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Abstract—This paper presents a method to exploit rank
statistics to improve fully automatic tracing of neurons from
noisy digital confocal microscope images. Previously proposed
exploratory tracing (vectorization) algorithms work by recursively
following the neuronal topology, guided by responses of multiple
directional correlation kernels. These algorithms were found to
fail when the data was of lower quality (noisier, less contrast,
weak signal, or more discontinuous structures). This type of data
is commonly encountered in the study of neuronal growth on
microfabricated surfaces. We show that by partitioning the corre-
lation kernels in the tracing algorithm into multiple subkernels,
and using the median of their responses as the guiding criterion
improves the tracing precision from 41% to 89% for low-quality
data, with a 5% improvement in recall. Improved handling was
observed for artifacts such as discontinuities and/or hollowness of
structures. The new algorithms require slightly higher amounts of
computation, but are still acceptably fast, typically consuming less
than 2 seconds on a personal computer (Pentium III, 500 MHz,
128 MB). They produce labeling for all somas present in the
field, and a graph-theoretic representation of all dendritic/axonal
structures that can be edited. Topological and size measurements
such as area, length, and tortuosity are derived readily. The
efficiency, accuracy, and fully-automated nature of the proposed
method makes it attractive for large-scale applications such as
high-throughput assays in the pharmaceutical industry, and study
of neuron growth on nano/micro-fabricated structures. A careful
quantitative validation of the proposed algorithms is provided
against manually derived tracing, using a performance measure
that combines the precision and recall metrics.

Index Terms—Biomedical image processing, image analysis,
image edge analysis, image line pattern analysis, image processing,
image segmentation, median filters.
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I. INTRODUCTION

T HE quantitative morphology of linear branched structures
such as blood vessels and neurons is of broad interest

[1]–[9]. Currently, much of the tracing is still conducted semi-
automatically. A human user interacts with a microscope that is
enhanced with computer imaging hardware and software (e.g.,
Neurolucida). The user performs pattern recognition and the
computer system records the data, and generates morphome-
tric summaries. In some cases, the computer assists the human
by automatically aligning a cursor to the nearest image feature,
or by automatically focusing the microscope [1], [10]–[12].

This paper presents a new generation of automated tracing
algorithms that perform morphometry of neurons, especially
those grown on man-made surfaces. This type of work has
a variety of applications, including the documentation of
neuronal development, neuronal responses to trauma and
disease, and neurotoxicology assays. Fig. 1 presents a sample
image of neurons grown on a patterned silicon substrate and
labeled immunocytochemically, along with automatically
generated traces of the dendrites and axons. Underlying these
traces is a graph-theoretic representation that captures the
neurons essential morphological characteristics. A number of
topological and metric analyses could be conducted with such
a representation [1].

In earlier work, this group has described fast and effec-
tive model-based algorithms for automatic tracing of linear
branched structures, such as neurons, in three-dimensional
volumetric images [13], and vasculature [8]. These methods are
based on the modeling assumption that the structures of interest
are bounded by nearly parallel edges. The present work was
motivated by the failure of these otherwise robust and efficient
algorithms, when the images of interest are very noisy. Fig. 2
shows such an example. Such high-noise images are unavoid-
able.Increasing the laser power on the instrument to achieve a
higher signal level leads to increased photodamage resulting
in poor image quality and the possibility that fine structures
may not be imaged. Minimizing photodamage also precludes
the use of slow scan image recording or signal integration
at the time of image recording. These methods substantially
improve the signal-to-noise ratio but they also significantly
increase the total irradiation. Even if noise is minimized, the
issue of apparent structural discontinuity remains. In other
words, neuronal processes can appear discontinuous due to
noninstrumentation reasons such as nonuniform dye absorp-
tion. The main contribution of the present paper is a method to
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(a)

(b)

Fig. 1. (a) Laser-scanning confocal microscope image of multiple neurons growing on a patterned silicon substrate width 1175�m, (b) the corresponding
automatically generated and labeled traces. In this low-noise example, a traditional correlation-based tracing algorithm generates excellent results.

address the compelling need to perform fully automatic tracing
when the structures of interest appear to be discontinuous due
to noise and nonuniform contrast. The main idea is the use of
median statistics instead of correlation operators used in prior
work.

II. I MAGE ANALYSIS BACKGROUND

Three approaches are recognized for analysis of linear
branched structures such as neurons and vasculature. The first
is based on skeletonization and branch point analysis [e.g.,
[14]–[18]]. The second is based on enhancing edge/line proper-
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(a)

(b)

Fig. 2. Illustrating poor tracing performance in the presence of high imaging
noise. (a) A low SNR laser-scanning confocal microscope image of multiple
neurons growing on a patterned silicon substrate. (b) The automatically
generated and labeled traces using the average based algorithm. (c) The
automatically generated and labeled traces using the median based algorithm,
all other settings being the same.

(c)

Fig. 2. (Continued.)Illustrating poor tracing performance in the presence of
high imaging noise. (c) The automatically generated and labeled traces using

the median based algorithm, all other settings being the same.

ties and then identifying process or vessel contours by chaining
edge pixels together [19]–[26]. Both approaches require the
processing of every image pixel with numerous operations per
pixel; hence, they tend to scale poorly with image size. The
third approach, exemplified by this paper and others, is referred
to variously as vectorization, vectorial tracking, or exploratory
tracing [7], [8], [27]. These methods work by first locating an
initial point, and then exploiting local image properties to trace
the structures recursively [8], [28].

Broadly, three categories of exploratory processing tech-
niques are described in the literature. In the first category,
the initial and end points of a vessel are entered manually
(sometimes a tentative centerline is also provided) [19]–[21],
[29]–[35]. In the second category, the algorithm starts with
a manually entered initial point and an initial direction, and
recursively tracks the entire arterial tree [7], [36], [37] using a
breadth-first search. In the context of neuron images, this would
correspond to tracing a single axon/dendrite tree that is efferent
from a single neuron. Clearly, such methods are not suitable
for images containing several neurons with each neuron having
several processes efferent from it, and when neurons are large
enough that only partial views are feasible. The third category,
including this work, consists of fully automated methods [8]
that overcome the limitations of the first two.

The core algorithm presented here builds upon the prior work
of Sun [27], and our prior work [8], [13]. In particular, we em-
ploy an adaptive two-dimensional (2-D) kernel as opposed to
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the fixed 2-D kernel used by Canet al. [8] and the one-dimen-
sional (1-D) kernel used by Sun [7]. The adaptive kernel method
enables the algorithm to trace over apparent discontinuities in
the dendritic/axonal structures. Further robustness is achieved
by simultaneously detecting both edges of the dendrite/axon
structures.

Canny’s edge detection algorithm [38], considered to be the
standard for edge detection, involves smoothing, directional
filtering, gradient computation, nonmaximum suppression,
thresholding and edge-linking applied to all the pixels [39],
[40]. Canny analyzed the tradeoff between edge detection and
localization, and derived optimal filters for detecting edges. He
showed that a Gaussian-smoothing prior to gradient computa-
tion is a good approximation to an optimal filter for step edges.
The use of a Gaussian filter simplifies the implementation, be-
cause it is separable. Canny also showed that both localization
and detection could be improved simultaneously by increasing
the length of the filter along the edge direction as much as
posible. However, the length of the directional filter should be
chosen carefully. Canny’s directional operator is formed by
smoothing using a Gaussian kernel, differentiating normal to
the edge direction, and then sampling along the hypothesized
direction. For a given pixel, the response of the filters must be
computed for different support, scale and orientation values.
In our work, the scale is fixed, and the support and orientation
are adaptively adjusted to significantly reduce the search space.
The major innovation here is the use of a median based filter
along the edge direction. The detection function used here is a
low-pass differentiator (LPD) of the form ,
and the projection is a moving average with a support size of

pixels (Fig. 3). The length of the kernel, , is set adap-
tively to establish better localization and detection as well as
dynamically linking broken edges. Correlating a template with
an image computes all of the above operations at once rather
than applying them in a sequential manner such as in Canny
[38]. This contributes to the robustness and effectiveness of
our tracing algorithms. The algorithms compute the templates
on a locally relevant portion of the image, which makes them
computationally appealing as well. The template response at a
location along the orientation is expressed as:

(1)

where is the response of the 1-D LPD kernel at
along the direction which is perpendicular to , and is
the length of the template (see Fig. 3). Boundary points are esti-
mated as those resulting in maximum template responses. Since
the directional templates are separable, the filter response com-
puted in (1) can be interpreted as averaging the LPD responses
along the edge direction. Therefore, we will refer to the response
of this set of directional templates as “Average Response”. In
Section IV, we describe a new set of templates where the aver-
aging along the edge direction is replaced by median filtering.
We will refer the response of this new set of templates as “Me-
dian Response”.

Fig. 3. Illustrating the exploratory tracing algorithm. Starting from centerline
pointppp , and initial directionuuu the perpendicular directionsuuu anduuu are
searched for the left and right boundaries, where the correlation responses are
maximal. A step is taken along the direction of maximal response to~p . This
is corrected by vectorvvv to the next centerline pointppp . The next tracing
directionuuu is a weighted average combininguuu and the directions of the
maximal-response kernels at stepi + 1. The kernel lengthsk andk are set
adaptively, and can be different.

III. M ETHODS

Soma and dendritic structures are assumed to have higher in-
tensity values than the surrounding background, and the den-
drites/axons have roughly parallel and continuous boundaries.
Fig. 1 shows a sample image along with the resulting traces.
In addition to the image, the program generates a text output
showing the size and the location of the somas, and length, width
and location of the neurons. In this section we present those as-
pects of the tracing algorithms necessary to illustrate the dif-
ferences between the two kernel types. We do not discuss other
parts of the system described elsewhere [13], such as the soma
detection and the seed point selection algorithms, both of which
are necessary for the system’s operation.

A. Exploratory Tracing

The 5 K kernel given in (1) and shown in Fig. 3 is referred
to as a “template.” Separate templates are constructed for the
left and right boundaries of the structures, along different ori-
entations. The orientations are discretized to a small number
of values, typically 16 or 32. As illustrated in Fig. 3, starting
from centerline point (mid-point between the process or vessel
boundaries) , and the orientation, , of the process at this lo-
cation, the next centerline point along the process is estimated
by an update equation of the form

(2)

where is a step size. The above update equation produces non-
smooth traces, especially when the local curvature is high. As il-
lustrated in Fig. 3, smoother traces are obtained by adding a fine-
tuning step to (2), resulting in the following update equations:

(3-a)

(3-b)
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Fig. 4. Illustrating the response of the median based template for different types of artifacts for a horizontal segment. If the background intensityvalue is one
and the foreground intensity value is 2, then the total median response is 6 for all the cases, whereas the total average response is 4.6, 5.4, 4.6, and 3.9 for Figs.a,
b, c, andd respectively. Panel (a) illustrates a discontinuity. As long as the break is less than half the size of the template, the boundaries are linked successfully.
Panel (b) shows protrusion artifacts. These structures cause the mean template based tracing to stop prematurely, but the median based template is robust to such
artifacts as long as the width of such distortions is less than half of the template size. Panel (c) is a case of severely corrupted boundaries. As long ashalf or more
of the pixels are not distorted, the median based template gives the desired response. Panel (d) illustrates the robustness of the median template when the length of
the template is overestimated at regions of high curvature.

where is a correction (fine-tuning) vector, and “” indi-
cates approximation. The correction vector is calculated by av-
eraging the left and right boundary locations where the template
response on each boundary is locally a maximum. The template
response is computed using (1). The orientation space is dis-
cretized to values, where is set by the user to best sample
the curvature of the structures of interest. For the results pre-
sented here, we used yielding an angular precision of
11.25 and a total of 64left andright templates. For a detailed
description of the tracing algorithm, see [8], [13].

As illustrated in the next section, the tracing algorithm de-
scribed above has demonstrated excellent performance when
applied to images with good contrast and high SNR. However,
it failed to trace images with low contrast and/or low SNR ratio.

Even when it was able to trace such low contrast images, it gen-
erated too many false positives (background) traces. Accurately
and robustly tracing such image features is the motivation be-
hind the present work.

IV. ROBUSTTEMPLATES AND TRACING ALGORITHMS

Estimators based on order statistics are used preferentially
in computer vision applications where the data are distorted by
outliers [47]. Mean estimators are known to have a breakdown
point of 0% [46], as opposed to median estimators that have
a breakdown point of 50%. In image processing median-based
statistics appear as median filters, known to be robust to impul-
sive or pepper-and-salt noise [45]. These types of noise can be
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Fig. 5. Illustrating the superiority of the median template response compared to the average template response for a low magnification image. The responses are
computed at true boundary points (i.e., foreground) and at randomly selected background points (i.e., background) (a) CDF of the median response. (b) CDF of the
average response. Clearly, the median response is better at separating foreground and background points than the average response. For the median response the
Kolmogorov–Smirnov (K–S) value is 0.76 (obtained atR = 15), and for the average response the K-S value is 0.5 (obtained atR = 57). (c) The ROC curves for
the same low contrast image. The pointA is the best operating point on the median response curve and is obtained at a threshold value of 15, withF = 88:1%,
R = 87:3%, andP = 88:9%. The pointB is the best operating point on the average response curve and is obtained at a threshold value of 54, withF = 74:8%,
R = 78:8%, andP = 71:2%.

referred to as outliers in statistical terms. Although pixel inten-
sities can only assume positive values, the response of a LPD
can be either negative or positive, resulting in arbitrarily high
or low responses when corrupted with outliers. Hence, a false
background response can be confused with a boundary template
response, and vice versa. Similar to median filters used in image
processing, we can redefine the template responses (1) by com-
puting a median rather than mean for the LPD kernels along the
edge direction as follows:

(4)

The length is estimated analogous to the average response
based tracing algorithm described in [13]. The robustness of
the median template response for different situations is illus-
trated by an example in Fig. 4. Note that the median response

measure holds while up to 50% of the LPD responses are cor-
rupted. Hence any stopping criteria defined based on template
responses can more accurately detect the neurons from the false
background responses. The situations where using the median
response is advantageous are:

1) Broken/Discontinuous Segments: The median-based
algorithm can jump over missing structures, whereas
the average based algorithm terminates prematurely [see
Fig. 4(a)], especially in low-SNR and low-magnification
images where the neurons are thinner and therefore more
vulnerable to noise.

2) Discontinuous Boundaries: The continuity of the bound-
aries is violated by thin structures, possible branches or
undesired structures in the image [see Fig. 4(b)]. These
structures cause the average based template tracing to stop
prematurely, but the median based template is robust to
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(a) (b)

(c) (d)

Fig. 6. Comparing the quality of the automatic and manual traces. (a) A portion of an automatic trace magnified 5 times. (b) Manual trace of the same region. In
general, automatic traces are smoother than manual traces. The arrows highlight a few such differences. (c-d) Comparing the inconsistencies between automatic
and manual traces (A-M), with those between two sets of manual traces (M-M) for the same neuron image. Discrepancy(�) and consistency are plotted as a
function of disk size in Panels (c) and (d), respectively. Observe that the (A-M) average error is smaller than the (M-M) average errors.

such artifacts as long as the width of such distortions is
less than half of the template length.

3) Impulsive Noise: The median response is robust to impul-
sive noise, as long as half of the data is not corrupted [see
Fig. 4(c)].

4) Curvature: Unlike the mean based algorithm, the median
based tracing is less prone to premature stopping in re-
gions of high curvature [see Fig. 4(d)] significantly im-
proving the results particularly for low-resolution images
where the curvature is higher.

Note that, other than replacing the average response with the
median response, the tracing algorithm introduced in the pre-
vious section and discussed in detail in [8], [13] remains the
same. The next section illustrates the superiority of the median
template response over the average response, especially in im-
ages with low SNR.

V. MEDIAN VS. AVERAGE; AN EMPIRICAL STUDY

The following experiment illustrates the superiority of the
median template response over the average response. A total of
6 images were traced manually. For each image, the templates
were applied at each of its known boundary points, and the
responses were histogrammed. To compensate for the fact that
manual traces may not exactly coincide with the true boundary
points, templates were applied at points adjacent to boundary
points in several directions and maximum responses were
noted. This resulted in two response histograms per image,
one containing average template responses, and the other con-
taining median template responses. Similarly, two background
response histograms were generated per image by applying
the templates at randomly selected background points. At each
background point, the templates were allowed to shift (move)
and rotate locally, for maximum median and average template
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Fig. 7. Illustrates the discrepancy (average error of corresponding traces) and the consistency (percentage of inliers) as a function of disk radius�.
(a)–(b) High-contrast images. (c)–(d) Low-contrast images. Observe that the manual traces are superior to the automatic ones in both image types formost values
of � > 1. Median based tracing is more consistent and has less error than average based tracing. This improvement is significant for low-contrast images.

responses. The foreground and background histograms of a
particular image contain the same number of points. Fig. 5 illus-
trates the foreground and background accumulative normalized
histograms [which are estimates of the corresponding cumu-
lative distribution functions (cdf)] for a sample low-contrast
image. Observe that the foreground and background median
cdf’s in Fig. 5(a) are more separated than the CDF’s for the av-
erage responses illustrated in Fig. 5(b). Quantitatively this can
be measured using the Kolmogorov-Simirov (K-S) test, which
measures the maximum difference between the two cdf’s. The
median response definition resulted in a K-S measure of 0.76
while the average response resulted in a K-S measure of 0.57.
Higher K-S values imply that responses at true boundary points
are separable from responses due to background irregularities
and noise. For instance, one can compare the performance of
the two response estimators by applying a varying threshold to
the histograms and at each threshold compute the classification
error.

Let denote the number oftrue positives, i.e., the number
of foreground points that passed the threshold. Let be the
number offalse negatives, i.e., the number of foreground points
that did not pass the threshold. Let be the number oftrue

negatives, i.e., the number of background points that did not
pass the threshold. Let be the number offalse positives,
i.e., the number of background points that passed the threshold.
We define therecall, , andprecision, , according to

(5)

(6)

Ideally, a template should produce positive responses over the
foreground, and zero responses over the background. In such
an ideal situation, one can perfectly classify foreground and
background points. Therefore, achieving recall and precision of
100%. In real images, however, such situations rarely occur, and
a balance between precision and recall should be achieved. To
compare the performance of the two template responses, it is
more convenient to use a single measure instead of two. One of
the most frequently used measures combining both recall and
precision is the measure, which is defined as

(7)
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TABLE I
LISTING OF THE� AND THE � VALUES FORLOW- AND HIGH-CONTRAST IMAGES

where , a weighting factor, determines the relative weight of
the recall and precision components, depending on the appli-
cation. For the following experiments,was set to 1, i.e., the
recall and precision were assigned equal weights. The resulting
measure is often called the measure. curves are the re-
ceiver operating characteristics (ROC) curves used in detection
theory.

Applying a varying threshold to the cdf’s of Fig. 5(a) and (b)
produced the curves in Fig. 5(c). The best operating point
using the median response definition was obtained at a threshold
of 15, and corresponds to a value of 88.1%, ( ,
and ). This is denoted by in Fig. 5(c). Compare
this with the best operating point using the average response
definition denoted by and corresponds to , (

, and ). The results obtained from the other
images suggest a similar conclusion—that the median response
is clearly superior to the mean.

For completeness, we compared the two algorithms on a typ-
ical high contrast, high SNR image. Similar to the above result,
the cdf’s of the median responses were found to be more sepa-
rable than the cdf’s of the average responses. However, the dif-
ferences are not as substantial as those observed for low SNR.
Quantitatively, the estimated K-S measures were 0.84 for the
median and 0.79 for the average, resulting in a K-S difference
of 0.05. Compare this with a difference of 0.19 (i.e., 0.76–0.57)
for the low SNR image of Fig. 2. The same conclusion can be
reached by comparing the best operating point from the ROC
curves for both images. To summarize, the median outperforms
the average regardless of image type. However, the median out-
performs the average by a much larger margin in low contrast
images. This conclusion is supported by hundreds of traces of
actual neuron images.

This section has illustrated that the median template response
is superior to the average template response with respect to clas-
sifying foreground and background points. However, it is nec-
essary to analyze the effect of the two response definitions on
the accuracy of the tracing algorithms. This will be considered
in detail in Section VII in the context of a validation study.

VI. EXPERIMENTAL RESULTS

This section describes the specimen preparation, imaging
protocols, computational setup, and presents some sample re-
sults. The tracing algorithms presented in this work have been
implemented and are in use since April 1999 at Wadsworth
Research Laboratory of the New York State Health Depart-
ment, Albany, NY. The images presented here are merely
samples that were selected to illustrate certain aspects of the
algorithms.

A. Specimen Preparation and Imaging Protocols

The neurons were obtained from whole brains from several
embryonic (day 18) Sprague–Dawley rats. The brains were
dissected, pooled, and maintained on ice in Hepes buffered
saline solution (BSS) supplemented with 100 U/ml penicillin
and 100 U/ml streptomycin [41]. Under a dissecting micro-
scope, hippocampi were dissected, cleaned of meningeal
tissue, collected, then enzymatically digested with a solution
of 2.5-mg/ml trypsin in BSS at 37 , without shaking, for
15 min. Digested tissue was rinsed three times with BSS at
room temperature (five minutes per rinse) and mechanically
dissociated by repeated pipetting first with a Pasteur pipette,
and then with a Pasteur pipette that had been fire polished to
reduce the internal diameter by one half. Dissociated neurons
were then seeded directly onto poly-lysine coated coverslips or
silicon colonnade surfaces at a density of
and allowed to adhere for two hours.

The surfaces with adherent neurons were inverted and sub-
merged in glial-conditioned N2.1 media so that adherent neu-
rons were facing, but separated from, a layer of previously pre-
pared astrocytes. The resultant inverted cocultures were main-
tained for 24 hours under standard cell culture conditions. The
adherent neurons were rinsed with HBHS and fixed in situ using
warm (37 ) 4% paraformaldehyde for 10 minutes.

Fixed neurons were treated in 1% triton X-100 in HBHS at
room temperature for 10 minutes and then in 6% BSA in HBHS
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TABLE II
LISTING OF THE F VALUES FOR THE TEN HIGH CONTRAST IMAGES AND THE FIVE LOW CONTRAST

IMAGES COMPUTED USING THE AVERAGE AND THE MEDIAN TRACING ALGORITHMS

for 30 minutes. The neurons were labeled using a solution con-
taining an antibody to a neuron specific subunit of tubulin (clone
TuJ1, diluted 1:500, BabCO) in HBHS at 37 for 1 hour. The
neurons were then incubated in a biotin conjugated anti-mouse
antibody (diluted 1:200, Sigma) or in Alexa-488 conjugated an-
tibody (diluted 1:200, Molecular Probes, Eugene, OR) at 37
for 40 min. Neurons stained using the biotinylated antibody
were subsequently stained with Quantum Red-conjugated strep-
tavidin (diluted 1:50, Sigma) in HBHS at room temperature for
30 minutes. All samples were rinsed in HBHS and mounted on
coverslips in a 1:1 (v/v) solution of glycerol (Sigma): HBHS
supplemented with 1% n-propyl gallate.

All fluorescently labeled samples were imaged by scanning
laser confocal microscopy using either a BioRad MRC 600 or
a NORAN OZ confocal unit attached to an Olympus inverted
microscope using a 10X 0.40 numerical aperture objective lens.
Each x, y image was recorded as a single frame to minimize
photodamage. This results in noisy images compared to inte-
grated images recorded either by slower scanning or signal in-
tegration of multiple scans. An additional issue is the possibility
of nonuniform fluorophore absorpotion that results in apparent
discontinuities.

The tracing program is implemented in C++ and does not re-
quire any special hardware. The results here were obtained using
a Pentium III 500-MHz PC, with 128 Mbytes of RAM. A typ-
ical image is processed in less than 5 s. This
includes I/O, soma detection, tracing, and presentation. The ac-
tual tracing time depends on the complexity of the image, but is
usually around one second.

Eight images were selected mostly at random, however, some
were selected to illustrate certain aspects of the algorithms. All
images are gray scale with 8 bits/pixel. None of the images were
manipulated before processing. However, in all instances, image
contrast and brightness were manipulatedafter they have been
traced by our algorithm for printing purposes (many structures
were too dim for direct printing). In other words, the algorithms
used the raw data.

Fig. 1 illustrates an image and the corresponding traces. The
image has the dimensions 768 512 pixels. Segments and
somas are labeled with numbers and letters, respectively, while
intersection/bifurcation points are marked with cross hairs. The
program uses two-letter codes (e.g., “AA”, “AB”, etc.) for soma
identification. In addition to the traces, the program generates
two text outputs. The first is a text representation of the somas
and the traces in a format compatible with the Neurolucida
software (MicroBrightfield Inc., Williston, VT). The second
output is a text summarization of neuronal structures found in
an image. Fig. 2 illustrates a low SNR image along with its
average and median generated traces.

A quantitative analysis of the tracing algorithm is presented in
the next section. However, a few observations are in order. First,
the tracing algorithm appears to be robust against nonuniform
backgrounds, as illustrated by Fig. 2. Second, neither the tracing
nor the soma detection algorithms were affected by the high
intensity regions surrounding the somas in the images. Third,
tracing seems to terminate prematurely occasionally which can
be corrected by adjusting certain parameters in the tracing algo-
rithm. However, we were unable to identify a single parameter
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Fig. 8. Further examples from a large-scale study [48] of neuronal behavior on patterned surfaces. Panel (a) is the result of automatically tracing a 1280� 1024
pixel image of neurons grown over a micropillar array with pillar width of 2�m, and spacing of 1.5�m. Panel (b) is an enlarged view of the trace around the neuron
at the upper right portion of the image. The traces are shown in green and the tips/junctions are shown in purple. The image is displayed using a heated-object color
scale that best highlights the background detail for this data. Panels (c) and (d) correspond to a smooth etched surface. The neurons grow much more randomly in
this case.

that can generalize over all types of images, hence none of the
program parameters were adjusted manually.

VII. M ETHODS FORVALIDATING THE TRACING ALGORITHMS

This section presents a validation study of the tracing
algorithm. This includes validating the accuracy as well as
the consistency of the algorithms. Accuracy is estimated
with respect to a ground truth. Consequently, methods for
establishing the ground truth for 2-D neuron images from
a set of manual traces are presented. Since the ground truth
is an estimate calculated from manually traced images, we
prefer to use the terms “discrepancy” and “consistency” rather
than “localization” and “detection.” Quantitative measures for
estimating the similarity between sets of traces, and between
traces and the corresponding ground truth are also presented.

The discrepancy of the tracing algorithms is quantitatively
measured with respect to the estimated ground truth. It is
measured in pixels, and represents the error between the pro-
gram-generated traces and the manual ones. The consistency of
the tracing algorithms, on the other hand, measures the ability
of the algorithms to regenerate traces after introducing certain
types of image variations. It is the percentage of the common
traces detected; hence it will be quantified in terms of the
similarity between the two sets of traces.

From a neuroscientist’s point of view, several structural
characteristics of neurons are important. These include soma
centroids, volumes, surface areas, and connectivity with other
somas. In addition, it is important to determine the centerlines
of all dendritic/axonal structures, their lengths, surface areas
and volumes. It is also of interest to determine the topology
of such structures. For instance, one parameter of particular
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interest is the order of a segment in the tree-like neuronal
structure. Indeed, it is known that first-order (i.e., primary
dendrites emerging from the soma) have different electrical
properties compared to higher-order segments.

Clearly, quantitative evaluation of an automatic system based
on these characteristics requires the availability of ground truth,
or a suitable “Gold Standard.” In the context of neuron images,
the ground truth has to be established manually. It is usually
difficult for a human to manually generate accurate and con-
sistent traces. As illustrated in Fig. 6(a-b), manual traces are
often jerky and don’t line-up with the structures’ true center-
lines. Furthermore, manual traces often suffer from inter- and
intraexpert variability. Manual traces of the same image gener-
ated by different human experts or by the same expert but at
different times do not coincide exactly. In fact, we will illustrate
that automatic traces are superior to manual traces as far as the
location of the centerline points is concerned. Hence, in this con-
text, it is inappropriate to validate the automatically generated
centerlines against their manual counterparts. On the other hand,
the human observer is better at detection of segments. If the
objective of a validation study is to determine whether there is
a one-to-one correspondence between automatically generated
traces and dendritic structures (i.e. detection-rate vs. false-alarm
rate, or the average number of false positives and false negatives
in a given image), then one would expect manual tracing to be
superior to its automatic counterpart.

A. Algorithms for Measuring the Similarity of Traces

This section introduces methods to quantitatively measure
the similarity between two sets of traces corresponding to the
same neuron image. The measures are based on the Euclidean
distances between the corresponding traces. The discrepancy
between two sets of centerline points is measured by computing
the average Euclidean distance between the points that are
within a distance . The consistency between two sets is
measured by finding the percentage of points that are within a
distance of .

Let the neural structure centerline location sets from the two
images be denoted and with and points respec-
tively. Let the subset be the inlier points that have
a correspondence in the other image; in other words for each
point there exists a point in such that the Eu-
clidean distance between these two points is less than a. Fur-
thermore, denote the corresponding point of in the set

by . Similarly, let
denote the subset of inlier points in whose closest point in
set is less than , and for each let denote its
correspondence in set.

Observe that the number of points in is not necessarily
equal to the number of points in , because one-to-one corre-
spondence is not enforced due to the curved nature of the traces.
The spatial discrepancy between the two traces is defined by

(8)

The consistency between the two traces are defined by

(9-a)

(9-b)

Observe that the two consistency measures, while similar in def-
inition, may have different meaning as will be explained shortly.
Exhaustive search is required to establish correspondences be-
tween sets of tracing points. However, this can be accomplished
efficiently using Euclidean Distance Maps.

B. Comparison of Manual and Automatic Traces—A Case
Study

Twenty-one neuron images were manually traced at least
once. Five images were traced five times by the same person,
but during different sessions. The images were then traced
using the tracing algorithm running in a batch mode (i.e.,
no tracing parameters were adjusted). Manual and automatic
traces of an image are cropped and enlarged for comparison
and illustrated in Fig. 6(a) and (b). The traces are very similar,
but this needs to be established quantitatively. Fig. 6(c) and (d)
illustrates the average discrepancyand the consistency
between a manual trace and an automatic trace for
the complete image of Fig. 6(a) and (b). Fig. 6(c) illustrates
that the discrepancy between the two manual-traces are larger
than those between a manual trace and an automatic trace. For
example, for , the discrepancy (average error) between
the two manual traces is 0.88 pixels, while the discrepancy
between an automatic trace and the manual traces is 0.72 pixels.
Although the difference between these two sets of traces is not
large especially when taking digitization errors into account,
still it illustrates the quality of automatic traces. Fig. 6(d)
illustrates that the consistency between automatic and manual
traces is slightly less than those measured between two sets of
manual traces. For example, at , 97% of the points in
the two manual traces were found to be inliers to each other,
while only 91% of the points in the automatic trace were found
to be inliers to their manual counterparts. This is expected,
because humans are less likely to skip available structures or
trace background noise.

The same observations were found to be true for all other sets
of manual and automatic traces. This leads us to conclude that
automatic traces are, at the very least, of comparable quality to
manual ones as far as locating the true location of the center-
lines are concerned. Because of the observed discrepancy be-
tween sets of manual traces, one can conclude that no single
manual trace is a good estimate of the true centerline. To quan-
titatively measure the accuracy of the automatic tracing algo-
rithm, we first establish the true location of the centerlines (i.e.,
ground truth) and then measure the discrepancy relative to the
established ground truth. This is described next.

C. Methods for Approximating the Ground Truth

For the purposes of this work, the true location of the cen-
terlines is approximated for ten high-contrast images and five
low-contrast images. Each image was traced five times, by dif-
ferent people, or by the same person at different times. There-



314 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 7, NO. 4, DECEMBER 2003

fore, resulting in 75 manual traces. Furthermore, both the av-
erage and the median tracing algorithms were used to trace all
images. Therefore, resulting in a total of 105 images (traces).
To establish the ground truth for a given image, we first estab-
lished correspondences between all of its manual traces. Ide-
ally, the true location of centerline points would be estimated
by the average of each of the correspondence sets. However,
this may result in discontinuities in the estimated ground truth.
Alternatively, the following algorithm approximates averaging
and produces continuous centerlines. First, we superimpose the
manual traces on an image, with pixel intensities being a func-
tion of the number of matching traces. Then perform a mor-
phological closing using a 3 3 structuring element of the

form to produce hole-free centerlines. Finally, we

apply a modified version of the sequential thinning algorithm
described in [42] to estimate the true location of the centerlines.

Notice that without the above closing operation the ground
truth centerlines may contain holes (i.e., a fork in the centerline
followed by a merge). Clearly, this is not desirable because we
would like the ground truth to be representative of the manual
traces collectively, not individually. The closing operation has
another desirable effect. Notice that the above structuring ele-
ment results in images where pixel intensities are directly pro-
portional to the number of manual traces contributing to them.
This is desirable because the thinning algorithm is designed to
remove low intensity pixels before high intensity ones, which
means centerlines that agree with the majority of traces at each
point.

D. Quantitative Analysis of the Tracing Algorithms

In this section, we use ground truth estimates to show that
1) manual traces are superior to automatic traces with respect
to tracing all segments present, and avoiding background noise,
2) automatic traces are more accurate than manual traces in es-
timating the true location of the centerline pixels, and 3) the
median tracing algorithm is superior to the average tracing al-
gorithm, especially in low-quality images.

Manual Versus Automatic:First we compare manual traces
and automatic traces against the ground truth with respect to
the percentage of inliers at different disk sizes. This is illus-
trated in Fig. 7(b) for high-contrast images and in Fig. 7(d) for
low-contrast images. For instance, the curve corresponding to
the manual traces in Fig. 7(b) was generated by 1) computing the
percentage of inliers points of each of the manual traces with re-
spect to the ground truth, , and 2) taking the average over all
traces at each disk radius value,. Clearly, the manual traces are
superior to the automatic traces in both low- and high-contrast
images, with the average-tracing algorithm being much worst
for the low-contrast images. This is because human tracers are
less likely to trace the background (i.e., overtrace) or miss en-
tire or parts of segments (i.e., under-trace), and the ground truth
itself is established by manual traces. Therefore,we conclude
that manual traces are superior in detecting more segments and
avoiding background traces. However, this does not mean that
manual traces are more accurate, in other words that they have
low discrepancy. This is because accuracy is a function of error

between the true location of a point and its estimated one as
measured by the discrepancy. In fact, if we only consider in-
lier points (i.e., those points having corresponding ground truth
points), then the average tracing algorithm was found to be the
most accurate. This is illustrated in Fig. 7(a) and (c). The fact
that the average tracing algorithm was found to be slightly more
accurate than the median can be attributed to the fact that the
Euclidean distance is the error measure minimized by the mean
statistics for the inlier points.

Median Versus Average: Recall that represents the per-
centage of points in the tracesthat are inliers to ground truth
points, while represents the percentage of points in the
ground truth that are inliers to points in the traces. In other
words, is a measure ofprecisionwhile is a measure of
recall. Table I lists some of these values for low- and high-con-
trast images. For example, from the row in the high-con-
trast images, Observe that 81% of the points generated by the
average tracing program are adjacent to true centerline points.
Compare this with 88% for the median algorithm. Furthermore,
70% and 73% of the points in the ground truth were adjacent to
points generated by the average- and median-tracing programs,
respectively. The difference is more significant in low-contrast
images. For example, the row in the low-contrast im-
ages column indicates that the average tracing algorithm has a
precision of 41%, while the median has a precision of 89%. On
the other hand, the average tracing algorithm has slightly better
recall than the median at 79% and 74%, respectively. In other
words, although the average tracing algorithm was able to trace
79% of the segments present in the image, 59% of the traces
it generated correspond to background noise rather than actual
segments. This is consistent with our earlier statement that the
average tracing algorithm tends to over-generate.

To compare the performance of the average and median
tracing algorithms against each other, we assume that both
(i.e., precision) and (i.e., recall), are equally important and
compute the measure for the average and median traces.
In terms of the recall and precision estimates, themeasure
defined in (7) can be rewritten as

(10)

This allows us to calculate the (ROC) curves for each image
as a function of the inlier distance threshold. The values
obtained using are listed in Table II for the ten high
contrast images as well as the five low contrast images. Table II
clearly illustrates the superiority of the median tracing algorithm
over the average algorithm, especially in low contrast images.
This is clearly illustrated by the last row in Table II, which lists
the average values obtained over all high- and low-contrast
images.

VIII. SUMMARY AND CONCLUSIONS

In this work, we have presented fully automatic algorithms
for tracing of neurons from digital images. The algorithms are
fast, hence they are appropriate for large scale applications.
They are also accurate and robust against image artifacts such
as low contrast, and apparent discontinuities and/or hollowness
of structures. This work extends our earlier work [8], [13]
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by presenting the median kernel response, a view of kernel
responses that is different from the traditional correlation-like
views. The superiority of this new kernel-response method
was established quantitatively using ROC-like curves and
is supported by our results [48] obtained from thousands of
images.1 Some examples are shown in Fig. 8. This new and
novel view of kernel-responses may prove useful in other
kernel-based tracing algorithms. We have also presented a set
of methods for establishing ground truth and for validating the
tracing algorithms.

The median-based tracing requires a slightly higher computa-
tional cost than the average-based tracing, but the algorithm are
still fast enough for the applications of interest, since only a frac-
tion of a second is added to the computing times. Overall, the
median-based algorithm is still much faster compared to manual
tracing. The robustness and efficiency of the proposed method
makes it attractive for large-scale applications such as high-
throughput assays, and the Human Brain Project [43]. They are
especially valuable when live specimens are being imaged. An
application of direct interest to us is the detection and quantifi-
cation of morphological changes caused by a variety of bio-
chemical and physiological agents, disease and trauma. Also
of interest are attempts to simulate computationally the electro-
chemical behavior of large collections of neurons [44] for which
actual, rather than simulated, neuro-anatomical data, would be
valuable.

In our earlier work [13] we presented algorithms for tracing
neurons in 3-D volumetric images. Currently, we are extending
the median-based tracing method described here to 3-D images
of neurons and tumor vasculature in support of angiogenesis
studies.
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