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Abstract—CUDA (Compute Unified Device Architecture) is a 
novel technology of general-purpose computing on the GPU, 
which makes users develop general GPU (Graphics Processing 
Unit) programs easily. This paper analyzes the distinct features 
of CUDA GPU, summarizes the general program mode of 
CUDA. Furthermore, we implement several classical image 
processing algorithms by CUDA, such as histogram equalization, 
removing clouds, edge detection and DCT encode and decode 
etc., especially introduce the first two algorithms. If we don’t 
take the data transfer time in experiment between host memory 
and device memory into account, as the image size increase, 
histogram computation can get a more than 40x speedup, 
removing clouds can get an about 79x speedup, DCT can gain 
around 8x and edge detection more than 200x.  

Keywords-CUDA; GPU Computing; Parallel Computing; 
Image Processing 

I. INTRODUCTION 
In recent years, the computation speed of graphics 

processing unit (GPU) has increased rapidly. We only take the 
float-point operation as an example, and GPU’s computation 
speed is several times faster than CPU’s. The Flops of 
NVIDIA Ge80 series has gotten 520G in late 2006 [1], 
whereas Intel 64-bit dual-core CPU has only 32 GFlops. 
Moreover, now the mainstream GPU’s scale has exceeded 
significantly the CPU’s. The transistor number of NVIDIA 
Quadro FX 5600 has been more than 0.7 billion. From the 
above, we can see the powerful computational capability of the 
GPU. Moreover, as the programmability and parallel 
processing emerge [3], GPU begins being used in some 
non-graphics applications, which is general-purpose 
computing on the GPU (GPGPU). However, the traditional 
GPGPU development is based on graphics function library, for 
example OpenGL and Direct 3D, which makes the GPU used 
only by the professional people familiar with graphics API, 
and brings many inconveniences to the common users.  

The emergence of CUDA (Compute Unified Device 
Architecture) technology can meet the demand of GPGPU in 
some degree. CUDA brings the C-like development 
environment to programmers for the first time, which uses a C 
compiler to compile programs, and replaces the shader 
languages with C language and some CUDA extended 
libraries. Users needn’t map programs into graphics APIs any 
more, so GPGPU program development becomes more 
flexible and efficient. More than one hundred processors 
resided in CUDA graphics card schedules hundreds of threads 
to run concurrently, resolving complex computing problems. 

II. THE FEATURES OF CUDA GPU 
Over the past few years, the performance of GPU has been 

improving at a much faster rate than the performance of CPUs. 
In 2007, NVIDIA’s most advanced GPU provided six times 
the peak performance of Intel’s most advanced CPU [4]. GPU 
has evolved from special-purpose processor to programmable 
processor, and meanwhile the programmability has been the 
most important feature. Compared to the previous GPU, 
CUDA GPU has the following advantages: 

• General programming environment: CUDA uses C 
programming tools and C compiler, which make 
programs have better compatibility and portability. 

• More powerful parallel computing capability: CUDA 
graphics card applied more transistors to computing, 
not to data cache or flow control [1]. GeForce 8800 
has 128 1.35GHz stream processors, 512 bit DDR3, 
and 768M device memory, far bigger than the L1 
cache of CPU. 

• Higher bandwidth: Take the GeForce 8800 as an 
example, its bandwidth gets to 86.4GB/s between 
GPU and device memory, and 4GB/s between host 
memory and device memory via PCI-E x16 bus. 

• Instruction operation: CUDA GPU supports integer 
and bit operation. 

III. CUDA INTRODUCTION  
The hardware architecture can be seen from Fig. 1. CUDA 

cards contain many SIMD stream multi-processors (SM), and 
each SM has also several stream processors. Each SM has four 
type memories, constant memory, texture memory and global 
memory can communicate with host memory except on-chip 
shared memory. These cards use on-chip memories and cache 
to accelerate memory access. 

The hardware architecture has three novel features [5]: 
• General write/read global memory: GPU can gather 

data from any location or the global memory, and also 
scatter data to any location, almost as flexible as CPU. 

• On-chip shared memory: It can make threads in the 
same multi-processor get data quickly, avoiding 
accessing global memory frequently. The access speed 
of shared memory is as quick as registers, fetching a 
data from shared memory just costs 4 clock cycles, 
whereas from global memory need 400~600 clock 
cycles.  
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• Thread synchronization: Threads in a thread group can 
synchronize, so they can communicate and cooperate 
to resolve complex problems. 

 
Figure 1.  CUDA hardware model  

In CUDA program, any call to a GPU function from within 
a CPU function must include an execution configuration [4], 
which determines the block count, thread count in a 
thread-block, and the account of shared memory. Each block 
can only run on a multi-processor, but each multi-processor 
can be allocated multiple blocks. Whether many blocks can 
run concurrently on a multi-processor depends on the 
occupancy of the registers and shared memory of each SM. At 
a time, a batch of blocks ready to run on a multi-processor are 
in active state, the threads of these blocks are divided into 
SIMD groups (called warps) by the order of thread index. Each 
multi-processor slices time to execute warps, each thread fetch 
different data to execute kernel according with its index.  

 
Figure 2.  CUDA compiler procedure 

For software, CUDA mainly extended the driver program 
and function library. The software stack consists of driver, 
runtime library, some APIs and NVCC compiler developed by 
NVIDIA. In Fig. 2, the integrated GPU and CPU program is 
compiled by NVCC, and then the GPU code and CPU code are 
separated. 

IV. THE GENERAL PROGRAMMING MODE OF CUDA 
CUDA hides the low-level hardware details. For 

data-parallel computing, we can use the same mode to program 
with C language. The main steps of the general mode describes 
below: 

• Copy data from host memory to device memory: 
Because of the limit of bandwidth, data transfer 
between host memory and device memory is the 
bottleneck that restricts the whole speed. So an 
effective method is to bind data to a texture, operating 
data by texture functions. 

• CPU schedules the kernel to execute. This stage 
mainly contains the following three steps. 

a) Set the kernel execution configuration. 
Decompose the input data, and allocate data 
blocks to each thread block. 

b) Read data from global memory to shared 
memory [6]. This step is not essential but very 
effective. Because of the quick speed of shared 
memory, we should make the best use of shared 
memory. Here, if we adopt some optimization 
strategy, the read speed and memory bandwidth 
can be improved significantly. For example, 
access the global memory in a coalesced way 
and don’t incur memory access conflicts when 
accessing the shared memory. 

c) Launch the kernel computation.   

• Write the result back to host memory, do the post 
processing. 

V. THE APPLICATIONS OF CUDA IN IMAGE PROCESSING 
We usually process substantive pixel data in image 

processing, especially for airplane or satellite pictures. These 
images have large resolution and size, and the traditional 
processing methods can’t satisfy the high real-time 
requirement. CUDA can provide highly data-parallel 
processing, so it is one of the ideal solutions of processing 
those big images. 

A. Histogram equalization 
For some image, such as remote sensing image, because 

the gray distribution is in a relatively narrow range, resulting in 
image details are not clear enough, and have lower contrast. 
Therefore, we need to do histogram equalization processing for 
these images. The process of histogram equalization contains 
three steps: 1) computing the original gray distribution; 2) 
computing the new distribution via cumulative distribution 
function; 3) do histogram transformation for the original 
distribution. 

We designed the implementation process described 
detailedly as following. 

1) Compute the original and new histogram distribution. 

Firstly, set the execution configuration. We set each thread 
process L data, L is the gray level (like L=64,256), Ti 
represents any thread in a block, THREAD_N is the thread 
number of each block, BLOCK_N is the block number of each 
grid, N is the total size of the input data, 16KB is the size of 
shared memory of the NVIDIA G80 series cards, so the 
execution configuration can be set below: 

a) Ti processes L data; 
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(THREAD_N *L)B<16KB; 
b) BLOCK_N =N / (n*L).  

If L=256, THREAD_N can only be 32.Because we can not 
occupy the whole shared memory, some place should be 
remained to put some special variables. We can find these 
variables by disassembling command cubin [8], which are 
block index, grid index and so on.  

 
Figure 3.  The computation of each thread block. BIN_COUNT represents 
gray level, equal to L. We set L=256, the thread number of each block is 
32.When each block reduces thread sub-histograms, THREAD_N is smaller 
than L, so each thread accumulates more than one gray level, as the following 
order:Thread0: 0, 32, …,24 gray level；Thread1:1,33, … ,225 gray level
；……Thread31:31, 63,…, 255 gray level. 

 
Figure 4.  Reduce sub-histograms of each thread blocks 

Secondly, start computation of each thread block. Each 
thread process L data, and put the result into shared memory 
.Because of the size limit of shared memory, we can’t first 
copy data from global memory to shared memory, and each 
thread must read data from global memory. After threads 

finish computing, each thread has a sub-histogram that size is 
L. And then, each block need to reduce its sub-histograms to a 
bigger sub-histogram. This process is shown as Fig. 3.  

Thirdly, reduce each block sub-histogram. At this step, we 
should reconfigure the kernel to set more threads in each 
block. Seen from Fig. 4, each block has L threads, we use the 
first block to reduce the all blocks in a grid, and each thread 
accumulates one gray level. Finally, use the first thread in the 
block computes the new gray distribution according with the 
theory of cumulative distribution function. 

2) Histogram equalization. We set the thread number of 
each block is L, and each thread processes one gray level. At 
this step, the old gray value should be replaced by the new 
value. 

B.  More CUDA applications in image algorithms 
We also do experiments on removing clouds, DCT encode 

and decode and edge detection algorithms. 

In removing clouds algorithm, modulo 2 and logarithm 
operations could be parallelized. We set many threads so that 
each thread processes one pixel data. For Fourier Transform, 
CUDA provide a library of CUFFT which contains many 
highly optimized function interfaces, we can call these APIs 
simply. However a fly in the ointment, CUDA only supports 
the single-precision, resulting in the image contrast is not 
enough. We can see the result in Fig. 6. 

In DCT encode and decode algorithm, we first divide the 
image data into N x N blocks, and then do the DCT transform 
for each data block. Because we adopt the quick DCT and 
IDCT based on the butterfly algorithm, FFT transform is 
needed. Before using the CUFFT library, users just need to 
create a Plan of FFT transform, and then call the APIs. For 
FFT transform, device memory is needed to be allocated when 
creating the Plan, and the device memory will not vary in 
succeeding computations. Therefore, image size needs to be 
smaller than device memory. For example, when device 
memory is 1.5GB and the image size is bigger than 6144 x 
6144 pixels, an error will be occurred with the reason of 
deficient device memory.  

C.  Experiment results and analysis 
For each image algorithm, we design both CPU serial code 

and GPU parallel code, and then compare the executed time. 
When calculating the executed time, we don’t consider the 
data transfer time from host memory to device memory. 

The speed comparison of histogram is shown in TABLE I 
and Fig. 1 below. As the image size increases, GPU can 
improve the computing speed significantly. We can gain a 
more than 40x speedup. 

An around 80x speedup can be gained in removing clouds 
algorithm showed in TABLE II. The processed images of 
removing clouds are shown in Fig. 6. We can seen two kind of 
different results, the CPU’s result has a higher contrast and the 
details of GPU’s is more clear. The reason of this difference is 
that GPU can only support the single-precision, whereas CPU 
supports 64-bit double float point type.   

For DCT, we can gain an 8x speedup by GPU, and the 
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TABLE I.  THE TIME COMPARISON OF 256 GRAY LEVEL HISTOGRAM 
EQUALIZATION  

Input image  CPU(ms) GPU(ms) 
5120x5120 1746.40 37.29 
4096x4096 1126.38 24.12 
3072x2304 479.11 10.57 
2048x2048 280.5 6.5 
1600x1200 128.51 3.25 
1280x1024 91.44 2.46 
1024x816 54.6 1.79 
512x512 17.53 0.93 
320x408 8.83 0.97 

 
Figure 5.  The speedup of histogram equalization by GPU. The values of the 
horizontal axis are marked by the side of the speedup graph. As the image 
size increases, the speedup is more obvious. When the image is 4096 by 
4096, we can gain a 46x speedup. 

TABLE II.  THE TIME COMPARISON OF REMOVING CLOUDS 

Input image  CPU(ms) GPU(ms) Speedup 
4096x4096 31925.99 402.01 79.4 
2048x2048 7644.09 97.09 78.7 
1024x1024 1778.28 22.53 78.9 
700x525 1745.02 21.98 79.4 

 

 
a) Original image 

b) The image processed by CPU serial code 

 
c) The image processed by GPU parallel code

Figure 6.  The results of removing clouds 

speedup doesn’t increase with the image size. Especially for 
edge detection, we gain an over 200x speedup. For the speedup 
of edge detection, on the one hand, the reason is because we 
use the texture when reading data from host memory to device 
memory, which indicates that the way of reading data from 
host memory is very important for the whole speed. On the 
other hand, the whole computing process of edge detection is 
parallelized. 

VI. CONCLUSIONS  
For parallel computing by CUDA, we should pay attention 

to two points. Allocating data for each thread is important. So 
if better allocation algorithms of the input data are found, the 
efficiency of the image algorithms would be improved. In 
addition, the memory bandwidth of host device is the 
bottleneck of the whole speed, so the quick read of input data 
is also very important and we should attach importance to it. 

Obviously, CUDA provides us with a novel massively 
data-parallel general computing method, and is cheaper in 
hardware implementation. In future, we will do more work on 
some optimization strategies and how to make the best of the 
memory spaces. 
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