
J Sign Process Syst (2013) 71:221–235
DOI 10.1007/s11265-012-0715-1

Highly Parallelable Bidimensional Median Filter
for Modern Parallel Programming Models

Ricardo M. Sánchez · Paul A. Rodrı́guez

Received: 22 June 2012 / Revised: 29 October 2012 / Accepted: 31 October 2012 / Published online: 21 December 2012
© Springer Science+Business Media New York 2012

Abstract The median filter is a non-linear filter used for
removal of Salt & Pepper noise from images, where each
pixel of the image is replaced by the median of its surround-
ing elements, which is calculated by sorting the data. The
complexity of the sorting algorithms used for the median
filters are O(n2) or O(n), depending on the kernel size.
These algorithms were formulated for scalar single proces-
sor computers, with few of them successfully adapted and
implemented for computers with a parallel architecture. In
this paper we greatly improve the results of our earlier work,
in which by means of a novel sorting algorithm, based on
the Complementary Cumulative Distribution function, with
O(n) computational complexity and a highly parallelable
structure, we presented a 2D median filter that achieved
O(1) or O(n) computational complexity, depending mem-
ory constraints. The improvements are twofold: we propose
a trade-off between O(1) complexity and O(n) complex-
ity in order to improve the overall throughput; additionally
we make use of the Salt & Pepper noise model to improve
the image reconstruction quality with a small performance
impact. The proposed algorithm have been implemented
in three parallel programming models: SIMD Intel, Multi-
core Intel with SIMD, and SIMT (CUDA), achieving a peak

R. M. Sánchez (�) · P. A. Rodrı́guez
Department of Electrical Engineering,
Pontificia Universidad Católica del Perú, Lima, Perú
e-mail: ricardo.sanchez@pucp.pe

P. A. Rodrı́guez
e-mail: prodrig@pucp.pe

throughput of 27.0, 100.1 and 91.6 megapixels per second
respectively.

Keywords Nonlinear filters · Parallel algorithms ·
Image processing

1 Introduction

The median filter is a basic operation for digital image pro-
cessing, as it removes Salt & Pepper noise while preserving
the edges of the image. This type of noise is usually gen-
erated by lost packets on digital transmission, noisy digital
channels, or errors on the acquisition system (dust on the
lens, defective pixels on the sensor) [2]. However, the usage
of the 2D median filter (originally proposed in 1974 [23]) is
restricted by its high computational cost and its non-linear
nature.

The algorithms for median filtering differ one from each
other by the sorting algorithm that each one use. For large
kernels it is typical to use sorting algorithms with O(n)

computational complexity, where n is the kernel size. Those
algorithms require additional memory for data structures or
containers. Also, they can reduce memory access by keep-
ing the previous results and use them to calculate the median
of the next pixel [3, 10, 11]. Furthermore, O(1) computa-
tional complexity can be obtained by storing partial results
of the containers needed to get the median value [6, 17]. For
small kernels, O(n2) sorting algorithms are faster than the
O(n) ones, and some of them make use of vector proces-
sors to achieve a very high performance [9, 14, 20]. This
improvement is due to the data parallelism of the underlying
sorting algorithm, as the Sorting Network [20], that allows
to sort consecutive datasets with common elements. Parallel
sorting algorithms, for multiprocessors systems, have been

mailto:ricardo.sanchez@pucp.pe
mailto:prodrig@pucp.pe

222 J Sign Process Syst (2013) 71:221–235

proposed, but they have high communication cost [15] or
unbalanced computational load [4].

In this paper we greatly improve the results of our earlier
work [22] where we proposed a novel sorting algorithm with
O(n) computational complexity that can be implemented
efficiently on modern parallel programming models. This
algorithm was based on the Complementary Cumulative
Distribution Function (ccdf) [19] and it had similar prop-
erties to the ones based on probability mass function (pmf

or histograms). With this sorting algorithm we developed
a new median filter algorithm well suited to modern paral-
lel programming models, such as SIMD (single instructions
multiple data) [7], Multicore processors, or SIMT (sin-
gle instructions multiple threads, also known as CUDA)
[8, 13] models, and is benefited by the optimizations orig-
inally proposed for the histogram (pmf) based algorithms
(i.e.: Constant-Time Median Filter [17]), achieving O(1) or
O(n) computational complexity, depending memory con-
straints. In this paper we propose two key improvements:
first we explore a trade-off between O(1) complexity and
O(n) complexity in order to improve the overall through-
put; additionally we make use of the Salt & Pepper noise
model to improve the image reconstruction quality with
a small performance impact. The implementation of the
new median filter (and its variants) has been developed for
CUDA-enabled graphics card and for Intel processors, as
each one offer different parallel architectures.

This paper is organized as follows: in Section 2 we give
a succinctly description of the three parallel programming
models (SIMD, Multicore Shared Memory and SIMT) that
we target in this paper; then in Section 3 the novel sorting
algorithm and the median filter algorithms are described,
along with the proposed variants that make use of the
Salt & Pepper noise model. In Section 4 we present the
complexity analysis and evaluate the parallel capabilities
of our proposed algorithm in comparison with histogram
based algorithms. We describe the median implementations
used and show the computational results on Section 5. On
Section 6 we discuss the results and give our concluding
remarks.

2 Modern Parallel Programming Models

Innovations in hardware architecture have made possible a
large (and cheap) amount of parallel computing options. The
focus of this section is to give some details on three particu-
lar modern parallel programming models: the SIMD (single
instructions multiple data), the shared memory (multicore)
model and the SIMT (single instructions multiple threads)
or CUDA models. For a broader introduction to the topic of

parallel programming models we recommend [18] and the
many references therein.

2.1 SIMD Model

In general purpose microprocessors, the SIMD unit is inde-
pendent from the standard arithmetic logic unit (ALU), and
the floating-point unit (FPU). The main difference among
the SIMD, the ALU, and the FPU units is that while the
former two operate over a scalar value at a time, the SIMD
unit operates over a vector of scalars. For the current,
general-purpose microprocessors, SIMD vectors can con-
sist of integer scalars, or four/eight single-precision floating
point, or two/four double-precision floating point numbers.
For integer scalars, SIMD vectors can be: (i) 16/32 8-bit
integers (or 16/32 chars), (ii) 8/16 16-bit integers (or 8/16
shorts), (iii) 4/8 32-bit integers (or 4/8 integers), or (iv)
2/4 64-bit integers (or 2/4 long long integers). SIMD units
have an inherent parallelism at a fine-grain level since they
perform the same operation on all the elements of an array.

Any SIMD capable processor has a set of special regis-
ters, whose characteristics (length and number) are archi-
tecture dependent. Particularly of the Intel architecture we
have: (i) 8 simd-registers of 128-bit long for Intel’s IA32
SSE/SSE2/SEE3, (ii) 16 simd-registers of 128-bit long for
Intel’s IA 64 SSE4.x and (iii) 16 simd-registers of 256-bit
long for Intel’s IA 64 AVX (advanced vector extensions).
We must point out that, for the AVX, only the floating point
operations were scalated to use the 256-bit long registers,
integer operations still use 128-bit long registers.

The SIMD execution model operates over packed data
elements (or scalar data) which could be located in mem-
ory or in a SIMD register. A packed data element is
a vector with S contiguous elements. Let S = 4 and
X = [x1, x2, x3, x4], Y = [y1, y2, y3, y4] be two packed
data elements. Also let op be a SIMD math operation.
Then a SIMD operation is given by Z = XopY =
[x1 op y1, x2 op y2 x3 op y3, x4 op y4].

Finally we stress that memory data access has a great
impact on the performance of any SIMD application (load a
simd-register with memory data and vice versa). Addressed
memory should be 16-bit aligned (32-bit aligned for the
AVX case) and data elements also should be contiguous in
memory.

2.2 Shared Memory Model

Nowadays ubiquitous multicore (desktop and laptops) com-
puters are an example of computers with a shared memory
organization where several processors (usually between 4
and 8) physically shared a global (RAM) memory. In this

J Sign Process Syst (2013) 71:221–235 223

subsection, we succinctly summarize the key highlights of
the shared memory model (for a more detail description, we
recommend [18, Ch. 6]).

A natural programming model for this type of architec-
ture (multicore computers) is the use of a thread model in
which all the threads have access to the shared variables,
which are used to interchange information and data among
the running threads. For a given problem, ideally the shared
memory model assumes that the problem can be divided into
sub-problems and the work require for each (subproblem)
will be completed mostly independently by each thread.
In order to avoid race conditions in concurrent accesses,
the model defines several synchronization mechanisms
(where particular implementations depend on the chosen
programming environment).

There are several programming environment options,
such as Posix threads (Pthreads), Java threads, OpenMP,
etc., to fully exploit the advantages of the multicore archi-
tecture; in this work we have chosen the Pthreads standard
as our programming environment.

2.3 SIMT Model/CUDA Architecture

There are several good tutorials, articles and/or books that
deal with the SIMT Model (or CUDA architecture). Due

to space considerations we only list [8, 13], and will
proceed to give a brief overview of the SIMT model/CUDA
architecture.

In Fig. 1 we show a CUDA device memory model where
different types of memory (Global, “Pitch”, “Array”) have
been depicted as independent; here we stress that this is
not necessarily represents an actual hardware. Also from a
more general fashion, Fig. 1 shows the standard configura-
tion of a general purpose computation system based on GPU
(graphics processor unit) which consist of a host (CPU)
that can communicate to a device (a GPU, such cards with
the CUDA technology) via a given interface (such the PCI
interface).

For a given problem, the SIMT model assumes that
the problem is divided into blocks (to be understood as a
bidimensional partition of the problem) and in turn the work
required to be completed by each block (sub-problem) will
be carried out by a group of threads (to be understood
as a bidimensional or tridimensional partition of the sub-
problem). Each thread within the same block has access to
local registers and can communicate with other threads (in
the same block) via the shared memory; if threads from dif-
ferent blocks need to communicate among them, they must
use the Global memory (or the “Pitch” memory, see Fig. 1).
The SIMT model executes the same instruction for all the

Figure 1 We depict a CUDA device memory model that summarizes our description. We stress that this model does not represent an actual
hardware. This figure is a free adaption of [13, Fig. 3.7].

224 J Sign Process Syst (2013) 71:221–235

threads in a particular group (called warp in the CUDA
lexicon, typically consisting of 32 simultaneous threads);
this is most efficient when all the threads follow the same
control flow path or have a balanced load.

As shown in Fig. 1 the CUDA (SIMT) device memory
model supports several types of memories that have differ-
ent scopes. Registers which is the fastest memory (roughly
8e3 GB/s theoretical bandwidth [8]) are only visible to indi-
vidual threads; the shared memory is visible to all threads
within the same block and is considered to be fast (roughly
1.6e3 GB/s theoretical bandwidth [8]) Global memory, as
well as “Pitch” and “Array” memory are the only way data
can be transfer between the Host and the Device, although
there are several key points to have in mind: the Global
memory is R/W (read/write) and can be accessed by all
threads, nevertheless is comparatively slow (roughly 177
GB/s theoretical bandwidth [8]) with respect to all other
type of memories. “Pitch” (R/W by all threads) and “Array”
(R by all threads) memories are both examples of Texture
memory and are cache optimized for spatial locality; they
can be substantially faster than the Global memory if mem-
ory accesses are well organized. Whenever possible it is
desirable that a program written for the SIMT program-
ming model will use/map input data to an “Array” memory
and write the output (and intermediate) data to a “Pitch”
memory.

3 Algorithms Description

3.1 CCDF-sorting

The (Complementary Cumulative Distribution Function)
CCDF-sorting algorithm was originally introduced in [22];
on what follows we succinctly describe its key features (for
details see [21]). This new algorithm for sorting data needs
to generate a vector with the complementary cumulative dis-
tribution function from the dataset to be sorted; using this
(auxiliary) vector we can obtain the kth biggest number in
the data set.

Given the vector x = [x0, x1, . . . , xn−1] with n elements,
where xi ∈ N and a ≤ xi ≤ b, the complementary cumu-
lative distribution function, or reliability function [19], is
defined by:

F̄x(j) = 1 − Fx(j) = 1 − Pr(x ≤ j) = Pr(x > j)

where Fx(j) is the cumulative distribution function of the
vector x and Pr(x > j) is the probability of xi > j . For

the sorting algorithm we replace the probability function
Pr(x > j) with a counting function Cj (x):

Cj (x) =
n−1∑

i=0

I[xi>j] (1)

where I[xi>j] is the indicator function. It is straightforward
to show that F̄x(j) monotonically decreases to zero. Finally,
in order to obtain the sorted vector y, we need to set the
auxiliary vector τ = {τj } = ccdf (x), j ∈ [a, b], τj =
Cj (x) ∈ [0, n]. Then y = {yk} = ccdf (τ), k ∈ [0, n −
1], yk = Ck(τ) ∈ [a, b] is the sorted vector of x [22].

In order to illustrate the CCDF-sorting algorithm we con-
sider the following example: given the set x = [4, 6, 2, 9, 8],
with n = 5, a = 0 and b = 10, we first compute
τ = ccdf (x) which can be understood the summation of
the vectors resulting from applying the Counting function
to each element of x : vk = [I[xk>0], I[xk>1], . . . I[xk>9]] for
k ∈ [0, 4] in this example; thus we obtain τ = [5, 5, 4, 4,
3, 3, 2, 2, 1, 0, 0] = [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0] + [1, 1,
1, 1, 1, 1, 0, 0, 0, 0, 0] + [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] + [1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 0] + [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0].
Finally if we apply the Counting function to τ the obtain the
sorted vector y = [9, 8, 6, 4, 2]. This example also give us
a hint regarding how to parallelize the CCDF-sorting algo-
rithm: the computation of the Counting function for each
element in a vector can be fully parallelize as well as the
summation that follows. In Section 4 we formalize the com-
plexity analysis and parallel properties of the CCDF-sorting
algorithm.

3.2 Median Filter with CCDF-sorting

To obtain the kth biggest element of vector x (with n ele-
ments, where n is assume to be odd) from the auxiliary
vector τ we only need to calculate C(τ > k). Follow-
ing this, if we require the minimum, maximum and median
value we need to set k = n − 1, k = 0 and k = (n − 1)/2
respectively.

An important property of the ccdf is the separability.
Given the set x, with nx elements and the subsets a, b with
na, nb elements respectively, such that nx = na + nb,
x = a ∪ b, and an additional dataset y, with ny elements
and the subset c with nc elements, such that ny = nb + nc,
y = b ∪ c, it can be shown that (see [21] for details)

τ (x) = τ (a) + τ (b), (2)

τ (y) = τ (x) + τ (c) − τ (a). (3)

J Sign Process Syst (2013) 71:221–235 225

This property allows us to reduce memory access by keep-
ing a τ acc and updating it for the next pixel. This approach
was originally proposed for the histogram-based median

filter [11] and it can be applied for the ccdf -based median
filter as well.

Another approach for median filtering is to generate par-
tial histograms for a whole row of the image and getting
the kernel’s histogram using those partial histograms only.
For the next row the partial histograms are updated (Fig. 2)
[17]. This procedure can be also applied for the ccdf-based
median filter. The computational complexity is lowered and
the memory access are reduced, but additional memory
is required. Algorithm 1 describes the proposed algorithm
for median filtering. The function KthFromCCDF(τ , k)
extract the kth biggest element from vector τ .

3.3 Salt & Pepper Noise Model and Median-type Noise
Detector

In the previous subsection we described the median filter
algorithm. In this subsection we describe the Salt & Pep-
per noise model and derive a procedure to improve the
denoising capabilities of the median filter.

An observed grayscale image I corrupted with Salt &
Pepper noise is characterized by

Ii,j =

⎧
⎪⎨

⎪⎩

vmin, with probability p1

vmax, with probability p2

I ∗
i,j , with probability 1 − p1 − p2

(4)

where I ∗
i,j describes a pixel in the noise-free image I ∗, p =

p1 + p2 represents the noise level and vmin and vmax are
assumed to be 0 and 255 respectively.

Ideally, for the Salt & Pepper noise model, noise-free pix-
els should preserve their values in the reconstructed image;
this is not the case for the standard 2D median filter, where
all the pixels are replaced by the median value (even if they
are known to be noise-free). There are several approaches to
solve this problem (preserve noise-free pixels in the Salt &
Pepper noise scenario), and while this is not the main topic
of this paper, particularly we mention that in [12] a median-
type noise detector was developed and used to propose an
adaptive median filter which we succinctly described next.
Let the set of noise-corrupted pixel of the observed image I

be defined by

N :
{
(k, l) ∈ � :

(
Î w(k,l)

k,l �= Ik,l

)
∧ (

Ik,l ∈ {vmin, vmax}
)}

,

(5)

where Î w(k,l)

k,l is the median of all the elements that are no

further away than w(k,l) pixels from location (k, l). Initially
w(k,l) = 1 ∀(k, l); w(k,l) is increased (plus 1) if Î w(k,l)

k,l is
equal to the minimum or maximum value in the analyzed
set, and the procedure is repeated until w(k,l) = wmax or the
pixel is declared noise-free.

226 J Sign Process Syst (2013) 71:221–235

Figure 2 O(1) complexity
approach (originally proposed
by [17]).

(a) (b) Update Update(c)

In the Section 5.2 we will use the idea of the adap-
tive median filter (originally described in [12]) taking only
one iteration, e.g. we will assume that wmax is equal to
the initial window size w(k,l) (which is not necessarily
equal to 1). In other words, if the central pixel (of the
analyzed neighborhood or set) is not the minimum or
maximum value in the analyzed set, then it is preserved
otherwise it is replaced by its median value; this approach
greatly improve the reconstruction performance with a small
impact on the computational performance of our proposed
implementation.

If we consider vmin = 0 and vmax = 255 we have a
simple (naive) noise detector that can be implemented eas-

ily by modifying slightly the PCMF algorithm. Algorithm 2
(called loPCMF) shows the modification of Algorithm 1 in
order to consider the noise detector. Experimental results
(see Section 5.2) shows that there is no performance penalty
when this noise detector is used.

Another approach is to consider the first step of the adap-
tive median filter. This uses the minimum and the maximum
value of the window from which we computed the median
value to detect if the pixel is a noisy one. Algorithm 3
(called spPCMF) describes this procedure; furthermore, in
order to give computational support to the worthiness of
this approach we have performed the following simulation:
we corrupted several images (due to space constrains we

J Sign Process Syst (2013) 71:221–235 227

have only considered three typical test images: Goldhill,
Lena and Peppers) with Salt & Pepper noise with noise lev-
els of 10, 40 and 70 %; then we proceeded to filter them
using the standard median filter with window sizes of 3× 3,
5 × 5 and 7 × 7 and with the proposed “first step” adap-
tive median filter (Algorithm 3) with w = 2 and wmax = 2
(giving an adaptive window of 5 × 5). In Fig. 3 we show the
results obtained for the Goldhill image, where it is clear that
the “first step” adaptive median filter (Algorithm 3) gave

superior reconstruction quality (measured with three differ-
ent metrics: signal-to-noise ratio, SNR = 10 log10

VAR{I }
‖I−I∗‖2

2
,

peak signal-to-noise ratio, PSNR = 10 log10
N(max {I∗})2

‖I−I∗‖2
2

,

and SSIM [24]). Additionally, in Table 1 we list the recon-
struction quality metrics for all the considered cases for the
test images (Goldhill, Lena and Peppers) from where it also
clear that Algorithm 3 gave superior reconstruction quality
for all the considered cases.

(a) Image corrupted with Salt & Pepper noise
10%. SNR=2.91, PSNR=14.86 and
 SSIM=0.197

(b) Image corrupted with Salt & Pepper noise
 40%. SNR=−3.11, PSNR=8.84 and
SSIM=0.035

(d) Median filter 3 × 3. SNR=20.09, PSNR=32.04
 and SSIM=0.887

(e) Median filter 5 × 5. SNR=14.64, PSNR=26.59
 and SSIM=0.737

(g) Adative Median filter with w = 2 and
 w

max
= 2. SNR=21.79, PSNR=33.74 and

SSIM=0.944

(h) Adative Median filter with w = 2 and
w

max
 = 2. SNR=18.27, PSNR=30.22

and SSIM=0.884

(c) Image corrupted with Salt & Pepper noise
70%. SNR=−5.57, PSNR=6.38 and
SSIM=0.012

(f) Median filter 7 × 7. SNR=6.44, PSNR=18.39
and SSIM=0.470

(i) Adative Median filter with w = 2 and w
max

= 2.
SNR=12.92, PSNR=24.88 and
SSIM=0.714

Figure 3 We present the Goldhill image corrupted with different lev-
els (10, 40 and 70 %) of Salt & Pepper noise in sub figures a, b and
c. Each corrupted image was filtered with a median filter with window
size of 3 × 3, 5 × 5, 7 × 7 and with the “first step” adaptive median

filter with w = 2 and wmax = 2; in sub figures d, e and f we present
the best result for the (standard) median filter and in sub figures g, i
and j we present the result of the ‘first step” adaptive median filter.
The latter group has far better reconstruction quality.

228 J Sign Process Syst (2013) 71:221–235

Table 1 We report the SNR, PSNR and SSIM [24] reconstruction quality metrics after filtering the corrupted (with Salt & Pepper noise levels
of 10, 40 and 70 %) test images with the standard median filter with window sizes of 3 × 3, 5 × 5 and 7 × 7 and with the proposed “first step”
adaptive median filter (Algorithm 3, called spPCMF) with w = 2 and wmax = 2.

Image Noise SNR (dB) PSNR (dB) SSIM Index [24]

(%) 3 × 3 5 × 5 7 × 7 spPCMF 3 × 3 5 × 5 7 × 7 spPCMF 3 × 3 5 × 5 7 × 7 spPCMF

Goldhill 10 20.09 17.43 15.74 21.79 32.04 29.38 27.69 33.74 0.887 0.786 0.709 0.944

40 6.71 14.64 14.08 18.27 18.66 26.59 26.03 30.22 0.485 0.737 0.686 0.884

70 −2.52 1.76 6.44 12.92 9.43 13.71 18.39 24.88 0.052 0.235 0.470 0.714

Lena 10 18.67 15.82 13.96 22.51 33.21 30.35 28.50 37.04 0.911 0.858 0.814 0.953

40 4.37 10.89 9.97 16.47 18.91 25.42 24.51 31.01 0.455 0.813 0.792 0.907

70 −4.50 −0.45 3.48 10.07 10.03 14.08 18.01 24.61 0.053 0.228 0.527 0.762

Peppers 10 19.23 17.78 16.07 20.46 32.72 31.27 29.56 33.94 0.878 0.847 0.823 0.934

40 5.35 12.29 11.52 16.15 18.84 25.78 25.00 29.64 0.448 0.802 0.799 0.892

70 −3.63 −0.40 4.33 10.34 9.86 13.89 17.82 23.83 0.050 0.230 0.533 0.754

For all cases, Algorithm 3 gave superior results.

J Sign Process Syst (2013) 71:221–235 229

Finally, we point out that the improved reconstruction
quality comes with a cost: in Section 5.2 our computational
performance results shows that the throughput of Algorithm
3 is reduced between 20 and 30 % (depending on the ker-
nel’s size) when compared to Algorithm 1 (or Algorithm 2).
Although the authors believe that this trade-off is always
worthy, we are also aware that its real value is problem
dependent.

4 Algorithm Analysis

4.1 Computational Complexity

In what follows we analyze the computational complexity
of the functions CCDF(x) and KthFromCCDF(τ x) (see
Algorithm 1), since our proposed algorithm is based on this
two basic operations.

– CCDF(x): From Eq. 1, to compute the ccdf of a vec-
tor x of n elements, with a ≤ xi ≤ b, the number of
operations needed is:

τ x = (b − a)((n − 1) additions + n comparisons)

= O(n)

– KthFromCCDF(τ x): Given τ x, the number of opera-
tions needed to extract the kth biggest value is

KthFromCCDF(τ x) = (b − a − 1) additions

+ (b − a) comparisons

= O(1).

– Median value (k = n2−1
2) of a vector x: overall its

complexity is given by

median(x) = O(n) + O(1) = O(n).

With these results, given I , an N × M image, the com-
putational complexity of the PCMF (Algorithm 1) for the
whole image is:

N · O(n2)︸ ︷︷ ︸
Initialize all τ

+ M · O(n)︸ ︷︷ ︸
Initialize τ acc per Row

+ N · O(1)︸ ︷︷ ︸
Median Values

+ N · M · O(1)︸ ︷︷ ︸
Update τ

= O(n2)

As the initialization stage takes place only one time per
row, a better representation for the asymptotical behavior

of the algorithm is to find its complexity per pixel. This
value is:

Complexity

of Pixels
= N · O(n2) + M · O(n) + 2 · N · M · O(1)

N · M

= 2 · O(1) + O(n2)

M
+ O(n)

N

Then, for a big image (large N and M), the factors O(n2)
M

and O(n)
N

tends to 0. This consideration allows us to say that
the complexity of the PCMF is O(1). From these results,
if we want to decrease the O(n2) part of the algorithm we
must increase the iterations in M . In a similar way, if we
want to decrease the O(n) part, we must increase the itera-
tions in N . These observations have a direct relation in the
performance of the algorithm in massive parallel architec-
tures, like CUDA, because we split the image in sub image
which are processed by a group of threads. By modifying
the size of the sub images we can get O(1), O(n) or O(n2)

computational complexity.
Regarding memory usage, our proposed algorithm, the

PCMF, needs (b−a +n−1)N = O(n) additional memory.
This is costly for parallel architectures with limited mem-
ory, such CUDA-enabled graphics cards, and it can make

prevent the conditions O(n2)
M

→ 0 or O(n)
N

→ 0 to be held.

4.2 Parallel Capabilities and Memory Access of ccdf
and pmf

In this subsection we present a theoretical performance
comparison between the ccdf based median filter and the
histogram based median filters. We will focus on the parallel
capabilities and memory access patterns of both methods.
We will consider a parallel computing model with many
concurrent threads available, concurrent read (for aligned
data or SIMD access pattern) and penalized exclusive read
and writes access (for random memory access).

In that context, calculating and updating τ x needs the
same number of steps as calculating and updating the his-
togram (see Eq. 1), although the key difference is the
memory access (read) pattern. For the histogram based case,
a random access is used, while for the ccdf based case an
ordered access pattern is used. Moreover, for the ccdf based
case we can use (b − a) threads per τ x, and we can read
the data in a concurrent fashion, whereas for the histogram
based case we are restricted to only one thread per histogram
and all memory access is penalized.

While the previous point give us a hint about the supe-
rior parallel capabilities of the ccdf , the main difference
is the actual computation of the median value. For the his-
togram based case, we need to iterate over the histogram

230 J Sign Process Syst (2013) 71:221–235

vector, accumulating its contents until the median condition
is met; the median value is the index of that element. This
procedure is executed only by one thread, and the number
of steps required for the search depends on the dataset, giv-
ing us unbalanced loads on the threads and data dependency.
For massive multithread architectures the execution of only
one thread implies a performance penalty, and this penalty
is shown in Section 5.2.

For the ccdf , we compare each element of the τ x vector
with the median index. This operation can be done in par-
allel, thus we need only one step to compare all the data.
Finally, to extract the median value we calculate a summa-
tion of the result of the previous comparisons. In the many
concurrent threads context, this summation can be done in
log2(b − a) steps (assuming (b − a) is a power of two). The
whole procedure to extract the median value from the τ x is
independent of the data set. From this analysis we can state
that the ccdf based median filter is better suited for parallel
computing systems than the histogram based ones.

As a simple example, to stress the previous statements,
consider the vector x = [6, 6, 1, 2, 7], with 0 ≤ xi ≤ 7,
its histogram h, with eight elements, can be computed by
one thread in five steps. Each element of the vector τ =
τj = ccdf (x), j ∈ [0, 7] can be computed by one thread
(8 threads in total) in 5 steps. To extract the median value
from h only one thread can be used, and it requires six steps
(each of them include conditional branches and additions).
For the ccdf we can use eight threads to apply the indica-
tor function to τ in one step, and then we can use a binary
reduction of three levels to solve the summation. The total
steps required to get the median value of x is eleven for the
histogram based algorithm, whilst we need only nine steps
with the ccdf based one.

5 Performance

The following tests were executed on two different Intel
processors: a first-generation Core i7-930 CPU (2.8GHz,
8MB Cache memory, SEE4.2 Instruction set) and a second-
generation Core i7-2600K CPU (3.4GHz, 8MB Cache
memory, AVX Instruction set). The first-generations Core
processor features 128-bit SIMD register, and the second-
generation has a 256-bit SIMD registers. Even though the
newer Core processor have larger SIMD register, twice as
large, the performance’s improvement was less than two
(see Fig. 5c and d). This is because the integer operations on
the Intel SIMD units are still mapped to 128-bit SIMD reg-
isters. In both cases the operative system was Kubuntu 10.4,
with Linux kernel 2.6.28 x86 64.

The CUDA implementations were tested on a nVidia
Tesla C2075 and on a nVidia GeForce GTX480 graph-
ics card. Both cards have 2.0 computational capability and
48KB shared memory, but the Tesla C2075 has 5GB of
global memory, 448 CUDA cores, 1.15GHz GPU clock
rate and 1.6 GHz Memory clock rate, while the GeForce
GTX480 has 1.5GB of global memory, 480 CUDA cores,
1.4GHz GPU clock rate and 1.8GHz Memory clock rate.
Both cards were connected to the host system through a PCI
Express 2.0 bus.

Each condition tested (kernel size, input image, algo-
rithm used) is repeated 1000 times and the result shown is
the median value. The time measures for the CUDA imple-
mentations include memory transfer operations. It is impor-
tant to note that, for a kernel size k, the elements to be sorted
are n = k2. For the tests we use k = {3, 5, 7, 9, 11, 13, 15}.

5.1 Description of Median Filter Implementations

We test nine implementations of median filters, three
for Intel processor and six for CUDA graphics cards.
For the Intel platform we have two reference algorithms
and for CUDA we have three, the others are PCMF
implementations.

For the Intel processor, the first reference implementation
is the Constant Time Median Filter (CTMF) algorithm [17].
It is a histogram based median filter with O(1) computa-
tional complexity. The second reference implementation is
provided by the MatLab function medfilt2 [16]. We use
MatLab version 7.9.0.529 (R2009b) 64-bit (glnxa64). The
algorithm is based on histograms and has O(n) computa-
tional complexity.

Figure 4 CUDA-PCMF implementations iterating over different
number of pixels on the nVidia Tesla C2075.

J Sign Process Syst (2013) 71:221–235 231

For CUDA, the first reference implementation is the
Branchless Vector Median (BVM) algorithm [5] and the
second reference implementation is a closed-source com-
mercial library for CUDA, named libJacket and its new
version, named ArrayFire (libaf) [1]. Both algorithms have
O(n2) computational complexity. The third one is our
implementation of the CTMF algorithm.

In the Intel implementation of the PCMF, the SIMD unit
is used for almost all the operations, which includes the gen-
eration of all τ vectors and calculating the median value.
This implementation is expected to have a O(1) complexity,

as the condition O(n2)
M

→ 0 is held. The Pthreads framework
was used in order to obtain a multithread implementation
for the Intel Multicore architecture. For the CUDA imple-
mentations, the image is split in sub images and each sub
images is processed by one CUDA block with the maximum
threads per block allowed by the graphics card. The struc-

ture of the algorithm allow us to keep all threads working
most of the time, and help us to avoid the bank conflicts.

5.2 Computational Results

In the first test we explore the relation computational com-
plexity and computational performance. To achieve O(1)

complexity we need to iterate over each row in order
to decrease the effect of the initialization of τ acc in the
performance. For the SIMD single core and Multicore
implementations the constant complexity can be achieved
easily, but for the massive parallel architecture implemented
on the CUDA-enabled graphics cards there is a trade-
off between performance and computational complexity. In
CUDA, iterations should be avoided whenever is possible
and replaced by parallel operations. To test this behavior we
implement three versions of the PCMF for CUDA. All the

(a) nVidia GTX480 (1.4GHz) (b) nVidia Tesla C2075 (1.15GHz)

(c) Intel Core i7-930 (2.8GHz) (d) Intel Core i7-2600K (3.4GHz)

Figure 5 Computational results in megapixels per second.

232 J Sign Process Syst (2013) 71:221–235

implementations were tested on the nVidia Tesla C7025 and
each block process a sub image of 64 × 16 pixels. The first
implementation iterates over the 64 pixels of the sub image
and 64 threads were used. The second implementation uses
128 threads and the iterations is over 16 pixels only. The

third implementation iterates over only 4 pixels and it uses
1024 threads. The test image used was a 512×512 grayscale
image.

From the results (Fig. 4) we can see that we can achieve
the constant time computational complexity by iterate over

(a) Throughput for k = 3 (b) Efficiency for k = 3

(c) Throughput for k = 9 (d) Efficiency for k = 9

(e) Throughput for k = 15 (b) Efficiency for k = 15

Figure 6 Performance of the Multicore-SIMD PCMF implementation for different number of threads used on a Intel Core i7 processor.

J Sign Process Syst (2013) 71:221–235 233

all the 64 pixels of the sub image. But, if we iterate over 4
pixels only, we can achieve a better performance with O(n)

computational complexity. For the following tests we use
the linear complexity CUDA implementation.

In the second test we measure the throughput of the
median filter implementations. The size of the test image
used is 512 × 512 pixels. For the nVidia GTX480 we use
all the algorithms described, but for the nVidia Tesla C2075
we only use the BVM algorithms and our implementa-
tions of the PCMF. Additionally to the PCMF, we test the
performance of the PCMF algorithm in which the Salt &
Pepper noise model (see Section 3.3) is considered in a
naive fashion: if the current pixel (of the analyzed neigh-
borhood or set) is either 0 or 255 then it is replaced by the
median value; we label this test as “loPCMF” (Algorithm 2).
We also test the performance of the PCMF algorithm, where
we only considered one iteration of the adaptive median fil-
ter [12] as described in Section 3.3; we label this test as
“spPCMF” (Algorithm 3).

In Fig. 5 we compare the performance of the implemen-
tations for the two Intel Processors and the two nVidia cards.

We can see that the performance is better in the second-
generation Core processor than in the first-generation. The
improvement is mainly because of the new form to oper-
ate the registers, available in the AVX instruction set, rather
than in the increase in the length of the SIMD registers, as
only the floating point operations were escalated to use this
longer registers. It is also important to highlight the results
presented in Fig. 5a and b where all three versions of the
PCMF algorithm are compared: there is almost no computa-
tional performance difference between the implementations
of Algorithms 1 (“PCMF”) and 2 (“loCTMF”), nevertheless
for Algorithm 3 (“spCTMF”) there is a trade-off between
computational performance and reconstruction quality: the
computational performance of spPCMF is reduced (between
20 and 30 % depending of the kernel’s size) when compared
with “PCMF” and/or “loPCMF”, although (see Section 3.3)
the “spCTMF” implementation gives far superior recon-
struction results (than “PCMF” and/or “loPCMF”), being of
more than 10 dB (SNR metric) for moderate to high levels
(40–70 %) of Salt & Pepper noise. We must also note that
our CUDA implementation of the CTMF algorithm [17] has

(a) 512 × 512 (b) 1600 × 1200

(c) 4000 × 4000

Figure 7 Comparison of CUDA implementations for various image sizes on the nVidia Tesla C2075.

234 J Sign Process Syst (2013) 71:221–235

a throughput of almost 6.3 megapixels per second, and is
almost 7 times slower than the O(1) PCMF (see Fig. 4).

For the third test we use the Intel’s SIMD Multicore
implementation of the PCMF algorithm. The processor used
was a Second Generation Intel Core i7 with 4 physical
cores and 8 logical cores. We used three images with differ-
ent sizes and, and we tested all the kernel sizes mentioned
before, but we show only three cases (Fig. 6).

In Fig. 7 we can see a peak of performance of 100.1
megapixels per second, and the Efficiency of the imple-
mentation is greater than 0.9 when we use up to 4 threads.
The Efficiency drops as we increase the number of threads,
and this is because we only have 4 physical cores, where
we have the first peak of performance. The second peak of
performance is obtained when 8 threads is used, and this
correspond to the number of logical cores of the processor.

For the final test we use three images of different size to
see the scalability of the implementation on CUDA graphics
cards. For this tests we use the BVM implementation and
the three versions of the PCMF.

A typical behavior in CUDA implementations is that
the performance improves as the amount of data to pro-
cess increases. This is because there is available a large
amount of processors to be used to process the data, and this
behavior can be seen in Fig. 7. We can see an increase in
the performance when we process the 1600 × 1200 image
in comparison to the 512 × 512 image. The amount of
processors in a nVidia graphics card is large but limited,
so the improvement of the performance by increasing the
input data is limited too, as we can see when we process a
4000 × 4000 image.

6 Conclusions

In this paper we expand our previous work on the Paral-
lel Ccdf-based Median Filter (PCMF) [22]. The structure of
our algorithm allows us to get an efficient and simple imple-
mentation for modern parallel programming models. The
computational results show that the CUDA implementation
of the proposed median filter algorithm is efficient and can
outperform other generic median filters for CUDA.

The behavior of the implementation Intel PCMF is
clearly O(1). The reference algorithm, the CTMF, also has
O(1) computational complexity and has a better perfor-
mance than our implementation. The MatLab median filter
has linear complexity and it has, for larger n, worse perfor-
mance than the other median filter tested. The multithread
implementation of the PCMF algorithm achieved a peak
performance of 100.1 megapixels per second when using 8
threads, with 4 threads the performance is 96.9 megapixels

per second. The efficiency of the multithread implementa-
tion of the PCMF for the Intel CPU is greater than 0.9 for 4
threads, which correspond to the number of physical cores
of the processor.

The CUDA implementation of the PCMF has the best
overall performance of the tested algorithms, and has a
lower computational complexity than the reference CUDA
implementations. O(n2) algorithms are usually faster than
O(n) and O(1) for small n, and this is the case for n = 3
and n = 5. However, overall, our implementations outper-
form the other reference algorithms in the current literature.
Additionally, we implemented the CTMF for CUDA and
its performance is lower than the PCMF implementation
and lower than its Intel implementation, which means that
this algorithm, the CTMF, is not well suited for parallel
computer architectures.

Finally, we use Salt & Pepper noise models to improve
the reconstruction quality of the filter (see Section 3.3). The
two proposed algorithms, the “loPCMF” and the “spPCMF”
improve the image quality with a trade-off in perfor-
mance. In the case of the “loPCMF” there is almost no
penalty in using the simple noise model, but in the case
of the “spPCMF” we have a greater penalty (between 20
and 30 %) but the noise model used allows for a better
reconstruction.

Acknowledgement The authors would like to thank NVIDIA for
hardware support through its CUDA Teaching Center Program.

References

1. AccelerEyes (2012). ArrayFire Library. http://www.accelereyes.
com/products/arrayfire. Accessed 27 Sept 2012.

2. Bovik, A. (2000). Handbook of image and video processing.
New York: Academic Press.

3. Chaudhuri, B. (1990). An efficient algorithm for running Window
pel gray level ranking 2-D images. Pattern Recognition Letters,
11(2), 77–80.

4. Chen, S., Qin, J., Xie, Y., Zhao, J., Heng, P. (2009). A fast an flexi-
ble sorting algorithm with CUDA. In 9th international conference
on algorithms and architectures for parallel processing (pp. 281–
290).

5. Chen, W., Beister, M., Kyriakou, Y., Kachelries, M. (2009). High
performance median filtering using commodity graphics hard-
ware. In IEEE nuclear science symposium conference record
(NSS/MIC) (pp. 4142–4147).

6. Cline, D., White, K.B., Egbert, P.K. (2007). Fast 8-bit median
filtering based con separability. In International conference on
image processing (ICIP) (pp. 281–284).

7. Cockshott, P., & Renfrew, K. (2010). SIMD programming manual
for Linux and Windows. New York: Springer.

8. Farber, R. (2011). CUDA application design and development.
San Mateo: Morgan Kaufmann.

http://www.accelereyes.com/products/arrayfire
http://www.accelereyes.com/products/arrayfire

J Sign Process Syst (2013) 71:221–235 235

9. Furtak, T., Amaral, J.N., Niewiadomsk, R. (2007). Using SIMD
register and instructions to enable instruction-level parallelism in
sorting algorithms. In SPAA ’07: Proceedings of the nineteenth
annual ACM symposium on parallel algorithms and architectures
(pp. 348–357).

10. Gil, J. (1993). Computing 2-D min, median and max filters. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 15(5),
504–507.

11. Huang, T., Yang, G., Tang, G. (1979). A fast two-dimensional
median filter algorithm. IEEE Transactions on Acoustics, Speech
and Signal Processing, 27(2), 13–18.

12. Hwang, H., & Haddad, R.A. (1995). Adaptive median filters: new
algorithms and results. IEEE Transactions on Image Processing,
4(4), 499–502.

13. Kirk, D.B., & Hwu, W.m.W. (2010). Programming massively
parallel processors: A hands-on approach. San Mateo: Morgan
Kaufmann.

14. Kolte, P., Smith, R., Su, W. (1999). A fast median filter
using AltiVec. In International conference on computer design
(ICCD’99) (pp. 384–391).

15. Li, Y., Peng, S., Chu, W. (2009). An efficient parallel sorting
algorithm on Metacube multiprocessors. In 9th international con-
ference on algorithms and architectures for parallel processing
(pp. 372–383).

16. MatLab (2011). medfilt2. http://www.mathworks.com/help/
toolbox/images/ref/medfilt2.html. Accessed 14 Oct 2011.

17. Perreault, S., & Hébert, P. (2007). Median filter in constant time.
IEEE Transactions on Image Processing, 16(9), 2389–2394.

18. Rauber, T., & Rünger, G. (2010). Parallel programming: For
multicore and cluster systems (1st ed.). New York: Springer.

19. Ryan, T. (2007). Modern engineering statistics (Chapter 14,
p. 468). New York: Wiley-Interscience.

20. Sánchez, R. (2011). Diseño e implementación del filtro mediano
de dos dimensiones para arquitecturas SIMD. Bacherlor’s degree
thesis, Pontifical Catholic University of Peru (PUCP), Lima,
Peru.

21. Sánchez, R. (2012). Constant complexity bidimensional median
filter for parallel computing architectures. Master’s thesis, Pontif-
ical Catholic University of Peru (PUCP), Lima, Peru.

22. Sánchez, R., & Rodriguez, P. (2012). Bidimensional median filter
for parallel computing architectures. In 37th international con-
ference on acoustics, speech, and signal processing (ICASSP)
(pp. 1549–1552).

23. Tukey, J. (1974). Nonlinear (nonsuperimposable) methods for
smoothing data. In IEEE Electronics and Aerospace Conference
(EASCON), conference records (p. 673).

24. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E. (2004). Percep-
tual image quality assessment: from error visibility to structural
similarity. IEEE Transactions on Image Processing, 13(4), 600–
612.

Ricardo M. Sánchez received the B.Sc. degree in electrical engineer-
ing from the Pontificia Universidad Católica del Perú, Lima, Peru, in
2010, and the M.Sc. degree in electrical engineering from the same
university in 2012.

He is currently a Professor in the Department of Electrical Engi-
neering at the Pontificia Universidad Católica del Perú. His research
interests include SIMD and SIMT algorithms, inverse problems in
signal and image processing, immersive and virtual reality systems.

Paul A. Rodrı́guez received the B.Sc. degree in electrical engineering
from the Pontificia Universidad Católica del Perú, Lima, Peru, in 1997,
and the M.Sc. and Ph.D. degrees in electrical engineering from the
University of New Mexico in 2003 and 2005, respectively.

He spent two years as a postdoctoral researcher at Los Alamos
National Laboratory, Los Alamos, NM, and is currently an Asso-
ciate Professor with the Department of Electrical Engineering at
the Pontificia Universidad Católica del Perú. His research interests
include AM-FM models, SIMD and SIMT algorithms, adaptive signal
decompositions, and inverse problems in signal and image processing.

http://www.mathworks.com/help/toolbox/images/ref/medfilt2.html
http://www.mathworks.com/help/toolbox/images/ref/medfilt2.html

	Highly Parallelable Bidimensional Median Filter for Modern Parallel Programming Models
	Abstract
	Introduction
	Modern Parallel Programming Models
	SIMD Model
	Shared Memory Model
	SIMT Model/CUDA Architecture

	Algorithms Description
	CCDF-sorting
	Median Filter with CCDF-sorting
	Salt & Pepper Noise Model and Median-type Noise Detector

	Algorithm Analysis
	Computational Complexity
	Parallel Capabilities and Memory Access of ccdf and pmf

	Performance
	Description of Median Filter Implementations
	Computational Results

	Conclusions
	Acknowledgement
	References

