
Context Preliminaries Sand clock algorithm Swap inter branches algorithm Final algorithm Parallelism

Parallel partial ordering for exact and approximate
median splitting

Matthieu Garrigues <matthieu.garrigues@ensta.fr>

February 1, 2011

Parallel partial ordering for exact and approximate median splitting 1 / 22 Matthieu Garrigues



Context Preliminaries Sand clock algorithm Swap inter branches algorithm Final algorithm Parallelism

Outline

1 Context

2 Preliminaries

3 Sand clock algorithm

4 Swap inter branches algorithm

5 Final algorithm

6 Parallelism

Parallel partial ordering for exact and approximate median splitting 2 / 22 Matthieu Garrigues



Context Preliminaries Sand clock algorithm Swap inter branches algorithm Final algorithm Parallelism

The problem

Given an array A of N values, find the median value.

Rearrange A such that
max

i∈[0,N/2[
A[i ] ≤ A[N/2] ≤ min

i∈]N/2,N/2[
A[i ]

Input Output

4 1 5 3 2 2 1 3 4 5

Parallel partial ordering for exact and approximate median splitting 3 / 22 Matthieu Garrigues



Context Preliminaries Sand clock algorithm Swap inter branches algorithm Final algorithm Parallelism

Efficient sequential algorithms exist

QuickSelect [BFP+73]

QuickSelect + Median of median [BFP+73]

What about parallel implementations?

A lot of research has been conducted for coarse-grained
parallel computers ([AfAGR97]).

However, today, on graphic processor units (GPU), the fastest
way to search the median is to sort the whole input array then
pick the middle value (1 Giga-key/s on Nvidia GTX480 using
[MG10]).

Can we build a faster algorithm that only gives the median
using GPU?

Parallel partial ordering for exact and approximate median splitting 4 / 22 Matthieu Garrigues



Context Preliminaries Sand clock algorithm Swap inter branches algorithm Final algorithm Parallelism

Primitive Input Output

selectmin
1 4

2

2 4

1

selectmax
1 4

2

2 1

4

reorder
4

1

1

4

Parallel partial ordering for exact and approximate median splitting 5 / 22 Matthieu Garrigues



Context Preliminaries Sand clock algorithm Swap inter branches algorithm Final algorithm Parallelism

Input: A[0]...A[N − 1] an array of N elements drawn from some
totally ordered set.

15

23

7

24

6

25

5

26

4

27

3

28

2

29

1

30

0

19

11

20

10

21

9

22

8

17

13

18

12

16

14

Upper branch

Lower branch

middle node

Parallel partial ordering for exact and approximate median splitting 6 / 22 Matthieu Garrigues



Context Preliminaries Sand clock algorithm Swap inter branches algorithm Final algorithm Parallelism

A primitive version of our algorithm

Sand clock algorithm

For each node n with children c1 and c2:

If n is in the lower branch, call selectmax(n, c1, c2)

If n is in the upper branch, call selectmin(n, c1, c2)

If n is the middle node, reorder(n − 1, n, n + 1)

Iterate until convergence

Convergence

Find a solution in N/2 iteration in the worst case

Inefficient because of the bottleneck at the middle node

Parallel partial ordering for exact and approximate median splitting 7 / 22 Matthieu Garrigues



Context Preliminaries Sand clock algorithm Swap inter branches algorithm Final algorithm Parallelism

Reducing the bottleneck

Swap inter branches algorithm

For each node n in the lower branch, m its counterpart in the
upper branch:

reorder(n,m)

For each node n with children c1 and c2:

If n is in the lower branch, call selectmax(n, c1, c2)

If n is in the upper branch, call selectmin(n, c1, c2)

If n is the middle node, reorder(n − 1, n, n + 1)

Convergence

Find a solution in N/4 iteration in the worst case

Inefficient because of the remaining bottleneck at the middle
node

Parallel partial ordering for exact and approximate median splitting 8 / 22 Matthieu Garrigues



Context Preliminaries Sand clock algorithm Swap inter branches algorithm Final algorithm Parallelism

Reducing the bottleneck

15

23

7

24

6

25

5

26

4

27

3

28

2

29

1

30

0

19

11

20

10

21

9

22

8

17

13

18

12

16

14

Figure: Structure of swap inter branches algorithm. The dashed lines
show the additional reorder scheme.

Parallel partial ordering for exact and approximate median splitting 9 / 22 Matthieu Garrigues



Context Preliminaries Sand clock algorithm Swap inter branches algorithm Final algorithm Parallelism

Final algorithm

Remove the bottleneck

Children of a index on level L randomly change over the
iterations, but remain on level L + 1

Counterpart of a node on level L also randomly changes over
the iterations, but remains on level L on the other branch.

Convergence

In average, find a solution in log2(N) iterations.

Parallel partial ordering for exact and approximate median splitting 10 / 22 Matthieu Garrigues



Context Preliminaries Sand clock algorithm Swap inter branches algorithm Final algorithm Parallelism

Convergence

0 5 10 15 20 25 30
10−8

10−6

10−4

10−2

100

102

y = 1
2x+1

Iterations

P
er

ce
n

ta
ge

of
m

is
p

la
ce

d
el

em
en

ts N = 26 − 1

N = 214 − 1

N = 223 − 1

N = 227 − 1

N = 228 − 1

N = 229 − 1

Figure: Convergence of random shifts.

Parallel partial ordering for exact and approximate median splitting 11 / 22 Matthieu Garrigues



Context Preliminaries Sand clock algorithm Swap inter branches algorithm Final algorithm Parallelism

Benchmark the three algorithms

5 10 15 20 25 30

0

200

400

log2(N)

A
ve

ra
ge

n
u

m
b

er
of

it
er

at
io

n
s

final algorithm

swaps inter branches
swaps on tree

Figure: Average number of iterations on different algorithms.

Parallel partial ordering for exact and approximate median splitting 12 / 22 Matthieu Garrigues



Context Preliminaries Sand clock algorithm Swap inter branches algorithm Final algorithm Parallelism

How much is this algorithm parallel?

Parallelism of one iteration

All nodes of a level can be processed in parallel

But, it needs to sequentially browse the levels from the leafs
to the middle node.

What about running several iterations in parallel?

Parallel partial ordering for exact and approximate median splitting 13 / 22 Matthieu Garrigues



Context Preliminaries Sand clock algorithm Swap inter branches algorithm Final algorithm Parallelism

Dependencies of level processings

0 2 4 6 8 10 12

0

2

4

6

Execution

U
p

d
at

ed
le

ve
ls

Parallel partial ordering for exact and approximate median splitting 14 / 22 Matthieu Garrigues



Context Preliminaries Sand clock algorithm Swap inter branches algorithm Final algorithm Parallelism

Dependencies of level processings

0 2 4 6 8 10 12

0

2

4

6

Execution

U
p

d
at

ed
le

ve
ls

Parallel partial ordering for exact and approximate median splitting 14 / 22 Matthieu Garrigues



Context Preliminaries Sand clock algorithm Swap inter branches algorithm Final algorithm Parallelism

Dependencies of level processings

0 2 4 6 8 10 12

0

2

4

6

Execution

U
p

d
at

ed
le

ve
ls

Parallel partial ordering for exact and approximate median splitting 14 / 22 Matthieu Garrigues



Context Preliminaries Sand clock algorithm Swap inter branches algorithm Final algorithm Parallelism

Pipelining the iterations

2 4 6 8

0

2

4

6

Execution

U
p

d
at

ed
le

ve
ls

Parallel partial ordering for exact and approximate median splitting 15 / 22 Matthieu Garrigues



Context Preliminaries Sand clock algorithm Swap inter branches algorithm Final algorithm Parallelism

Pipelining the iterations

2 4 6 8

0

2

4

6

Execution

U
p

d
at

ed
le

ve
ls

Parallel partial ordering for exact and approximate median splitting 15 / 22 Matthieu Garrigues



Context Preliminaries Sand clock algorithm Swap inter branches algorithm Final algorithm Parallelism

Pipelining the iterations

2 4 6 8

0

2

4

6

Execution

U
p

d
at

ed
le

ve
ls

Parallel partial ordering for exact and approximate median splitting 15 / 22 Matthieu Garrigues



Context Preliminaries Sand clock algorithm Swap inter branches algorithm Final algorithm Parallelism

Feeding the whole pipeline

2 4 6 8

0

2

4

6

Execution

U
p

d
at

ed
le

ve
ls

Parallel partial ordering for exact and approximate median splitting 16 / 22 Matthieu Garrigues



Context Preliminaries Sand clock algorithm Swap inter branches algorithm Final algorithm Parallelism

GPU architecture

On chip shared memory is
100x faster than global
memory

Two levels of parallelism

How can we map our
algorithm on such
multi-level architectures?

Parallel partial ordering for exact and approximate median splitting 17 / 22 Matthieu Garrigues



Context Preliminaries Sand clock algorithm Swap inter branches algorithm Final algorithm Parallelism

coarse-grained parallelism

Given the following order...

B and C two sub-arrays of A

B ≤ C ⇐⇒ max
i<size(B)

B[i ] ≤ min
i<size(C)

C [i ]

B ≥ C ⇐⇒ min
i<size(B)

B[i ] ≥ max
i<size(C)

C [i ]

... we redefine the primitives

reorder(B,C ) rearranges B and C to get B ≤ C

selectmin(B,C ,D) rearranges B, C and D to get B ≤ C and
B ≤ D

selectmax(B,C ,D) rearranges B, C and D to get B ≥ C and
B ≥ D

Parallel partial ordering for exact and approximate median splitting 18 / 22 Matthieu Garrigues



Context Preliminaries Sand clock algorithm Swap inter branches algorithm Final algorithm Parallelism

Multi-level generalization

Multi-level parallelism

Theses new coarse-grained primitives are themselves solvable
using a sequential or parallel median-split algorithm.

Using our algorithm to run the primitives, we re-parallelize at
lower scale

Integration on GPU

A coarse-grained version distributes segments to
multi-processors.

A fine-grained version locally runs the primitives on each
multi-processors using shared memory.

Parallel partial ordering for exact and approximate median splitting 19 / 22 Matthieu Garrigues



Context Preliminaries Sand clock algorithm Swap inter branches algorithm Final algorithm Parallelism

Conclusion

Pros

Run in log2(N) iterations in average

Anytime

Convergence is easy and fast to detect

Granularity can be controlled

Multi-level parallelism

Cons

We do not know yet how it behaves on real world parallel
computers.

Parallel partial ordering for exact and approximate median splitting 20 / 22 Matthieu Garrigues



Context Preliminaries Sand clock algorithm Swap inter branches algorithm Final algorithm Parallelism

Thank you for your attention.
Questions?

Parallel partial ordering for exact and approximate median splitting 21 / 22 Matthieu Garrigues



Context Preliminaries Sand clock algorithm Swap inter branches algorithm Final algorithm Parallelism

References I

Ibraheem Al-furiah, Srinivas Aluru, Sanjay Goil, and Sanjay
Ranka, Practical algorithms for selection on coarse-grained
parallel computers, IEEE Transactions on Parallel and
Distributed Systems 8 (1997), 813–824.

Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L.
Rivest, and Robert E. Tarjan, Time bounds for selection, J.
Comput. Syst. Sci. 7 (1973), 448–461.

Duane Merrill and Andrew Grimshaw, Revisiting sorting for
gpgpu stream architectures, Tech. Report CS2010-03,
University of Virginia, Department of Computer Science,
Charlottesville, VA, USA, 2010.

Parallel partial ordering for exact and approximate median splitting 22 / 22 Matthieu Garrigues


	Context
	Preliminaries
	Sand clock algorithm
	Swap inter branches algorithm
	Final algorithm
	Parallelism

