
The Fairmont San Jose | Joe Stam

Convolution Soup:
A case study in CUDA optimization

Optimization

GPUs are very fast

BUT…

• Poor programming can lead to
disappointing performance

• Squeaking out the most speed
takes a bit of expertise

A Convolution Case Study

We’ll use the simple,
ubiquitous example
of a 5x5 convolution
to illustrate optimization
strategies and their effects

• Basic 5x5 convolution

• 8-bit data, monochrome

• Generalized non-separable case

• No special border handling

• Benchmarks on 2048 X 2048 image
GeForce 8800 GT (G92)

What to Optimize?

• GMEM Coalescing

• GMEM Bandwidth

• Occupancy
– # of threads running on an SM

– Limited by Registers, SMEM, 8-blocks maximum,
768 threads maximum (1024 on GT200)

– More threads running allows more latency hiding!

• SMEM Bank Conflicts

• LMEM usage

• Compute instructions
– inlining, __mul24() intrinsics, fast math

Coalescing GMEM:
Often the most important optimization

• A coordinated read by a half-warp (16 threads)

• A contiguous region of global memory:

– 64 bytes─each thread reads a word: int, float, …

– 128 bytes─each thread reads a double-word: int2, float2, …

– 256 bytes─each thread reads a quad-word: int4, float4, …

• Additional restrictions:

– Starting address for a region must be a multiple of region size

– The kth thread in a half-warp must access the kth element in a
block being read

• Exception: Not all threads must be participating

– Predicated access, divergence within a halfwarp

Coalesced Access:
Reading floats (32-bit)

t0 t1 t2 t14 t15t3

t0 t1 t2 t14 t15t3

132 136 184 192128 140 144 188

132 136 184 192128 140 144 188

Some Threads Do Not Participate

All Threads Participate

……

……

Uncoalesced Access:
Reading floats (32-bit)

t0 t1 t2 t14 t15t3

t0 t1 t2 t14 t15t3

132 136 184 192128 140 144 188

132 136 184 192128 140 144 188

Misaligned Starting Address (not a multiple of 64)

Permuted Access by Threads

……

……

t13

Coalescing
SM 1.2 and higher
add coalescing buffers

• Coalescing is achieved for
any pattern of addresses that
fits into a segment of size:
32B for 8-bit words, 64B for
16-bit words, 128B for 32-
and 64-bit words

• Alignment within a segment
is no longer a concern, but
heavily scattered reads and
writes are still slow

1 transaction—64B segment

2 transactions—64B and 32B segments

1 transaction—128B segment

Tools

• Look at the .cubin to find register, smem, lmem usage
(-keep complier option)

• Verbose PTXAS output(--ptxas-options=-v)

PTX─GPU intermediate assembly

• Use –keep to write it

• Not exactly the machine code─it’s useful but not final

• To show interleaved source code:
--opencc-options -LIST:source=on

Visual
Profiler

Occupancy
Calculator
Spreadsheet

Memory vs. Compute

• Kernel time is frequently dominated by
memory bandwidth

• With enough compute, memory latencies
can be hidden by thread swapping

• Write kernels with compute commented
out to examine the effects

Example 1: Naïve GMEM

Warning: Do not try this at home!

__global__ void NaiveGlobalConvolutionKernel(unsigned char * img_in, unsigned char * img_out,

unsigned int width, unsigned int height,

unsigned int pitch, float scale)

{

unsigned int X = __umul24(blockIdx.x, blockDim.x) + threadIdx.x;

unsigned int Y = __umul24(blockIdx.y, blockDim.y) + threadIdx.y;

if(X > 1 && X < width-2 && Y > 1 && Y < height-2)

{

int sum = 0;

int kidx = 0;

for(int i = -2;i<= 2;i++)

{

for(int j= -2;j<= 2;j++)

{

sum += gpu_kernel[kidx++] * img_in[__umul24((Y+i),pitch) + X+j];

}

}

sum = (int)((float)sum * scale);

img_out[__umul24(Y,pitch) + X] = CLAMP(sum,0,255);

}

}

Results

148 ms!

• Nothing is coalesced

• 8-bit Memory accesses
are very inefficient

You are the weakest
link ─ Good Bye!

Example 2: Simple Textures

• Texture hardware provides
cached access to GMEM,
no worries about
coalescing reads

But:
– Original test required 0.6 ms additional time to copy to cudaArray.

CUDA 2.2 now allows binding GMEM directly to textures!

– Still using 8-bit writes back to GMEM

Results: 7.8 ms

Example 2a: Textures

• Process 4 pixels / thread

• Using 32-bit writes improves
bandwidth and coalesces

Results: 6.3 ms
~25% faster

Example 3: Texture into SMEM

• Use textures to fetch memory
to avoid coalescing issues

• Store tile in SMEM so all pixels
are only read once

Results: 3.3 ms!
Memory read/write
only: 1.1 ms

Stopping here would be quite respectable!

Example 3 (Cont.)

• Unfortunately, textures use a lot of registers (25 in this kernel)─
This reduces occupancy

• 16x16 block size limits us to 1 block / SM (on G92), thus the
entire block is stalled during the __syncthreads()

• 16x8 block allows 2 blocks / SM,

– Surprisingly little performance improvement (3.2 ms)

• 16x20 block maximizes threads

– Also little performance improvement (3.2 ms)

– Memory bandwidth goes up slightly because of fewer reads
from kernel apron overlap

Example 4: Texture with floats

• Use texture hardware to promote
image to float

• Uses 4x the SMEM, but requires no
data type conversion until the write Results: 6.5 ms

Oops…bad idea!

May be useful for cases where

f32 compute is needed

Example 5: GMEM to SMEM

• 4 pixels / thread

• Try naïve implementation first.
Shift reads left & up by apron
amount, then read an additional
4-pixel strip to the right

• All loads are uncoalesced!

Results: 3.6 ms

Memory only:
1.6 ms

Slightly worse than using textures

Example 6: GMEM to SMEM
Strict Coalescing

• Process 4 pixels / thread for 32-bit reads

• Read an image tile plus the apron into SMEM

• For 16x16 block size, read 72x16 pixels into SMEM

0

18

0 72

Apron Pixels Image Tile

Convolution SMEM Reads

Step 1: All threads read center top portion
into memory

Convolution SMEM Reads

Step 2: Threads with threadIdx.y < 2 read
bottom two rows

Convolution SMEM Reads

Step 3: Threads with threadIdx.x == 15

read left-top apron pixels

Convolution SMEM Reads

Step 4: Threads with threadIdx.x == 15 and
threadIdx.y < 2 read left-bottom
apron pixels

Convolution SMEM Reads

Step 5: Threads with threadIdx.x == 0

read top-right apron pixels

Convolution SMEM Reads

Step 6: Threads with threadIdx.x == 0 &&

threadIdx.y < 2 read bottom-right
apron pixels

Example 6: GMEM to SMEM
Strict Coalescing (Cont.)

• Process 4 pixels / thread
for 32-bit reads

• Read an image tile plus
the apron into SMEM

• For 16x16 block size, read
72x16 pixels into SMEM

Results: 3.4 ms

Memory only:
1.2 ms

Note: Texture is slightly better,
even with all this work

Example 6: Effect of block Size

• 1200 bytes of SMEM per block

• 11 registers

• 16x16 = 2 blocks / SM

• 16x8 = 5 blocks / SM benefit

16x8 Results:
3.5 ms
No benefit (probably because
of increased overlap)

16x20 Results:
3.4 ms
Again, no real benefit

Example 6: A Couple Pathological Cases

• Non multiple-of-16 block width
results in non-coalesced access
and wasted threads

• Change image pitch to
break coalescing

19x13 Results:
5.1 ms (50% decrease)

Memory only:
2.4 ms

Unaligned Pitch
Results: 4.3 ms

Memory only:
2.4 ms

Example 7: 128-bit Read/Write
to GMEM

• Reading data in 128 bit words is
faster than 32-bit words (64-bit is
also good)

• Same amount of data, but fewer
transactions to the memory
controller

• Read data as int4’s, cast to char,
process 16-bytes / thread

Results: 4.8 ms

Memory only:
0.4 ms

What happened? Memory is way faster,
but compute is SLOW…

The
Answer

SMEM Bank
Conflicts
causes warp
serialization

Banked SMEM Architecture

• Many threads accessing memory

– Therefore, memory is divided into banks

– Essential to achieve high bandwidth

• Each bank can service one address
per cycle

– A memory can service as many simultaneous
accesses as it has banks

• Multiple simultaneous accesses to a bank
result in a bank conflict

– Conflicting accesses are serialized

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

Bank 15

Bank Addressing Examples
No Bank Conflicts

– Random 1:1 Permutation

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

Bank 15

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Thread 15

No Bank Conflicts
– Linear addressing, stride == 1

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

Bank 15

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Thread 15

Bank Addressing Examples
8-Way Bank Conflicts

– Linear addressing, stride == 8

Bank 0

Bank 1

Bank 2

Bank 7

Bank 8

Bank 9

Bank 15

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Thread 15

2-Way Bank Conflicts
– Linear addressing, stride == 2

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

Bank 15

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

Thread 8

Thread 9

Thread 10

Thread 11

x8

x8

Other Notes About Banked SMEM

• When processing color
images best to store images
as RGBA and load each
color plane into a different
region of SMEM (tiled
instead of interleaved)

• For image processing
operations requiring
vertical access or
transpose, allocate SMEM
as 17xN for a 16xN tile

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2

3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3

4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4

5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5

6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6

7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8

SMEM Columns

S
M

E
M

 R
o
w

s

Dummy

Column

17 X N SMEM bank layout

Example 8: 128-bit, Resolve
Bank Conflicts

• Have each thread process every
4th 32-bit word

• Intermediate results are stored
in SMEM

– Need to shrink the block size
since this uses more SMEM Results: 2.9 ms!

Memory only:
0.4 ms

Example 10: 128-bit, Unroll
Inner Loop

• Mostly memory focused
until now

• All code used fast math
where possible
(e.g. __umul24)

• Unroll Loops
Results: 2.5 ms

Memory only:
0.4 ms

0

1

2

3

4

5

6

7

8

9

10

T
im

e
 (
m

s.
)

Algorithm

Convolution Approaches Comparison

Compute

Memory Only

Summary

0

1

2

3

4

5

6

7

8

9

10

T
im

e
 (
m

s.
)

Algorithm

Convolution Approaches Comparison

Compute

Memory Only

GT200
Optimization

• Coalescing
buffers greatly
improve the
performance,
especially in
non-optimal
situations

Apron Reading: GT200 Architecture
Coalescing buffers greatly simplify read patterns
Step 1: All threads read, shift up and left

Step 2: Threads with threadIdx.x < 2 read right columns

Step 4: Threads with threadIdx.x < 2 && threadIdx.y < 2

read bottom-right apron pixels

Step 3: Threads with threadIdx.y < 2 read bottom rows

Apron Reading: GT200 Architecture

GT200 Observations

• ‘hideous’ case isn’t so bad: 2.5x slower than
best case, vs. 60x slower on G92

• 128-bit is still best

• Complex Coalesced pattern to fill SMEM is
actually slightly slower than just a simple shift

Some Conclusions

• Naïve code can be very bad

• Textures improve greatly upon Naïve code,
but still only about 50% efficiency

• SMEM has huge benefits for data-sharing
algorithms like convolutions

• Final optimizations include 128-bit GMEM
read/write, loop unrolling, fast math

• GPU memory architecture is evolving to
easy programmer pain

