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Abstract. This paper presents a fast object class localization frame-
work implemented on a data parallel architecture currently available in
recent computers. Our case study, the implementation of Histograms of
Oriented Gradients (HOG) descriptors, shows that just by using this
recent programming model we can easily speed up an original CPU-
only implementation by a factor of 34, making it unnecessary to use
early rejection cascades that sacrifice classification performance, even in
real-time conditions. Using recent techniques to program the Graphics
Processing Unit (GPU) allow our method to scale up to the latest, as
well as to future improvements of the hardware.

1 Introduction

In recent literature, densely sampled local descriptors have shown excellent per-
formance, and therefore have become more and more popular for object class
recognition. As the processing power of computers increases, sliding window-
based techniques become more and more feasible for real-time applications.
While interest point detectors offer a smart way for pre-sampling possible lo-
cations and therefore provide a sparser set for learning and recognition, the
advantage of dense random sampling, or sampling on a regular lattice has been
shown [1,2] to outperform sparse representations. Many of the best object class
detectors use sliding window techniques (e.g, [3,4,5,6,7,8,9]), i.e., extract over-
lapping detection windows at each possible position, or on a regular lattice, and
evaluate a classifier. The sliding window technique is, in general, often criticized
as being too resource intensive, and consequently, it is often seen as unfeasible
for real-time systems. However, many high dynamic automotive applications are
interested in detecting pedestrians using this technique in a fast and yet robust
manner [6,10,11]. In general, gradient based methods [5,6,7,8,9] perform very
well, but most of them are computationally expensive.

Existing real-time solutions include incorporating simple features, that are
computed rapidly, such as Haar-like wavelets in [3,4], and improving the speed
via early rejection. This is typically achieved by a cascade of classifiers [3,12], or
alternatively arranging features from coarse to fine for multi-resolution process-
ing [13]. While these techniques [12,13] can make a state-of-the-art detector [5]
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faster, their early rejection comes with drawbacks. Zhang et al. [13] misclassi-
fies “harder examples”, i.e. detections having lower confidence, more easily. This
performance loss is compensated by running the detector with more expensive
features at higher resolution. Zhu et al. [12] select a subset of features from a
detection window using AdaBoost. Since the number of features is fixed, their
method becomes computationally expensive for scanning a large number of win-
dows, which is a typical requirement for detecting objects on small scales.

The ideal solution is to avoid rejection phases relying on coarser features,
downscaled images, or other approximations, and to process the entire detection
window with a strong, high-resolution classifier. In this paper we argue that
methods that sacrifice classification performance in order to achieve speedups,
do not stand in the long term. We show that by using parallel architectures that
can be found in many recent PC’s graphics processors (GPUs) we can easily
obtain a speedup of 30 and more. As a case study, we present an implementation
of Dalal & Triggs’ Histograms of Oriented Gradients (HOG) approach using
a technology called general-purpose computation on graphics processing units
(GPGPU). Our performance analysis shows guidelines for better optimization,
and how to avoid unnecessary overhead using GPGPU technology.

HOG descriptors are features developed for object class detection, and when
combined with SVM classification it is one of the best detectors available [14].
To the best of our knowledge there is no published GPU-based HOG implemen-
tation available in the literature. However, there are a few related ongoing vision
projects, that take advantage of the GPU. Examples include Lowe’s Scale In-
variant Feature Transform (SIFT) [15], a very similar type of descriptor, which
has been implemented on GPUs in OpenVIDIA [16] and recently by Mårten
Björkman [17].

2 Object Class Detection Using HOG

This section provides a brief overview of object class detection using HOG [5]
features. All provided parameters correspond to experiments on people detection,
and are similar to [5].

Detection Phase. A given test image is scanned at all scales and locations.
The ratio between the scales is 1.05, and the overlapping detection windows are
extracted with a step size of 8 pixels, both horizontally and vertically. HOG
features are computed for each detection window, and a linear SVM classifier
decides upon the presence of the object class. Finally, a robust mode estimator,
a mean shift algorithm, fuses multiple detections over position and scale space
(3D), and the system returns bounding boxes marked by their confidence.

Figure 1 illustrates the computation of a rectangular HOG feature for a given
detection window. After image normalization and gradient computation, each de-
tection window is divided into adjacent cells of 8×8 pixels. Each cell is represented
by a 9-bin histogram of gradient orientations in the range of 0◦ − 180◦, weighted
by their magnitudes. A group of 2 × 2 cells is called a block. Blocks are overlap-
ping, and are normalized using L2-Hys, the Lowe-style clipped L2 norm. A block is



Sliding-Windows for Rapid Object Class Localization 73

Fig. 1. A HOG descriptor (left). Steps of localization using HOG descriptors (right).

represented as a concatenation of all cell histograms, and a HOG feature as a con-
catenation of all blocks. For people, a detection window is 64× 128 pixels. When
blocks overlap 50%, i.e., 1 cell – which is a typical choice for efficient CPU imple-
mentations – a detection window consists of 7 × 15 = 105 blocks, and therefore
the length of a HOG descriptor is 105 × 2 × 2 × 9 = 3780. To be robust to small
translations, cell histograms are computed with trilinear interpolation. Gradient
magnitudes are weighted by a Gaussian (σ = 8.0) centered at the middle of the
given block. In case of color images, channels are separated, and orientation his-
tograms are built using the maximum gradient of the channels.

Learning Phase. The HOG descriptors are computed similarly to detection.
The learning phase differs in that there is neither need to compute the full
scale-space for all images, nor to scan the images with a sliding window. Using
the given annotations, normalized crops of fixed resolution are created and fed
into SVM training. Negative crops are first chosen at random, or given by the
dataset. After SVM training they are resampled (false positives) to create “hard
examples” and retrain the SVM – a typical technique to improve the classifier
by one order of magnitude [10].

3 Programming on the GPU

The term GPGPU refers to a technique that uses the graphics chip as a co-
processor to perform scientific computations. The architecture of GPUs allows
highly parallel computations at high speed, and thus provides an excellent plat-
form for computer vision. GPU manufacturers have realized the need for better
support of non-graphics applications, and therefore they have been working on
novel architectures. In this paper our implementation is based on NVIDIA’s
CUDA architecture and programming model. Consequently, we use a CUDA
capable card, GeForce 8800 Ultra, for our experiments. All numbers and speed
measurements in this paper reflect this model. While CUDA allows us to use
typical computer graphics procedures, such as vertex and fragment shaders, al-
gorithms still need to be adapted to achieve high data level parallelism, and
efficient memory access.



74 C. Wojek et al.

The graphics card GeForce 8800 Ultra, a highly multi-threaded device, con-
sists of 16 multi-processors, each one made up of 8 processors, and therefore,
capable of running 128 threads simultaneously. Programs running on the GPU,
called kernels, are compiled with NVIDIA’s C compiler. Kernels are launched
with a user specified grid and thread block configuration. Thread blocks group
up to 512 threads together, and are arranged in a grid to help complex address-
ing. Each block runs on the same multi-processor and therefore may share data,
via on-chip shared memories. Each multi-processor has 8192 registers and 16384
bytes of shared memory that are dynamically allocated to threads and thread
blocks. Due to these limitations and the configuration of threads, not all pro-
cessors can be active all the time. The ratio that reflects how a kernel occupies
the GPU is called the occupancy and is 100% at best. In general, higher occu-
pancy hides the latency of global memory accesses better, and therefore often
leads to better performance. Besides the on-chip shared memory there are three
other types of off-chip memories. The global memory (768MB), also called device
memory, has high latency and is not cached. Constant memory (65536 bytes)
is typically used if all threads are accessing the same pre-computed value, and
texture memory (65536 bytes) is optimized for 2D spatial locality. Constant and
texture memories are transparently cached (8KB on-chip). Each type of memory
has different access patterns, and thus programmers have to decide where the
data is stored for best performance. E.g., the high-latency global memory is best
accessed in continuous chunks that are aligned w.r.t. thread blocks. This is the
so-called coalesced memory access.

4 HOG on the GPU

Figure 1 shows the steps of our implementation. First, the image is trans-
ferred from the CPU’s main memory to the GPU’s global memory. After initial
padding, the test image is gradually downscaled, and for each scale the HOG
descriptor is computed on the color normalized channels. A linear SVM is evalu-
ated and the scores are transferred back to the CPU’s memory for non-maximum
suppression. Training of the SVM is done on the CPU with fixed image crops
(Sect. 6), but using the GPU implementation to extract HOGs. In the following
we detail the steps of our detector.

Preprocessing. Preprocessing consists of four steps. In order to detect ob-
jects that are partially cropped or near the image boundaries, extra padding is
added to each side of the image. Then, the image is gradually downscaled, color
channels are separated, and on each channel a color normalization is performed.
In the following we discuss the implementation of each step.

Padding. After a test image is transferred to the global memory of the GPU,
extra pixels are added to each side of the image. Each new pixel is computed by
averaging the color of the closest 5 pixels in the previous row/column.

The implementation is split into 2, vertical and horizontal, kernels while for
each 2 thread blocks are launched. Due to the pixel dependencies from previous
computations, kernels compute the missing pixels in a row/column-wise manner.
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Table 1. Maximum occupancy per kernel is determined by the number of registers,
amount of shared memory (in bytes), and the thread block configuration. Bold numbers
indicate the current limitation. Padding needs additional shared memory D, see text for
details. The last column shows whether the kernel has fully coalesced memory access.

Kernel Registers Sh.Mem. Thrd/Blk Occupancy Coal. mem.
Padding 22 80 + D 320 max.42% Only vert.

Downscale 9 40 16 × 16 100% Yes
C. Decomp., Gamma com. 7 72 16 × 16 100% Yes

Horizontal Convolution 6 556 145 83% Yes
Vertical Convolution 15 3244 16 × 8 67% Yes
Grad.Ori.Mag. - Max 13 60 16 × 16 67% Yes

Block Histograms 13 2468 16 × 4 50% Yes
Block Normalization 5 312 36 67% No

Linear SVM Evaluation 15 1072 128 67% Yes

Our implementation loads an entire row/column into the shared memory (max.
16KB), imposing a reasonable limit on target image dimensions, 2038 pixels.
Due to the limitation on the number of registers the kernel occupancy is at most
42% as indicated in Tbl. 1.

Downscale. Our downscale kernel takes advantage of the texturing unit to
efficiently subsample the source image by a factor of 1.05 using linear interpo-
lation. The target image is “covered” by thread blocks which consist of 16 × 16
threads. Each thread computes one pixel of the downscaled image.

Color Decomposition & Gamma Compression. This kernel’s purpose is
to separate the color channels of a 32-bit color interleaved image to red, green,
and blue. The target pixels of the decomposed channels are also converted to
floats, for further processing. Each thread corresponds to a pixel, and for effi-
cient memory access they are grouped into 16× 16 thread blocks. Since gamma
compression also is a pixel-wise operation, it is integrated into this kernel for
best performance, i.e., to save unnecessary kernel launches.

Color Gradients. Separable convolution kernels (from the SDK examples)
compute x and y derivatives of each color channel (3 ∗ 2 kernel launches). Ac-
cording to the guidelines, thread block sizes are fixed to 145 and 128 threads
for horizontal and vertical convolutions, respectively. The occupancy is bounded
by these numbers, and is 83% for horizontal and 67% for vertical processing (cf.
Tbl. 1).

The next kernel computes gradient orientations and magnitudes. Each thread
is responsible for computing one pixel taken as a maximum of the gradient on
the three channels. For efficiency threads are grouped in 16 × 16 blocks.

Block Histograms. Our implementation is inspired by the histogram64 ex-
ample [18]. The basic idea of parallel histogram computation is to store partial
results, so-called sub-histograms, in the low-latency shared memory. If the num-
ber of histogram bins per cell, hc is 9, our algorithm requires hc ∗sizeof(float) =
9 ∗ 4 = 36 bytes of shared memory per thread. There are two pre-computed ta-
bles, Gaussian weights and bilinear spatial weighting, transferred to the texture
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memory. Interpolation between the orientation bin centers is computed in the
kernel. Assuming HOG block size of 2 × 2 cells, and 8 × 8-pixel cell sizes, the
Gaussian weights require 16 ∗ 16 ∗ 4 = 1024 bytes, and the bilinear weighting
table needs 16 ∗ 16 ∗ 2 ∗ 2 ∗ 4 = 4096 bytes.

Each thread block is responsible for the computation of one HOG block.
Threads within a block are logically grouped, such that each group computes
one cell histogram, and each thread processes one column of gradient orienta-
tion and magnitude values corresponding to the HOG block. Given the above
mentioned cell and block sizes, in our case a thread block has 16 × 4 threads.
This arrangement reflects the cell structure within a HOG block, and therefore
provides easier indexing to our pre-computed tables.

The second part of the kernel fuses the sub-histograms to a single HOG block
histogram using the same technique as histogram64 [18]. Our configuration runs
with 50% GPU occupancy, due to size limits on shared memory (cf. Tbl. 1).

Block Normalization. HOG blocks are normalized individually using L2-
Hys by a kernel, where each thread block is responsible to normalize one HOG
block, and consists of the number of histogram bins per block, hb = 36, threads.
Squaring of the individual elements as well as the sum of the squares are com-
puted in parallel. Keeping a full HOG block in shared memory avoids the
latency of global memory accesses. The kernel runs with 67% occupancy (cf.
Tbl. 1).

Linear SVM Evaluation. This kernel is similar to the block normalization
kernel, since both are based on a dot product, and therefore inspired by the
example scalarProd [18]. Each thread block is responsible for one detection
window. Each thread in a block computes weighted sums corresponding to each
column of the window. Partial sums are added in a pairwise element fashion, at
each time using half of the threads until only one thread is left running. Finally,
the bias of the hyperplane is subtracted and the distance from the margin is
stored in global memory. The number of threads per block is 128.

During computation, the linear weights of the trained SVM are kept in texture
memory. Keeping all values of a detection window in shared memory would
occupy nearly all available space (7 ∗ 15 ∗ 36 ∗ 4 = 15120 bytes), therefore we
have decided to store one partial result of the dot product for each thread,
128 ∗ 4 = 512 bytes. The kernel runs with 67% GPU occupancy (cf. Tbl. 1).

Non-Maximum Suppression. The window-wise classification is insensitive
to small changes in scale and position. Thus, the detector naturally fires multiple
times at nearby scale and space positions. To obtain a single final hypothesis
for each object, these detections are fused with a non-maximum suppression
algorithm, a scale adaptive bandwidth mean shift [19].

This algorithm is currently running on the CPU. Our current time estimates
suggest that it is not yet worth to run it on the GPU. However, parallelization
of kernel density estimates with mode searching could itself be a research topic.
In the future, we plan to run the estimation on the CPU asynchronously and
simultaneously to the other computations on the GPU.
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5 Discussion on GPU Implementations

This section summarizes our general experience for porting existing computer
vision techniques to the GPU. The following guidelines should give an impression
for what is worth, and what is hard to realize on GPU architectures.

Port Complete Sequence of Operations to the GPU. Due to the trans-
fer overhead between the CPU and the GPU, it is not profitable to port only
small portions of a complete framework to the GPU. E.g., just to run convolution
on the GPU and do the rest on the CPU involves an overhead twice as much
as the effective computation on the GPU. It is better to keep the data on the
GPU for further processing, in particular, if we can further compress it. E.g., our
transfer time of all SVM results currently takes 0.430ms even for a large image
of 1280× 960, however, transferring back all HOG descriptors would have taken
2 to 3 orders of magnitude more time.

Group Subsequent Steps Together. Our experience has shown that in-
tegrating kernels that access the data in the same fashion leads to significant
speed improvements due to the reduced number of kernel launches. E.g., if we
split the decompose colors & gamma compression, or the gradient orientation
& maximum selection kernels into two, our algorithm slows down by 2ms for
each. Figure 2 (left) shows that the GPU computation time for an image of size
320 × 240 is 13.297ms, and the program actually spends 20.179ms in the driver
software, which includes the effective GPU time and the additional overhead of
kernel launches and parameter passing.

Larger Data, Higher Speedup. Consequently, the more data we process,
the larger is the expected speedup compared to a CPU implementation. No-
tice that the overhead is independent of the GPU time, and in case of longer
computations, it could be relatively small. Figure 2 (right) shows the real GPU
computation in relation to the kernel running time, including overhead, on dif-
ferent image sizes. While for a smaller image the overhead is 34% for a larger
image it is only 17%.

Choose the Right Memory Type. Different memory types have different
access patterns. It is important to choose the right one. E.g., the SVM evaluation
may store the SVM weights in constant memory. However, since each thread ac-
cesses a different weight, it is better to use the texture memory. In our case SVM
evaluation speeds up by a factor of 1.6, i.e., by 3ms for a 320× 240 image using
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the texture memory. Similarly another 3ms is won by storing the pre-computed
Gaussian weights in the texture memory for the histogram computation.

Address Aligned Data. Alignment guidelines are essential for global mem-
ory access. In simple cases this usually means additional padding of images. For
more complicated cases, when the same data is accessed multiple times using
different patterns, the threads have to be aligned on the data, e.g., by launch-
ing more threads, and according to the alignment some of them do nothing.
Our experience has shown that non-coalesced global memory access may cause
a slowdown of kernels of up to 10 times.

Flexibility has High Impact on Speed. Due to the above guidelines,
flexibility, i.e., using not hard-coded parameters can cause significant slowdown
by, e.g; non-coalesced memory access, or by increasing kernel launch overhead
due to more parameters, or by more variables and computations that increase the
number of registers and the amount of required shared memory, and consequently
reducing occupancy.

Launch Many Threads to Scale for the Future. Finally, to scale well for
future improvements of hardware a good implementation launches thousands of
threads simultaneously, even if only 128 run physically parallel on the current
cards.

Due to the above overheads, the sub-optimal memory access, and the rest of
the computation, loading/saving, etc., one can only expect an actual speedup of a
magnitude less than 128. In the following section we report real WALL times for
our experiments, and measure the actual speedup of our HOG implementation.

6 People Detection Experiments
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Fig. 3. Performance on the
INRIA Person test set

In order to verify both performance and runtime
of our implementation we conducted several ex-
periments on the INRIA Person test set [5]. The
dataset contains people in different challenging
scenes. For training, the dataset contains 2416
normalized positive (i.e., people cropped from 615
images) and 1218 negative images. For testing the
dataset has 453 negative images, a set of 1132 pos-
itive crops, and their corresponding 288 full size
images.

For evaluation we use precision-recall curves,
which provide a more intuitive and more informa-
tive report than fppw (false positives per window)
on the performance of object localization. fppw plots do not reflect the distribu-
tion of false positives in scale and location space, i.e., how the classifier performs
in the vicinity of objects, or on background that is similar to the object context.
As described earlier our system has a non-maximum suppression step to merge
nearby detections to one final hypothesis, and therefore providing a clear way
for evaluation. Consequently, our results are computed using only the full-sized
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288 positive images, and not the crops. Detections are counted as true positives
if they match the ground truth annotations with less than 50% overlap error,
and double detections are counted as false positives, according to the PASCAL
[14] criteria.

Even though we have done our best to implement the original algorithm
as close- as possible, due to restructuring the algorithm and using different
precision for computations, small changes in recognition performance are ex-
pected. For this reason, our first set of experiments compares our localiza-
tion results to CPU implementations in terms of recall and precision. Figure 3
(top) shows three curves. The blue dotted curve corresponds to results obtained
by running the publicly available binary written by the original author; the
dashed curve, performing similar to the dotted, is our CPU based reimple-
mentation of [5]; the solid red curve is our GPU implementation, which ob-
tains slightly better results. The improvement probably comes from floating
point precision on interpolated histogram computation, since the CPU imple-
mentations use integers with rounding errors at several points, presumably for
speedups. Figure 3 (right) reports total run times1 for the test. Our implementa-
tion runs 34 times faster than Dalal’s binary, and 30 times faster than our CPU
reimplementation.

How can we make our detector even faster? First, one can try to improve the
performance by reducing the overhead, e.g., by transferring more images at a
time to the GPU, or by reducing kernel calls. Employing several GPUs at a time
allows pipelining and the expected throughput can be further increased up to
4 times with currently available GPU configurations. If we are ready to trade
our performance for speed, small modification on the parameters may also be
sufficient. Figure 4 shows an example, when the algorithm uses a coarser scale-
space than before. Speed results are reported in a more intuitive way, on a per
image basis. The experiment shows, that a small adjustment of the scale factor
does not influence the precision of our detector, but causes a small drop in recall.
On average, on a 320 × 240 image the localization speeds up from 34 fps to 67
fps, i.e., by a factor of 2.0.

1 WALL times always indicate total running time, i.e., the “real” time reported by the
time utility on the binary.
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7 Conclusions

In this paper we have shown a parallel implementation of an object class detector
using HOG features. Our implementation runs 34 fps on 320× 240 images, and
is approximately 34 times faster than previous implementations, without any
tradeoff in performance. Our experiments used one single GPU only, but due to
the flexible programming model, it scales up to multi-GPU systems, such as the
Tesla Computing Systems with an additional expected speedup of 2 to 4. We
have also analyzed the overhead created mainly by data transfers and system
calls, which defines the current limitation of these architectures.

Experiments on adjusting sliding-window parameters have shown the tradeoff
between classification performance and speed: we have shown a detector that
runs at 67 fps with similar precision, but a small drop in recall.

In the future, we plan to further improve our current implementation by
reducing kernel launches and test on multi-GPU systems, as well as to adopt
other features and classifiers to GPU-based architectures.
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