
Parallel Image Processing Based on CUDA

Zhiyi Yang, Yating Zhu, Yong Pu
Dept. Computer of Northwestern Polytechnical University

 Xi’an, Shaanxi, China
zhuyating02@163.com

Abstract—CUDA (Compute Unified Device Architecture) is a
novel technology of general-purpose computing on the GPU,
which makes users develop general GPU (Graphics Processing
Unit) programs easily. This paper analyzes the distinct features
of CUDA GPU, summarizes the general program mode of
CUDA. Furthermore, we implement several classical image
processing algorithms by CUDA, such as histogram equalization,
removing clouds, edge detection and DCT encode and decode
etc., especially introduce the first two algorithms. If we don’t
take the data transfer time in experiment between host memory
and device memory into account, as the image size increase,
histogram computation can get a more than 40x speedup,
removing clouds can get an about 79x speedup, DCT can gain
around 8x and edge detection more than 200x.

Keywords-CUDA; GPU Computing; Parallel Computing;
Image Processing

I. INTRODUCTION
In recent years, the computation speed of graphics

processing unit (GPU) has increased rapidly. We only take the
float-point operation as an example, and GPU’s computation
speed is several times faster than CPU’s. The Flops of
NVIDIA Ge80 series has gotten 520G in late 2006 [1],
whereas Intel 64-bit dual-core CPU has only 32 GFlops.
Moreover, now the mainstream GPU’s scale has exceeded
significantly the CPU’s. The transistor number of NVIDIA
Quadro FX 5600 has been more than 0.7 billion. From the
above, we can see the powerful computational capability of the
GPU. Moreover, as the programmability and parallel
processing emerge [3], GPU begins being used in some
non-graphics applications, which is general-purpose
computing on the GPU (GPGPU). However, the traditional
GPGPU development is based on graphics function library, for
example OpenGL and Direct 3D, which makes the GPU used
only by the professional people familiar with graphics API,
and brings many inconveniences to the common users.

The emergence of CUDA (Compute Unified Device
Architecture) technology can meet the demand of GPGPU in
some degree. CUDA brings the C-like development
environment to programmers for the first time, which uses a C
compiler to compile programs, and replaces the shader
languages with C language and some CUDA extended
libraries. Users needn’t map programs into graphics APIs any
more, so GPGPU program development becomes more
flexible and efficient. More than one hundred processors
resided in CUDA graphics card schedules hundreds of threads
to run concurrently, resolving complex computing problems.

II. THE FEATURES OF CUDA GPU
Over the past few years, the performance of GPU has been

improving at a much faster rate than the performance of CPUs.
In 2007, NVIDIA’s most advanced GPU provided six times
the peak performance of Intel’s most advanced CPU [4]. GPU
has evolved from special-purpose processor to programmable
processor, and meanwhile the programmability has been the
most important feature. Compared to the previous GPU,
CUDA GPU has the following advantages:

• General programming environment: CUDA uses C
programming tools and C compiler, which make
programs have better compatibility and portability.

• More powerful parallel computing capability: CUDA
graphics card applied more transistors to computing,
not to data cache or flow control [1]. GeForce 8800
has 128 1.35GHz stream processors, 512 bit DDR3,
and 768M device memory, far bigger than the L1
cache of CPU.

• Higher bandwidth: Take the GeForce 8800 as an
example, its bandwidth gets to 86.4GB/s between
GPU and device memory, and 4GB/s between host
memory and device memory via PCI-E x16 bus.

• Instruction operation: CUDA GPU supports integer
and bit operation.

III. CUDA INTRODUCTION
The hardware architecture can be seen from Fig. 1. CUDA

cards contain many SIMD stream multi-processors (SM), and
each SM has also several stream processors. Each SM has four
type memories, constant memory, texture memory and global
memory can communicate with host memory except on-chip
shared memory. These cards use on-chip memories and cache
to accelerate memory access.

The hardware architecture has three novel features [5]:
• General write/read global memory: GPU can gather

data from any location or the global memory, and also
scatter data to any location, almost as flexible as CPU.

• On-chip shared memory: It can make threads in the
same multi-processor get data quickly, avoiding
accessing global memory frequently. The access speed
of shared memory is as quick as registers, fetching a
data from shared memory just costs 4 clock cycles,
whereas from global memory need 400~600 clock
cycles.

2008 International Conference on Computer Science and Software Engineering

978-0-7695-3336-0/08 $25.00 © 2008 IEEE

DOI 10.1109/CSSE.2008.1448

198

• Thread synchronization: Threads in a thread group can
synchronize, so they can communicate and cooperate
to resolve complex problems.

Figure 1. CUDA hardware model

In CUDA program, any call to a GPU function from within
a CPU function must include an execution configuration [4],
which determines the block count, thread count in a
thread-block, and the account of shared memory. Each block
can only run on a multi-processor, but each multi-processor
can be allocated multiple blocks. Whether many blocks can
run concurrently on a multi-processor depends on the
occupancy of the registers and shared memory of each SM. At
a time, a batch of blocks ready to run on a multi-processor are
in active state, the threads of these blocks are divided into
SIMD groups (called warps) by the order of thread index. Each
multi-processor slices time to execute warps, each thread fetch
different data to execute kernel according with its index.

Figure 2. CUDA compiler procedure

For software, CUDA mainly extended the driver program
and function library. The software stack consists of driver,
runtime library, some APIs and NVCC compiler developed by
NVIDIA. In Fig. 2, the integrated GPU and CPU program is
compiled by NVCC, and then the GPU code and CPU code are
separated.

IV. THE GENERAL PROGRAMMING MODE OF CUDA
CUDA hides the low-level hardware details. For

data-parallel computing, we can use the same mode to program
with C language. The main steps of the general mode describes
below:

• Copy data from host memory to device memory:
Because of the limit of bandwidth, data transfer
between host memory and device memory is the
bottleneck that restricts the whole speed. So an
effective method is to bind data to a texture, operating
data by texture functions.

• CPU schedules the kernel to execute. This stage
mainly contains the following three steps.

a) Set the kernel execution configuration.
Decompose the input data, and allocate data
blocks to each thread block.

b) Read data from global memory to shared
memory [6]. This step is not essential but very
effective. Because of the quick speed of shared
memory, we should make the best use of shared
memory. Here, if we adopt some optimization
strategy, the read speed and memory bandwidth
can be improved significantly. For example,
access the global memory in a coalesced way
and don’t incur memory access conflicts when
accessing the shared memory.

c) Launch the kernel computation.

• Write the result back to host memory, do the post
processing.

V. THE APPLICATIONS OF CUDA IN IMAGE PROCESSING
We usually process substantive pixel data in image

processing, especially for airplane or satellite pictures. These
images have large resolution and size, and the traditional
processing methods can’t satisfy the high real-time
requirement. CUDA can provide highly data-parallel
processing, so it is one of the ideal solutions of processing
those big images.

A. Histogram equalization
For some image, such as remote sensing image, because

the gray distribution is in a relatively narrow range, resulting in
image details are not clear enough, and have lower contrast.
Therefore, we need to do histogram equalization processing for
these images. The process of histogram equalization contains
three steps: 1) computing the original gray distribution; 2)
computing the new distribution via cumulative distribution
function; 3) do histogram transformation for the original
distribution.

We designed the implementation process described
detailedly as following.

1) Compute the original and new histogram distribution.

Firstly, set the execution configuration. We set each thread
process L data, L is the gray level (like L=64,256), Ti
represents any thread in a block, THREAD_N is the thread
number of each block, BLOCK_N is the block number of each
grid, N is the total size of the input data, 16KB is the size of
shared memory of the NVIDIA G80 series cards, so the
execution configuration can be set below:

a) Ti processes L data;

199

(THREAD_N *L)B<16KB;
b) BLOCK_N =N / (n*L).

If L=256, THREAD_N can only be 32.Because we can not
occupy the whole shared memory, some place should be
remained to put some special variables. We can find these
variables by disassembling command cubin [8], which are
block index, grid index and so on.

Figure 3. The computation of each thread block. BIN_COUNT represents
gray level, equal to L. We set L=256, the thread number of each block is
32.When each block reduces thread sub-histograms, THREAD_N is smaller
than L, so each thread accumulates more than one gray level, as the following
order:Thread0: 0, 32, …,24 gray level；Thread1:1,33, … ,225 gray level
；……Thread31:31, 63,…, 255 gray level.

Figure 4. Reduce sub-histograms of each thread blocks

Secondly, start computation of each thread block. Each
thread process L data, and put the result into shared memory
.Because of the size limit of shared memory, we can’t first
copy data from global memory to shared memory, and each
thread must read data from global memory. After threads

finish computing, each thread has a sub-histogram that size is
L. And then, each block need to reduce its sub-histograms to a
bigger sub-histogram. This process is shown as Fig. 3.

Thirdly, reduce each block sub-histogram. At this step, we
should reconfigure the kernel to set more threads in each
block. Seen from Fig. 4, each block has L threads, we use the
first block to reduce the all blocks in a grid, and each thread
accumulates one gray level. Finally, use the first thread in the
block computes the new gray distribution according with the
theory of cumulative distribution function.

2) Histogram equalization. We set the thread number of
each block is L, and each thread processes one gray level. At
this step, the old gray value should be replaced by the new
value.

B. More CUDA applications in image algorithms
We also do experiments on removing clouds, DCT encode

and decode and edge detection algorithms.

In removing clouds algorithm, modulo 2 and logarithm
operations could be parallelized. We set many threads so that
each thread processes one pixel data. For Fourier Transform,
CUDA provide a library of CUFFT which contains many
highly optimized function interfaces, we can call these APIs
simply. However a fly in the ointment, CUDA only supports
the single-precision, resulting in the image contrast is not
enough. We can see the result in Fig. 6.

In DCT encode and decode algorithm, we first divide the
image data into N x N blocks, and then do the DCT transform
for each data block. Because we adopt the quick DCT and
IDCT based on the butterfly algorithm, FFT transform is
needed. Before using the CUFFT library, users just need to
create a Plan of FFT transform, and then call the APIs. For
FFT transform, device memory is needed to be allocated when
creating the Plan, and the device memory will not vary in
succeeding computations. Therefore, image size needs to be
smaller than device memory. For example, when device
memory is 1.5GB and the image size is bigger than 6144 x
6144 pixels, an error will be occurred with the reason of
deficient device memory.

C. Experiment results and analysis
For each image algorithm, we design both CPU serial code

and GPU parallel code, and then compare the executed time.
When calculating the executed time, we don’t consider the
data transfer time from host memory to device memory.

The speed comparison of histogram is shown in TABLE I
and Fig. 1 below. As the image size increases, GPU can
improve the computing speed significantly. We can gain a
more than 40x speedup.

An around 80x speedup can be gained in removing clouds
algorithm showed in TABLE II. The processed images of
removing clouds are shown in Fig. 6. We can seen two kind of
different results, the CPU’s result has a higher contrast and the
details of GPU’s is more clear. The reason of this difference is
that GPU can only support the single-precision, whereas CPU
supports 64-bit double float point type.

For DCT, we can gain an 8x speedup by GPU, and the

200

TABLE I. THE TIME COMPARISON OF 256 GRAY LEVEL HISTOGRAM
EQUALIZATION

Input image CPU(ms) GPU(ms)
5120x5120 1746.40 37.29
4096x4096 1126.38 24.12
3072x2304 479.11 10.57
2048x2048 280.5 6.5
1600x1200 128.51 3.25
1280x1024 91.44 2.46
1024x816 54.6 1.79
512x512 17.53 0.93
320x408 8.83 0.97

Figure 5. The speedup of histogram equalization by GPU. The values of the
horizontal axis are marked by the side of the speedup graph. As the image
size increases, the speedup is more obvious. When the image is 4096 by
4096, we can gain a 46x speedup.

TABLE II. THE TIME COMPARISON OF REMOVING CLOUDS

Input image CPU(ms) GPU(ms) Speedup
4096x4096 31925.99 402.01 79.4
2048x2048 7644.09 97.09 78.7
1024x1024 1778.28 22.53 78.9
700x525 1745.02 21.98 79.4

a) Original image

b) The image processed by CPU serial code

c) The image processed by GPU parallel code

Figure 6. The results of removing clouds

speedup doesn’t increase with the image size. Especially for
edge detection, we gain an over 200x speedup. For the speedup
of edge detection, on the one hand, the reason is because we
use the texture when reading data from host memory to device
memory, which indicates that the way of reading data from
host memory is very important for the whole speed. On the
other hand, the whole computing process of edge detection is
parallelized.

VI. CONCLUSIONS
For parallel computing by CUDA, we should pay attention

to two points. Allocating data for each thread is important. So
if better allocation algorithms of the input data are found, the
efficiency of the image algorithms would be improved. In
addition, the memory bandwidth of host device is the
bottleneck of the whole speed, so the quick read of input data
is also very important and we should attach importance to it.

Obviously, CUDA provides us with a novel massively
data-parallel general computing method, and is cheaper in
hardware implementation. In future, we will do more work on
some optimization strategies and how to make the best of the
memory spaces.

REFERENCES
[1] NVIDIA Corporation, CUDA Programming Guide 1.0,

http://www.nvidia.com,2007.
[2] Tom R. Halfhil, “Parallel Processing With CUDA”, Microprocessor

Report, Scottsdale, Arizona, Jan 28, 2008.
[3] WU En Hua , “State of the Art and Future Challenge on General

Purpose Computation by Graphics Processing Unit”, Journal of
Software, vol. 15, no. 10, 2004,pp.1493~1504.

[4] Michael Boyer, Kevin Skadron, Westley Weimer. “Automated Dynamic
Analysis of CUDA Programs”, STMCS 2008, Boston, Massachusetts,
Apr 06, 2008.

[5] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens,
“Scan Primitives for GPU Computing”, Graphics Hardware 2007, San
Diego, California, August 04 - 05, 2007.

[6] Samer Al-Kiswany, Abdullah Gharaibeh, Elizeu Santos-Neto, et al..
“StoreGPU: Exploiting Graphics Processing Units to Accelerate
Distributed Storage Systems”, HPDC’08, June 23–27, 2008, Boston,
Massachusetts, USA.

[7] John D. Owens, Mike Houston, David Luebke, et al., “GPU
Computing”, Proceedings of the IEEE, vol. 96, no. 5, May 2008
,pp.879-897.

[8] NVIDIA CUDA. http://forums.nvidia.com,2007.

201

