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Abstract—Neighborhood denoising filters are powerful 

techniques in image processing and can effectively enhance the 

image quality in CT reconstructions. In this study, by taking the 

bilateral filter and the non-local mean filter as two examples, we 

discuss their implementations and perform fine-tuning on the 

targeted GPU architecture. Experimental results show that the 

straightforward GPU-based neighborhood filters can be further 

accelerated by pre-fetching. The optimized GPU-accelerated 

denoising filters are ready for plug-in into reconstruction 

framework to enable fast denoising without compromising image 

quality. 

 
Index Terms—GPU, Denoising, Bilateral Filter, non-local mean 

filter, CUDA, Computed Tomography 

I. INTRODUCTION 

There has been growing concern about the high radiation dose 

delivered to patients in cone-beam X-ray CT, and thus recently 

low dose CT has gained substantial interests in research. It 

usually involves lowering X-ray energy or reducing the 

number of projections, or both. In traditional scenarios, these 

approaches suffer from low signal-noise-ratio (SNR). To lower 

the radiation doses without compromising image quality, 

recent research proposes to use iterative reconstruction 

methods together with neighborhood denoising filters [1] as 

regularization steps interleaved with reconstruction steps. 

Neighborhood filters are ubiquitous in image de-noising.  

The bilateral filter (BF) [2] and the non-local means filter 

(NLM) [3] are two of the most popular neighborhood filters 

and there has been widespread coverage of research on using 

these two filters [1] [4-6]. The advantages of these denoising 

filters are that they can help to reduce substantial noise and in 

the meantime preserve edges. However, to achieve the high-

quality denoising effects, these filters require extensive 

neighborhood search which results in long running times. 

There are two major approaches to speed up the denoising 

procedure. One approach focuses on how to approximate exact 

filtering computations [2][3]. Another approach turns to 

parallel computing devices for solutions, most dominantly 

high-performance graphics processing units (GPUs). Our 

earlier works [1] shows that a straightforward GPU 

implementation offered better speed than filtering via TVM 

(Total Variation Minimization). In that study we focused on 

both the quality and speed performance of regularized iterative 

CT reconstruction. In the current paper, we focus on advanced 

accelerating techniques for the various neighborhood filters. 

We show that pre-computation along with a pre-fetching 

scheme is quite effective for denoising filters, especially for 

large neighborhood sizes.  

In this paper, Section 2 presents related work and 

background. Section 3 introduces the overall methodology and 

Section 4 shows results, followed by conclusion in Section 5. 

II. BACKGROUND 

In this paper, we take the NVIDIA GeForce GTX 480 GPU as 

an example to discuss the GPU architecture. A GTX 480 GPU 

card contains 480 processors. These 480 processors are 

grouped into 15 streaming multi-processor (SMP) which can 

perform tasks independently from each other. Each SMP 

contains 32 processors, which allow 32 threads (a warp) to 

execute concurrently. Thus each SMP is inherently based on 

single instruction multiple data (SIMD) design. In the best 

case, the GTX 480 has theoretical computational power 

reaching 1.3 Tera-floating point operations per second 

(TFLOPS) in single floating-point precision which largely 

outperform the CPU computational power.  

GPU device memory is an off-chip memory that stores the 

input data and receives the output from the processors. The 

GTX 480 has 1.5GB DDR5 device memory with peak 

bandwidth 177.4 GB/s. Although the bandwidth of GPU 

memory is much faster than that of the CPU memory, it has 

several limitations. First, each off-chip memory (also called 

device/global memory) access instruction takes several 

hundreds of clock cycle. This latency needs to be alleviated by 

issuing a large amount of threads which will automatically 

enable hardware context switching. Second, the memory 

instructions should better to be coalesced or at least have a 

specified granularity (128 bytes). The maximum GPU global 

bandwidth can only be achieved by issuing 1 memory 

instruction for 128 bytes data. This implies 32 neighbouring 

threads (a warp) should read/write within a 128-byte-aligned 

segment. With proper alignment, sequential mapping of 

threads to memory address will yield a coalesced memory 

access pattern.  

To further reduce the huge costs associated with off-chip 

memory access, the cache can be leveraged. Constant memory 

cache is the simplest type of cache. It is an off-chip memory 

with the similar bandwidth as device memory. To speed up the 

constant data access rate, a GTX 480 contains an 8KB cache 

per 8 processors for constant memory access. Besides the 

constant cache, 32 processors within one SMP share an L1 
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cache and a user-controllable cache known as the shared 

memory. The difference between the L1 cache and the shared 

memory is that the former is automatically scheduled by the 

hardware and the latter can be controlled by the user to 

perform prefetching. The amount of shared memory and L1 

cache in one SMP is user-configurable (16KB + 48KB or 

48KB + 16 KB).  

NVIDIA GPUs can be programmed via a C-like API – 

CUDA. CUDA is a general purpose API which exposes more 

control over how a task is computed on the GPU hardware, as 

compared to graphics-based APIs (CG, GLSL). The task-

hardware mapping is enabled by introducing the concept of 

―block”. Each block is mapped to an SMP.   

The key difference between CPU implementation and its 

GPU counterpart is the parallel programing. While typically 

CPU program will launch one thread, GPU will launch 

millions of threads with the same instruction. A large amount 

of threads are executed in terms of thread blocks, whereas the 

total task is called grid. On the hardware level, each block is 

mapped to a single SMP. In the back-projection stage of the 

CT reconstruction, SMPs are assigned to different regions of 

the resulting volume sequentially. This enables a mapping 

where the grid-block decomposition in CUDA corresponds to 

the volumetric reconstructed 3D dataset. To avoid 

misunderstanding, we use block and grid in this paper only as 

terms in CUDA, not for their geometry meaning.  

III. METHODOLOGY 

A. Straightforward implementation 

Neighborhood filter CUDA kernels are similar to their CG 

implementations — fragment programs. If we assume one 

CUDA kernel function only computes one resulting pixel, a 

neighborhood filter fragment program can be changed into its 

CUDA kernel without much modification. In the SIMD 

architecture, the same kernel/fragment program will replicate 

itself to all different processors. These threads on different 

processors have unique two-dimensional IDs (x, y) to guide 

them to read neighborhood data around (x, y) and output to the 

value at (x, y).  

Here we list the pseudo-code for a 2D neighborhood filter 

kernel: 

Neighborhood_filter_2D 

Obtain the current thread ID (x, y)  

            Collect all pixels’ values in 2D neighborhood within the mask  

Calculate output pixels value defined by filtering algorithm 

Output results (x,y)at the resulting image 

End 

Figure 1. Pseudo-code for 2D neighborhood filter kernel.  

CUDA has more sophisticated controls which are not 

available in CG. CUDA’s execution configuration guides how 

the parallel computations are assigned on GPU hardware on 

streaming-multi-processor (SMP) level. This can be done by 

dividing the 2D image into tiles and assign them to a CUDA 

block. Each of the 2D tiles will be mapped into a SMP. 

To achieve maximum bandwidth in reading, the output 

image is stored in 2D pitched memory and the input is stored 

in a read-only 2D texture. In addition, to confirm the rule that 

each warp (32 threads) writes to a 128-byte segment, each 

thread should output a 4-byte unit. This 4-byte unit can be 4 

characters, 2 short integers or 1 single-precision floating-point 

number.  

B. Pre-computation 

Some of neighborhood filters such as the bilateral filter or the 

non-local means (NLM) filter involve 2 Gaussian weights: σx, 

σy. They define the smoothing parameters in the x, y axis 

respectively.  

Pre-computing techniques can be applied on the filter to 

reduce computational cost. Given the mask size, we can pre-

compute a discrete mask for the 2D Gaussian smooth kernel 

and store it in the GPU’s constant memory. Then once cached 

in SMP, these pre-computed weights will be ready to use 

which will save a huge amount of exponential computations. 

However, the Gaussian in the intensity domain which is 

inherently different from spatial dimension since it is sampled 

in a continuous domain. Although similar pre-computing 

method exists, which discretize the continuous intensity 

domain and lookup the pre-computed weightings, we have not 

explored the speed-quality trade-off of this approximation 

technique. We calculate the intensity Gaussian on the fly, 

therefore let our GPU algorithm is an exact method.  

We store the output volume in 2D pitched memory in order 

to achieve better global memory bandwidth. The output is 

decoupled from the order of the loops in the CUDA kernel 

computation. Switching the order of the loops or changing the 

output storage to YX will result in non-coalesced memory 

writing patterns that downgrade the performance. Furthermore, 

this loop order also indicates the pre-computed weights should 

be organized in XY order. 

C. Prefetching 

We also use the prefetching method to reduce the data-transfer 

cost, based on huge difference between on-chip and off-chip 

memory bandwidth. Prefetching is done according to the apron 

which is the image region served as input of a block of threads. 

The size of the 2D preloading apron is: 

)r+r+(h)r+r+(w pwbpwb 2222  (4) 

where wb,and hb are width and height of a 2D CUDA block. rp 

is the patch radius and rw is the windows radius in non-local 

mean filler [3], while for bilateral filter [2] rp = 0.   

The apron is usually larger than the output region and thus 

aprons from different CUDA blocks are overlapped. Since 

neighborhood filters re-use input data in an apron multiple 

times, shared memory can serve as a user controllable cache to 

reduce the off-chip memory access. Then a 2D prefetching 

approach can yield less cache misses which will result in better 

performance.  

The code for loading an apron is listed in Figure 2. The 

LOCAL_BLOCK_W and LOCAL_BLOCK_H are the two 

dimensions of the apron defined in Equation (4). The input 

data is stored in a texture reference 2d_tex. The data fetching is 
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Figure 3. An example to illustrate prefetching procedure. (a) shows the 

configuration with one CUDA block (in green). (b-e) show the 
neighborhood pixels are loaded into shared memory (in gray). (f) shows 

the data configuration after loading all the input into the user shared 

memory.    

(a) (b) (c) 

(d) (e) (f) 

performed by tex2D(2d_tex, idx + 0.5f, idy + 0.5f) where the 

current position for the thread is (idx,  idy) and is offset by 

(0.5f, 0.5f). Essentially, the code shows that each thread will 

perform at most 4 loading operations, based on the assumption 

that the neighborhood area cannot be 4 times larger than the 

CUDA block area. We will illustrate the positions of these 4 

preloading data later in this section. Note since all the threads 

executed in parallel without orderings, we need to ensure the 

local 2D apron was fully loaded into the shared memory in 

current SMP before the input readings are directed to the 

shared memory, The block-level synchronization should occur 

immediately after the prefetching. 

 

 
__shared__ float LocalBlock [LOCAL_BLOCK_W * LOCAL_BLOCK_H];  

 

   int SharedIndex = threadIdx.y * LOCAL_BLOCK_W; 

 

   LocalBlock [SharedIndex + threadIdx.x]  

    = tex2D ( 2d_tex, idx - KERNEL_RADIUS_X + 0.5f, 

                                                  idy - KERNEL_RADIUS_Y + 0.5f  ); 

 

   if( threadIdx.x + blockDim.x <  LOCAL_BLOCK_W ) 

    LocalBlock [ SharedIndex + threadIdx.x + blockDim.x ]  

           = tex2D ( 2d_tex, idx + (int) blockDim.x - KERNEL_RADIUS_X + 0.5f, 

                                                         idy - KERNEL_RADIUS_Y + 0.5f ); 

 

   if ( threadIdx.y < KERNEL_RADIUS_Y * 2  )  

   { 

    SharedIndex = (threadIdx.y + blockDim.y) * LOCAL_BLOCK_W; 

 

    LocalBlock [ SharedIndex + threadIdx.x ]  

     = tex2D( 2d_tex, idx - KERNEL_RADIUS_X + 0.5f,  

                                                        idy + (int) blockDim.y - KERNEL_RADIUS_Y + 0.5f ); 

 

    if( threadIdx.x+ blockDim.x <  LOCAL_BLOCK_W) 

     LocalBlock [ SharedIndex + threadIdx.x + blockDim.x ]  

 =tex2D( 2d_tex, idx + (int) blockDim.x - KERNEL_RADIUS_X + 0.5f, 

                            idy + (int) blockDim.y - KERNEL_RADIUS_Y+ 0.5f ); 

   } 

 

 __syncthreads(); 

 

Figure 2. CUDA kernel code for 2D neighborhood prefetching. The type 

and built-in variables/functions in CUDA is in blue. The input texture 

reference is shown in orange and the shared memory is shown in gray. 

 

Figure 3 illustrates the prefetching scheme for the 2D 

neighborhood filters. In this case a 16×16 CUDA block (in 

green) needs to read 32×32 pixels in its neighborhood (all 

pixels in panel (a)). Performing neighborhood filtering directly 

on (a) will result in low performance. Panel (b-e) shows the 

proposed prefetching method will load 4 16×16 tiles into 

shared memory (in gray) in sequence. Finally in panel (f), the 

CUDA threads in the green CUDA block can fast access the 

input in on-chip cache (shared memory). Then applying 

neighborhood filters on (f) will guarantee there will be no 

cache miss afterward thus will boost the performance.    

IV. RESULTS 

Our experiments were conducted on an NVIDIA GTX 480 

GPU, programmed with CUDA 3.2 runtime API and with an 

Intel Core 2 Duo CPU @ 2.66GHz. We built the program in 

32bit mode. In the experiment, the size of the CUDA block is 

set to 32×32. The first dimension is chosen to be 32 to 

conform to the coalescing rule. The second dimension we 

choose the maximum number as 32 due to the block’s size 

limit 1024 in the NVIDIA Fermi card. 

We did a performance and image quality study on one slice 

of a human head. We simulated 90 parallel beam projections 

and added Gaussian noise SNR=25 (SNR is computed by the 

ratio of the mean pixel value to the standard deviation of 

Gaussian noise) into the projections.  Figure 4(a) shows the 

gold-standard and Figure 4(b) shows the iterative 

reconstruction results from noisy projections.  

 
Figure 5 shows images restored bilateral filtering. The 

image quality of the bilateral filtering depends on smoothing 

parameters and window sizes. Here σx and σy control the spatial 

Gaussian, σr controls the range Gaussian and rw is the window 

radius. The window size is 2rw+1. Here we show 

approximately the best parameters for each window size. The 

large window size case (17×17 in Figure 5(a)) generated better 

results than 11×11 (Figure 5(b)) and 7×7 (Figure 5(c)).  

 
We extend the performance test of bilateral filter on larger 

image sizes. The computation time is listed in Table I (in ms). 

Figure 4. Testing image with size 2562. (a) shows the gold-standard. (b) 

shows iterative reconstruction from 90 noisy projections.  

(a) (b) 

Figure 5. Bilateral filtering result.  

(a) σx = σy = 30  
σr = 19 rw = 8 

(b) σx = σy = 38  
σr = 19 rw = 5 

(c) σx = σy = 40  
σr = 20 rw = 3 
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Besides the computation timing, we note that the memory 

transfer time from CPU and GPU is 0.7 ms for 256
2
 data, 2.0 

ms for 512
2
 data, 7.5 ms for 1024

2
 data. By using the 

prefetching scheme, a speedup ratio of 20% is achieved for the 

bilateral filter. 

Next, the NLM filter is applied to the test dataset. Figure 6 

demonstrates the image quality of the NLM filter with 

different window sizes. In the NLM filter, there is a parameter 

h that controls the noise reduction effect. We also find the 

approximately best parameters for different windows sizes. 

The large neighborhood size ((11+17)
2
 in Figure 6(a)) resulted 

better quality than in the smaller neighborhood case ((11+11)
2
 

in Figure 6(b) and (11+7)
2
 in Figure 6(c)).  

 
TABLE I 

PERFORMANCE IN BILATERAL FILTER (IN MILLISECONDS) 

Image size 
Neighborhood 

Size 
Bilateral Optimized Bilateral Speedup 

2562 72 0.192 0.131 1.46 

 112 0.309 0.246 1.25 

 172 0.650 0.539 1.21 

5122 72 0.411 0.326 1.26 
 112 0.927 0.705 1.31 

 172 2.150 1.760 1.22 

10242 72 1.446 1.120 1.29 
 112 3.374 2.473 1.36 

 172 8.080 6.545 1.23 

The NLM filter’s performance is shown in Table II. The 

prefetching method resulted up to 4× speedup in this filter. 

This is because the NLM filter has one order of magnitude 

more neighborhood searching to do than the bilateral filter, 

which make them clearly a memory bounded problem. Our 

optimized filters outperformed the bilateral filter and the NLM 

filter implemented in the CUDA SDK [7] by similar speedups. 

The performance shows the more neighborhood lookups, the 

more effective the shared-memory acceleration will be. Based 

on the fact that the NLM filter is usually one order of 

magnitude slower than bilateral filter but has better denoising 

quality, our proposed method would make expensive 

neighborhood filters more practical while enjoying the superior 

image quality.  

 
By using single precision floating point data, the largest 

amount of required shared memory is (32+2×(8))
2
×4 = 9216 

byte for the bilateral and the NLM filter. They are below 48KB 

as the limit of shared memory per SMP in NVIDIA’s Fermi 

card. With the development of more advanced GPU hardware, 

we can expect that larger preloads such as 64×64 in 32bit 

floating point data will be supported in the future.  

 
TABLE II 

PERFORMANCE IN NON-LOCAL MEANS FILTER (IN MILLISECONDS) 

Image 

size 

Neighborhood 

Size 
NLM 

Optimized 

NLM 
Speedup 

2562 (7+7)2 8.708 2.097 4.15 

 (7+11)2 23.927 5.034 4.75 

 (7+17)2 51.095 12.703 4.02 

5122 (7+7)2 31.026 7.339 4.23 

 (7+11)2 76.494 17.756 4.31 
 (7+17)2 182.497 42.066 4.34 

10242 (7+7)2 118.831 28.041 4.24 

 (7+11)2 292.970 67.727 4.33 

 (7+17)2 699.231 161 4.34 

 

V. CONCLUSION 

In this paper, we showed that advanced acceleration techniques 

(such as pre-computation, prefetching) can further speedup 

straightforward GPU implementations of nearest neighborhood 

filters. The speedup can be up to 4 times for the large window 

size case, which can bring high-quality denoising filters real-

time performance. Our optimized filter lends itself as an 

independent component which can be plugged into any 

iterative reconstruction frameworks and boost the performance 

of the entire pipeline. While we have only shown 2D filtering 

results here (it appeared to yield better results for our 

reconstructions) similar techniques will also apply to 3D 

filtering.  

Finally, although the quality that can be achieved with BLF 

and NLM appears rather similar in the results presented here, 

this is mainly due to the relatively low level of noise we 

experimented with (the main objective of this paper was the 

GPU acceleration scheme). Companion work [8] presented 

elsewhere shows that the NLM scheme does significantly 

better with higher noise and streak artifact levels. Thus, when 

artifact levels are low, the BLF is preferred due to its higher 

speed, but with greater artifacts the NLM is a better choice.  
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Figure 6. NLM filtering results.   
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(a) h = 17 

rp = 5 rw = 5 

(c) h = 18 
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