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The problem

Given an array A of N values, find the median value.

Rearrange A such that
max

i∈[0,N/2[
A[i ] ≤ A[N/2] ≤ min

i∈]N/2,N/2[
A[i ]

Input Output

4 1 5 3 2 2 1 3 4 5
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Efficient sequential algorithms exist

QuickSelect [BFP+73]

QuickSelect + Median of median [BFP+73]

What about parallel implementations?

A lot of research has been conducted for coarse-grained
parallel computers ([AfAGR97]).

However, today, on graphic processor units (GPU), the fastest
way to search the median is to sort the whole input array then
pick the middle value (1 Giga-key/s on Nvidia GTX480 using
[MG10]).

Can we build a faster algorithm that only gives the median
using GPU?
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Primitive Input Output
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Input: A[0]...A[N − 1] an array of N elements drawn from some
totally ordered set.
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A primitive version of our algorithm

Sand clock algorithm

For each node n with children c1 and c2:

If n is in the lower branch, call selectmax(n, c1, c2)

If n is in the upper branch, call selectmin(n, c1, c2)

If n is the middle node, reorder(n − 1, n, n + 1)

Iterate until convergence

Convergence

Find a solution in N/2 iteration in the worst case

Inefficient because of the bottleneck at the middle node
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Reducing the bottleneck

Swap inter branches algorithm

For each node n in the lower branch, m its counterpart in the
upper branch:

reorder(n,m)

For each node n with children c1 and c2:

If n is in the lower branch, call selectmax(n, c1, c2)

If n is in the upper branch, call selectmin(n, c1, c2)

If n is the middle node, reorder(n − 1, n, n + 1)

Convergence

Find a solution in N/4 iteration in the worst case

Inefficient because of the remaining bottleneck at the middle
node
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Reducing the bottleneck
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Figure: Structure of swap inter branches algorithm. The dashed lines
show the additional reorder scheme.
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Final algorithm

Remove the bottleneck

Children of a index on level L randomly change over the
iterations, but remain on level L + 1

Counterpart of a node on level L also randomly changes over
the iterations, but remains on level L on the other branch.

Convergence

In average, find a solution in log2(N) iterations.
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Convergence
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Figure: Convergence of random shifts.
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Benchmark the three algorithms

5 10 15 20 25 30

0

200

400

log2(N)

A
ve

ra
ge

n
u

m
b

er
of

it
er

at
io

n
s

final algorithm

swaps inter branches
swaps on tree

Figure: Average number of iterations on different algorithms.
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How much is this algorithm parallel?

Parallelism of one iteration

All nodes of a level can be processed in parallel

But, it needs to sequentially browse the levels from the leafs
to the middle node.

What about running several iterations in parallel?
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Dependencies of level processings
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Pipelining the iterations
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Pipelining the iterations
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Pipelining the iterations
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Feeding the whole pipeline
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GPU architecture

On chip shared memory is
100x faster than global
memory

Two levels of parallelism

How can we map our
algorithm on such
multi-level architectures?
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coarse-grained parallelism

Given the following order...

B and C two sub-arrays of A

B ≤ C ⇐⇒ max
i<size(B)

B[i ] ≤ min
i<size(C)

C [i ]

B ≥ C ⇐⇒ min
i<size(B)

B[i ] ≥ max
i<size(C)

C [i ]

... we redefine the primitives

reorder(B,C ) rearranges B and C to get B ≤ C

selectmin(B,C ,D) rearranges B, C and D to get B ≤ C and
B ≤ D

selectmax(B,C ,D) rearranges B, C and D to get B ≥ C and
B ≥ D
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Multi-level generalization

Multi-level parallelism

Theses new coarse-grained primitives are themselves solvable
using a sequential or parallel median-split algorithm.

Using our algorithm to run the primitives, we re-parallelize at
lower scale

Integration on GPU

A coarse-grained version distributes segments to
multi-processors.

A fine-grained version locally runs the primitives on each
multi-processors using shared memory.
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Conclusion

Pros

Run in log2(N) iterations in average

Anytime

Convergence is easy and fast to detect

Granularity can be controlled

Multi-level parallelism

Cons

We do not know yet how it behaves on real world parallel
computers.
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Thank you for your attention.
Questions?
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