that the length of the candidate edge exceed 

the average local edge length on each end by uT units of the respective sample 

standard deviation and furthermore that the ratio of edge length to each average 

exceed fT; the statistics are taken from a subtree of depth d. To get slightly 

better statistics we use a first pass with oT = 3 and fT = 2 and eliminate these 

oversize edges from the statistics at the second pass. This particular determi- 

nation of inconsistency obviously doesn’t detect one-way gradients however steep. 
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Several point sets have been analyzed with the help of the above programs 

and we shall discuss our conclusions briefly,. Figure 13(a) depicts a point set 

gotten by adding small amounts of “random jitter” to a subset of lattice points. 

Using fairly low thresholds oT = 2, fT = I. 3 we found two inconsistent edges. 

One bridges the quite visible vertical gap and would have been judged incon- 

sistent with oT = 2.9, fT .= 1.71. The other joins the two points in the lower 

left corner to the larger adjacent cluster and would have been inconsistent with 

UT = 2.1, fT = 1.47. The local neighborhood depth used was d = 3. 

The most extensive analysis was done on the Iris data from Fisher [39] 

mentioned earlier. This involved all 149 (there is a repetition which we de- 

leted) points in 4:dimensional space representing 3 species of iris. To help 

visualize this point-set Fig. 13(d) shows the original 4-dimensional set mapped 

into a 2xlimensiona.l space in such a way as to distort the original interpoint 

distances in a minimal way [42). 

Using the current inconsistency algorithm with d = 3, aT = 2 and fT = 2 

we obtain 8 inconsistent edges, 5 of which are end edges separating single 

points from the larger clusters; a sixth edge separates a two-point cluster. 

The final two edges separate the Iris Setosa species and a small four-point 

cluster at one end of the Iris Versicolor species. Most of this can be seen in 

Fig. 13 (e) where part of the MST has been drawn in the plane with its edge 

lengths to scale. In spite of the fact that Versicolor and Virginica do not 

separate on the basis of our inconsistency measure, the two species are 

relatively compact at a ratio of 94% since there are only 6 MSI’ edges between 

the two species out of a total 98. Furthermore, it is not hard to see from the 

MST that edge (147-78) is the main bridge between the two species and may 

warrant more detailed investigation. Figure 13(b) is a smoothed plot of edge 
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lengths along the MST path from node 106 to node 82. Each point represents 

the average of three adjacent edge lengths. According to this data the edge 

(147-78) is a local minimum of point density along the path as is the edge 

(98-72). The edge (147-78) would be judged inconsistent for d = 2, a;r = 1.4 

and fT = 1.4. We conclude that there is some evidence in the MST indicating 

a possible division at (147-78) without any use of the iris class information. 

At the very least this information reinforces the assumed speciation. It also 

suggests that Iris Versicolor may be subdivided into three subspecies (one 

fairly small) as determined by the inconsistent edge (82-94) and the relative 

minimum edge (98-72). Evidence of this sort from the MST may be quite 

helpful in suggesting where further investigations might be made, 

Since the MST for all three Iris species together put five Versicolors on 
. 

the part of the tree belonging to Virginica and vice versa for one Virginica, we 

wondered if some mistake could have been made in the original tabulating of the 

data. To test these doubts we performed MST cluster analysis on the two species 

separately. The only clearly significant result was that node 107 is well- 

separated (factor = 2.7) from the species it is supposed to belong to. 

Two problems were encountered in analyzing the Iris data. The first is 

the crudeness of measurements from [39]. In many cases the distance from 

a point to its nearest neighbor is no more than 2 or 3 times the least significant 

digit in feature measurement. Figure 11(e) shows this phenomenon quite 

graphically. The second problem is a deficiency in the current determination 

of inconsistency. There are cases where an edge which should probably be 

judged inconsistent misses detection because of the phenomenon depicted in 

Fig. 13(c). If edge AC is not considered then edge AB will be inconsistent 
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with a factor = 2. When AC is part of the local neighborhood of edge AB at 

node A then the factor drops to 1.33 - a result we find unsatisfying. 

Comparing Fig. 13(d) from Sammon [42] with the results of MST cluster 

analysis above we can see several points of fairly detailed agreement. Setosa 

is clearly a separate cluster whereas Versicolor and Virginica are touching. 

Node 107 which was separated from both species seems to have an analog in 

Fig. 13(d) and several Versicolors seem to be imbedded in the Virginica. 

There is a set of four points at the lower left extremity of the middle cluster 

in Fig. 13 (d) that probably corresponds to the four-point cluster we found but 

the gap is not clear. This may be explained by the fact that Sammon’s measure 

of distortion of a point-set is based on the average distortion of individual 

points and this allows fairly large distortions in one or two points of the set. 

Point-set distortions based on the maximum of individual distortions are 

usually avoided because they are very noise-sensitive and mathematically 

intractable. 

We have also tested our methods on guassian clusters, Figure 13(f) shows 

144 points (X, Y) with each X and Y chosen independently from a normal distri- 

bution with 0 mean and unit standard deviation. Figure 13(g) is the MST for 

this point-set showing inconsistent edges for d = 2, uT = 2 and fT = 1.5. In 

spite of the generously low factor threshold the main cluster contains 113 points 

and the next largest only 5 points. Disregarding the single-point clusters and 

raising fT to 2.0 we would get only two small clusters (83,5,95,99) and (2,86, 

6,40,53). With the exception of end edges no inconsistent edge would be found 

for fT = 2.6. Figure 13(h) shows a smoothed plot of point density along the 

path joining node 70 to node 74. There are two relative maxima of point density 

and this bimodal phenomenon can be observed in the point set which is un- 

expectedly sparse at the center. This bimodality and cluster fragmentation at 

h 
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the periphery would probably occur less frequently for substantially larger 

sample sizes. As can be seen from Fig. 13(g) the smaller fragment:s (including 

isolated nodes) tend to be near the periphery of the cluster and the directions of 

MST edges tend to be toward the center of the cluster in a fashion discussed 

earlier in conjunction with more homogeneous gaussian clusters. 

Finally, we tried several cases of overlapping gaussian ‘lclassesll to see 

what could be detected from the MST analysis. In each case there were 72 

points in each of two classes labelled “A” and lrBtr. Each class was a translated 

version of a sample from the distribution used above. In each case relative 

compactness was calculated and seemed to be well-correlated with the degree 

of overlap of the clusters. The following table gives relative compactness as 

a function of the distance between the centers of the two classes: 

Distance of Centers 0 1.5 2.0 2.5 3.0 3.35 

Relative-Compactness 5 7 W,79) (89983) 89.0 93.0 97.00 

An investigation of the point density along major paths of one of the cases 

with distance = 2 revealed no information that could warrant separating the two 

classes. A similar investigation of the case with distance = 3.35 revealed 

enough to divide the MST at a definite relative minimum of point density 

which division fit the class designations quite well. Figure 13(j) depicts most 

of the point set and Fig. 13(i) shows in condensed form several of the major 

branches in the MST. The longest MST path joins node 39 to node 51 and 

Fig. 13(k) plots point density along this path. The apparent relative mini- 

mum around edge (11,45) would break the MST only two steps away from edge 
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We conclude that fairly inhomogeneous overlapping gaussian clusters 

cannot be detected as separate unless the overlap is minor. 

XVIII. DIRECTIONS FOR FURTHER RESEARCH 

We see three major directions in which this paper suggests further investi- 

gation. One is in psychology, *one in the area of cluster description and one re- 

lates to feature space determination for pattern discrimination. 

For the psychologist interested in visual perception we feel the MST along 

with the idea of “edge inconsistency” and other techniques described earlier 

afford a quantitative tool for characterizing patterns of points in the plane. It 

seems natural to want to investigate in detail the possible correlation between 

the clusters of human perception and those determined by our quantitative tools. 

A program of research similar to the work of Attneave and Arnoult [41] is what 

we have in mind. We feel our work strongly suggests that the inconsistent 

edges of the MST of a point-set are correlated with cluster separations seen by 

human visual perception. A more precise statement of this correlation awaits 

appropriate perceptual experiments; for example, we conjecture that the per- 

centage of subjects who see a separation between two clusters is monotonically 

related to the ratio measuring the degree of inconsistency of. the edge bridging 

the two clusters. We also suspect that the ease of separation of two clusters 

(visually) is somewhat dependent on the sizes of the clusters and the homogeneity 

of cluster density. There are any number of questions that one can pose in this 

context and the answers may provide new hints to psychophysicists. 

The second matter of unfinished business is a more extensive study of what 

quantitative structure of a point-set can be extracted from its MST. We have 

made several simple probes in this paper (for example, path histograms and 
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iterated hair removal) but these can only be considered as a beginning. Other 

techniques will probably be motivated by the need to describe cluster structure 

that has not occurred to us. We have concentrated on point-sets embedded in 

metric spaces because there was a great deal we could say at this level of 

generality; nevertheless, point-sets in more structured spaces (e. g. , En where 

direction is defined) can probably be better described by using the additional 

structure. For example, the radial structure of density in the gaussian clusters 

of Fig. 8(a) is only hinted at by the topology of its MST but can be confirmed by 

observing the consistency of edge direction in the radial paths and the uniform 

distribution of radial directions around the unit circle (see Fig. 8(c)). 

The third direction for research suggested by this paper is to determine if 

a particular n-dimensional feature space is good for the discrimination of two 

classes of points. The optimum situation is when the two classes are actually 

two clusters as well separated as those in Fig. l(a). Touching clusters as in 

Figs, 1 (i) or l(j) would stiI1 be a useful result. If the situation were like that 

in the upper half of Fig, 12(e) then discrimination can probably be accomplished 

even though the classes are not clusters. Relative compactness of two classes 

is enough to warrant that a “nearest-neighbor?’ discrimination algorithm [6] 

will be moderately successful. If the two classes are mixed up like the bottom 

half of Fig. U(b) then we claim there is no hope for this feature space and 

another set of measurements should be tried, The methods for determining 

what situation actually applies are contained here and this gives us a handle on 

the very important problem of judging the efficacy of a given feature space for 

separating a pair of classes. 
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APPENDIX 

Theorem 1 

Any MST for G contains at least one edge from each h (P, Q) . 

Proof 

We show that a spanning tree T* containing no edge from h(P, Q) can be 

improved by switching, one of its edges for one in X (P, Q). In fact, select any 

edge (X, Y) L X (P, Q) and add it to T* to produce a new graph with precisely 

one circuit. The portion of this circuit which lies in T* must have at least 

one edge (U, V) in the cut-set C(P, Q) because X and Y are in P and Q respectively. 

The edge (U, V) is not in A@?, Q) by definition of T*. The spanning tree T = 
1 

T*-(U, V) 
> 

U (X, Y) has smaller weight than T* because by definition of X(P, Q), w(X, Y) < w(U, V). 

Thus any minimal spanning tree must have at least one edge from A(P, Q). 

Lemma 1 

Each edge (X, Y) of a spanning tree T determines a unique partition (P, Q) of 

the nodes of G in a natural way so that C(P, Q) contains exactly one edge in T. 

Proof 

Let T* = T -(X, Y) be the graph obtained by deleting edge (X, Y) from the 

spanning tree T. Since every edge of a tree is a bridge it follows that T* has 

two connected components Ti and Ti and the nodes X and Y are in different 

components (say X f Ti, Y ‘.T2). Now let P denote the nodes of Ti and Q 

the nodes of T2 . (P, Q) certainly are disjoint and they contain all nodes of G 

since no nodes were deleted from T which spans G. Also the only edge in T 

joining P to Q is the deleted edge (X, Y) and so the lemma is proved. 

Theorem 2 

All MST edges are links of some partition of G. 
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Proof 

Let T be any MST for G and (X, Y) any e,dge in T. Let (P, Q) be the 

unique partition assured by Lemma 1. From Theorem 1 we see that T must 

contain at least one edge from X(P, Q) , but sinc,e T contains only one edge 

from C(P, Q) it certainly contains only one edge of x(P, Q). The edge (X, Y) 

must therefore be the edge which belongs to A(P, Q) and so (X, Y) is a link of 
__:..: 

G. 

- Corollary 1 (Kruskal [ll] ) 
,. _, . . 

If all edge weights of G are different then the MSf is unique. 

Proof 

In this case each X (P, Q) is a single edge which must belong to each MST. _.. . 
Thus the set of all links of G, L(G) ~. T for any MST. According to Theorem 2, 

T c L(G) for any MST. This means T c L(G) c T for any MST and hence any 

MST must be identical to L(G) and so unique. We have in fact proved the stronger: 

Corollary 2 

If all edge weights of G are different then the MST is unique and identical 

to L(G). 

The following theorem is the most important we shall derive because it 

relates the .MST to the problem, of cluster detection. 

Theorem 3 

If S denotes the nodes of G and C is a non-empty subset of S with the 

property that p (P, Q) < 0 (C, S-C) for all partitions (P, Q) of C then the restriction 

of any MST to the nodes of C forms a connected subtree of the MST. 

Proof 

Select an arbitrary partition (P,‘Q) of C and let R = S - C. We ‘must show 

that any MST contains at least one edge in the cut-set C (P, Q) . To do this we 

need to show that p(P, Q) < p(P,R) for then .j,(P, S-P) s C(P, Q). 
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First notice that 

and hence 

PG S-C) = pWQ, R) = Min p(P, R), p(~, R) 

By the hypothesis of the theorem 
1.; . . 

._., _: 

and therefore 
___i- 

pGS-C) >pcp,a, 

p(p, Q) < p(C, S-C) 2 p(P,R) . 

.. As indjcated earlier this implies the link-set I$?, S-P) is a subset of the 

cut-set C(P, Q). Invoking Theorem 1 we conclude that any MST has at least 

one edge from A(P, S-P) and hence from C(P, Q) whenever (P, Q) partitions C. - 

This means the restriction of an MST to C cannot fall into two or more components. 
- ; : 

Algorithm 1 (Kruskal [ll] ) 

Arrange the edges of G in order from smalles;t to largest weight and then 

select edges in order making sure to select only edges which do not form a circuit 

with those already chosen. Stop when (n-l) edges have been selected where n is 

the number .of nodes in G. The set of edges is then an MST for G. 
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Example 

The following table shows how Algorithm 1 would work on the graph in 

Fig. 4(a). 

Edge Weight Circuit MST Edges 

BC 2 * 
c 

DF 2 * 

DE 3 * 

EF 4 

AB 4 

AC 5 

AD 8 

_ __ : ._P. 

CD 9 

CF ." 10 

(DEFD) 

* 

(ABCA) 

~ * (5th edge) 

Algorithm 2 (Prim [12] ) 

Begin with an arbitrary node of G and add the edge with smallest weight 

connected to this node. This edge with its two end-nodes constitutes fragment- 

tree TI. The k-th fragment-tree is gotten by adding the shortest edge from 

Tk-l to the nodes of G not in Tk I. This continues until Tn-I is the desired 

MST. . 

In this algorithm the MST is grown from a single node by adding the 

closest node to the current tree at each stage along with the edge correspond- 

ing to that closest distance (smallest weight). 



Example 

For the graph of Fig. 4(a) starting with node A we get: 

Fragment Nodes New Edge Weight 

.s  A AB 4 _ . 
&B BC 2 

&KC AD 8 

A,..B,C,D DF 2 
_. _. 

&B,C,D,F DE 3 

A,B,C,D,F,E 

From the point-of-view of computational efficiency Algorithm 2 is the 

best when done by computer program. Algorithm 1 requires presorting of 

all..edges and must test for existence of circuits at each step, both of which 

.’ are iron-trivial tasks computationally. Algorithm 2, on the other hand, looks 

at each edge exactly once and can be programmed in such a way that only n 

edges need be in the computer memory at one time where n is, as before, 

the number of nodes in G. Since the total number of edges in our graphs will 

be approximately n2/2 this is an important consideration. 

Gower and Ross [36] give Algol programs to construct an MST using 

Algorithm 2 and to print out the MST. They discuss storage and time require- 

ments for their programs in some detail. We have implemented Algorithm 2 

in PL/l but the MST is represented by a plex-structure so that neighborhood 

explorations in the MST can be programmed in a more straight-forward and 

efficient manner. 
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