
GPU-Based Active Contour Segmentation Using

Gradient Vector Flow

Zhiyu He and Falko Kuester

Calit2 Center of GRAVITY
University of California, Irvine

zhe@uci.edu, fkuester@uci.edu

Abstract. One fundamental step for image-related research is to obtain
an accurate segmentation. Among the available techniques, the active
contour algorithm has emerged as an efficient approach towards image
segmentation. By progressively adjusting a reference curve using combi-
nation of external and internal force computed from the image, feature
edges can be identified. The Gradient Vector Flow (GVF) is one efficient
external force calculation for the active contour and a GPU-centric imple-
mentation of the algorithm is presented in this paper. Since the internal
SIMD architecture of the GPU enables parallel computing, General Pur-
pose GPU (GPGPU) based processing can be applied to improve the
speed of the GVF active contour for large images. Results of our experi-
ments show the potential of GPGPU in the area of image segmentation
and the potential of the GPU as a powerful co-processor to traditional
CPU computational tasks.

1 Introduction

In the area of image based analysis and its related applications, segmentation
is, in many cases, the starting point for further processing. The segmentation
algorithm may provide the foundation for further processing, such as identify-
ing features or objects that subsequently are used for the reconstruction of 3D
models. Among many existing segmentation algorithms, the active contour tech-
nique or snake [1] is an algorithm that uses an external force and an internal
force to progressively fit a closed curve to edges, boundaries or other features of
interest specified via gradient. The snake has been widely used in areas such as
biomedical image analysis and further enhanced for specific problem domains.
For example, Xu and Prince [2] proposed a better way of calculating the external
force of the curve. This improved snake algorithm is called Gradient Vector Flow
(GVF) snake and has two advantages over the original snake algorithm: (1) it
is less sensitive to initialization and (2) it can move into boundary concavities.
This paper introduces a hardware accelerated technique for gradient vector flow
computation, utilizing the vertex and fragment units on today’s graphics pro-
cessing units. Most mid-range GPUs now have a SIMD architecture and deep
parallel processing capabilities on the vertex and fragment units [3], which can be
used as a very efficient co-processor that can take over some of the computation

G. Bebis et al. (Eds.): ISVC 2006, LNCS 4291, pp. 191–201, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

192 Z. He and F. Kuester

tasks otherwise handled by the CPU. These computation tasks are not limited
to graphics and visualization but may also include general purpose computation.
This paper is organized as follows: Section 2 introduces background and prior
work done in related areas. Section 3 gives an overview of GPGPU based pro-
cessing and how it is related to this research. Section 4 describes the GPU
implementation of the GVF snake algorithm. Section 5 provides a performance
and test results.

2 Related Work

The segmentation by active contour or snake algorithm can be found in com-
bination with many image related applications. Kass et al. [1], introduced the
snake algorithm, which uses an external force and an internal force to conform
the contour to certain features in the image. The external force is calculated
from the image and the internal force is derived from the contour itself. The
corresponding curve is defined by:

Xt(s, t) = αX ′′(s, t) − βX ′′′′(s, t) −∇Eext (1)

where Xt(s, t) is the curve that represents the snake at time t and X(s) =
[x(s), y(s)] , s ∈ [0, 1] is the parametric curve, X ′′ and X ′′′′ are the second and
fourth order derivatives, α and β are constants that defines the internal forces.
∇Eext is the external force. The GVF snake introduced by Xu and Prince [2]
improves the above by introducing a new external force. The revised dynamic
snake function can then be formulated as:

Xt(s, t) = αX ′′(s, t) − βX ′′′′(s, t) + V (2)

where V stands for the new static external force field called gradient vector flow
(GVF). Zimmer et al. [4] applied the algorithm to video tracking for the quanti-
tative analysis of cell dynamics. Ding et al. [5] described a volumetric CT data
segmentation that is based on application of GVF snake to 2D CT slices. Vid-
holm et al. [6] introduced a virtual reality system for the visualization of volume
data combined with force-feedback. GVF snake segmentation of the data was
used for visual augmentation and control of the haptic device. Some of the GPU
processing and bandwidth characteristics can outpace that of CPUs, which make
it appealing to convert processing extensive algorithms to the GPGPU domain
if their nature is compatible. For example, Rumpf et al. [7] introduced a level-set
based segmentation that was leveraging GPU capabilities. Despite of the advan-
tages of the level-set segmentation, the implementation was still limited by the
graphics hardware available at that time and therefore is not completely GPU
centric. Kondratieva et al. [8] described a real-time computing and visualization
technique for diffusion tensor images, which achieves both visual and speed im-
provements over traditional CPU realization. Fan et al. [9] built a computing
cluster based on GPU to achieve greater parallel processing power. Kipfer et al.
[10] implemented a fluid dynamics simulation engine on the GPU, which lever-
ages the GPU to avoid I/O bottlenecks and improves performance. Fatahalian

GPU-Based Active Contour Segmentation Using Gradient Vector Flow 193

et al. [11] implemented an efficient matrix multiplication algorithm on the GPU.
GPU based computation is not limited to the above mentioned areas and can
be expand to many other areas compatible with the SIMD architecture.

3 GPU and GPGPU

Recent GPUs demonstrate enormous potential for scientific computing tasks in
the form of General Purpose GPU-based processing (GPGPU). In particular,
memory bandwidth and instructions per second highlight potential benefits. For
instance, the Nvidia Geforce 6800 graphics chip can process 600 Million ver-
tices/sec and has a fill rate of 6.4 billion pixels/sec, while the Geforce 7800 series
can almost double that performance. Galoppo et al. [14] reported that the 6800
could achieve 2.5 billion instructions per second for division, which compare to
6.7 billion for a Pentium4 3.2GHZ CPU. Kilgariff and Fernando [3] demonstrated
that the GPU Memory Interface of the Geforce 6800 series can reach 35 GB/sec,
which compares well against the 6.4 GB/sec of the CPU Memory Interface for a
800 MHz Front-Side Bus. Besides these, the GPU has a very different architec-
ture and processing stream than the CPU. The GPU processing model can be
decomposed into several stages ([15]). Data goes from the CPU to GPU through
system bus. On the GPU, it goes from vertex buffer, the vertex processor, ras-
terization and finally gets to the fragment processor. One important feature of
GPU is its SIMD architecture that naturally supports parallel processing. Most
computation tasks on GPU are parallelized as illustrated in Fig.1. For example,
the Geforce 6800 supports 6 vertex units and 16 fragment units. And each unit
can process 4 components (RGBA or xyzw) in parallel.

Fig. 1. The parallel nature of GPU

Fig. 2. The process of GVF Snake

194 Z. He and F. Kuester

However, it is important to carefully consider strengths and weaknesses of
GPU-based techniques. First of all, although the GPU has excellent computa-
tional power, the majority of graphics cards are still limited to 16bit floating
point precisions. This means, in many cases, the traditional implementations of
algorithms will be subjected to a loss in precision when migrated directly onto
the GPU. One solution is to use 2 components of texture unit to store one 32bit
float number. With more graphics cards supporting the 32bit floating point tex-
tures, this problem will be reduced in the near future. However, it is still very
important to find a balance between the precision and speed because the 32bit
floating point data lead to nearly half the speed of the 16bit precision data as
reported in [16].

Secondly, while the bandwidth on the CPU or on the GPU alone can be
enormous, the bus I/O between CPU and GPU can sometimes become a bottle-
neck. On the Geforce 6800 card, the PCI Express×16 inteface provides 8 GB/sec
throughput while the on-board bandwidth for the GPU is 35 GB/sec. Therefore,
it is worthwhile to optimize the code for fewer I/O on the GPU.

Third, the data structure should fit to the platform architecture. When im-
plementing an algorithm on the GPU, it is important to consider its SIMD ar-
chitecture. The data should be independent from each other, and random access
of data such as a linked-list should be avoided if all possible.

Shader Model 3.0 and the OpenGL 2.0 standard provide a means to resolve
the problems mentioned this far. For example, multiple rendering target could
save rendering passes by using a single input texture to generate multiple output
textures. In addition, Frame Buffer Objects (FBOs) greatly improve the speed
by saving I/O between GPU and CPU. The vertex texturing functionality allows
the texture to be used as a data array. In support of hardware-based processing,
different high-level languages were created, such as CG [17] and [18], which sup-
ports most features for Shader Model 3.0. HLSL [19] and the OpenGL Shading
Language [20] are also such languages.

4 Gradient Vector Flow Snake Implementation on GPU

Equation (2) describes the GVF-based snake function, which introduced the V
term for the gradient vector flow. V can be defined as a vector field V (x, y) =
[u(x, y), v(x, y)] that minimizes the energy function:

ε =

� �
μ(u2

x + u2
y + v2

x + v2
y) + |∇f |2 |V −∇f |2 dxdy (3)

where f(x, y) is an edge map of the original image, ∇f is its gradient map and
μ is a constant that represents the level of noise. To solve Equation (3) for the
V (x, y), u and v need to be treated as functions of time by solving the following
equations:

ut(x, y, t) = μ∇2u(x, y, t) − b(x, y)u(x, y, t) + c1(x, y)

vt(x, y, t) = μ∇2v(x, y, t) − b(x, y)v(x, y, t) + c2(x, y)

GPU-Based Active Contour Segmentation Using Gradient Vector Flow 195

where:

b(x, y) = fx(x, y)2 + fy(x, y)2, c1(x, y) = b(x, y)fx(x, y), c2(x, y) = b(x, y)fy(x, y)

and ∇2 is the laplacian operator. This can be numerically expressed as:

ut =
1

Δt
(un+1

i,j − un
i,j), vt =

1

Δt
(vn+1

i,j − vn
i,j)

∇2u =
1

ΔxΔy
(ui+1,j + ui,j+1 + ui−1,j + ui,j−1 − 4ui,j)

∇2v =
1

ΔxΔy
(vi+1,j + vi,j+1 + vi−1,j + vi,j−1 − 4vi,j)

By substituting the above variables into the equations for ut(x, y, t) and vt(x, y, t),
an iterative solution to the GVF field can be obtained.

The GVF snake algorithm is composed of two parts: (1) the pre-computing of
the GVF field and (2) the iterative solution of the snake function. Both parts has
the temporal and spatial locality. At any single time step, the u(x, y) and v(x, y)
only involves 4 of its neighboring points and 1 previous time step. The general
flow for this algorithm is illustrated in Figure 2. First, the input image is con-
verted to greyscale and an edge detection filter is applied to obtain the edge map.
Subsequently, a second shader is used to obtain the gradient map and generates
three contants for every pixel, namely b(x, y),c1(x, y) and c2(x, y). The multiple
rendering target technique is then used to generate and store the results in two
seperate textures, one for the gradient and the other for the constants. Most
current GPUs only support 16bit floating point precision with values clamped
to the range of [0.0, 1.0]. Therefore, we store the data using a packing scheme.
The gradient dx and dy are stored in R and G components and the B and A
components save a flag number identifying how the dx and dy are stored. In
this particular case, the dx is stored as is if |dx| ≥ 0.01, otherwise, as −1/ln dx.
Similar packing is performed on the three constants.

After these preparation steps, the iterative GVF field calculation can start.
The iterative computation on GPU can be mapped to a so-called ping-pong
scheme using the FBO(frame buffer objects). Each FBO can be bound to four
framebuffers, namely, COLOR0 through COLOR3. This is illustrated in follow-
ing pseudo code:

Src_Buffer = COLOR0; Dst_Buffer = COLOR1;

while(counter<Number)

{Attach Dst_Buffer as DrawBuffer; Src_Buffer = input for fragment shader;

Draw the texture;

Swap the Src_Buffer and Dst_Buffer;

Increase counter;}

The resultant GVF field is stored in one framebuffer and is used as input param-
eter to the snake process fragment shader. The fragment shader for the snake
process involves solving a linear system:

A ∗ Xt = γ ∗ Xt−1 + κ ∗ V (4)

196 Z. He and F. Kuester

where V is the GVF field and Xt is the snake contour at t time, γ and κ
are constants and A is a constant matrix. Note that solving the above linear
system not only requires an inverse of the matrix, but also brings in the violation
of the spatial locality. While the first problem can be addressed on the GPU
[14], the second problem will dramatically decrease the efficiency of the GPU
implementation because it results in extensive amount of I/O for texel fetch
operations. However, A is very similar to a symmetric band matrix and is positive
definite, with the exception that the upper right corner and lower left corner of
the matrix is not zero. It can be expressed as Equation (5a).

c b a 0 0 0 0 a b
b c b a 0 0 0 0 a
a b c b a 0 0 0 0
0 a b c b a 0 0 0
. .
. .
a 0 0 0 0 a b c b
b a 0 0 0 0 a b c

[5a.]

C B A 0 0 0 0 A B
B C B A 0 0 0 0 A
A B C B A 0 0 0 0
0 A B C B A 0 0 0
. .
. .
A 0 0 0 0 A B C B
B A 0 0 0 0 A B C

[5b.] (5)

where a, b are positive constant values that are much smaller than 1 and c is
around 1. The major diagonal has the value of c, the second major diagonal has
the value of b and the next one is a. Furthermore, its inverse matrix is of similar
type. Because most of the numbers in Ã are far smaller than 10−6 after the third
diagonal, an approximation of Ã can be given as Equation (5b). where:

A = c(b2 − ac)/ [X] , B = −b[X]−bc(b2−ac)(a−c)

(c2−b2)[X]

C = c[X]−c(b2−ac)(a−b2)

(c2−b2)[X]
, [X] = (c2 − a2)(c2 − b2) − b2(c − a)2

(6)

By inserting the above equations to Equation (4), a discrete solution for the
snake contour can be obtained and implemented as a shader program: xt

i =
∑i+2

k=i−2 M t−1
i,k vk , i ∈ [1, n] , where n is the number of points in the snake

contour and M t−1
i,k is the row i, column k element of the matrix multiplication

result of Ã and the column matrix of xt−1
i and vk = γxt−1

k + κfk.

5 Experiment Results

All tests were performed on a laptop PC with a 2.4GHZ Pentium processor,
1GB RAM and a Geforce Go6800 card with 128MB on-board graphics memory.
Fig.3(a) shows the edge map for the U-shape image, followed by the initial curve
in Fig.3(b), a partial result after 150 iterations in Fig.3(c) and the final result
in Fig.3(d). The result shows that the GVF snake algorithm can contract to
concave shapes where ordinary snake could not. Fig.4 shows a non-continuous
room model results. These two data sets were modeled after the ones by Xu and
Prince [2] to provide a better comparison. Fig.5 is an MRI brain scan which shows
the algorithm can be applied to real-world data with non-uniform background
and concave shape. A set of scans of human shoulder was studied at levels of
image ranging from 128×128 to 1024×1024 pixel resolution in order to evaluate
the scalability of the algorithm and pinpoint performance tradeoffs. The results
for computations on the above data are provided in Fig.6.

In Fig.6, the GVF field calculation was performed both on the GPU and CPU,
and it includes the edge detection stage for the GPU. For the snake algorithm,

GPU-Based Active Contour Segmentation Using Gradient Vector Flow 197

(a) Edge map (b) Initial circle (c) Partial result (d) Final result

Fig. 3. U-shape 256 × 256 pixel

(a) Edge map (b) Initial circle (c) Partial result (d) Final result

Fig. 4. Room 256 × 256 pixel

(a) Edge map (b) Initial circle (c) Partial result (d) Final result

Fig. 5. MRI 256 × 256 pixel

Fig. 6. Benchmark on test images

198 Z. He and F. Kuester

Fig. 7. MRE comparison

(a) Edge map (b) Initial circle

(c) Partial result (d) Final result

Fig. 8. Shoulder 1024 × 1024 pixel

it can be observed that the speed performance complexity can be expressed as
O(n2k), where n2 is the size of the texture and k is the number of iterations.
This means that newer graphics cards with more texture memory will be able

GPU-Based Active Contour Segmentation Using Gradient Vector Flow 199

(a) Initial circle (b) Partial result (c) Final result

Fig. 9. Spine

(a) Initial circle (b) Partial result (c) Final result

Fig. 10. Spine with Gaussian noise

to efficiently process larger images. For images of 256 × 256, the CPU is about
20% faster than the GPU. But for 512 × 512 image, the GPU technique starts
to outperform the CPU by 4 times. Therefore, the parallel capability of GPU
computing shows its advantages on larger images. Each individual GPU fragment
or vertex processor is lower than the CPU. However, with the increase in data
size, the GPU parallel pipeline becomes more efficient and greatly outpaced the
CPU. Another observation is that texture I/O may become the bottleneck. For
example, the texture fetch for the snake shader is more than two times that of
the GVF shader and so the snake shader is 50% slower.

One test case is studied to analyze the accuracy of the GPU technique (Fig.9
and Fig.10). This test case uses simple harmonic curves given by: r = a +
b cosmθ + c , where a, b, c are constant values and by varying the m, a set of
curves can be obtained. Each image is 256×256 and we used m = 0, 2, 4, 6, 8. The
measure of error is MRE(mean radial error), which is the mean distance in the
radial direction between the final active contour and the harmonic curve. Fig.7
shows the MRE result. The blue line shows the MRE, the red line shows the
maximum radial error as the worst case scenario and the yellow line shows the
maximum radial error from a CPU implementation of improved GVF algorithm
as stated in [21]. As we can see, the performance of CPU implementation gener-
ally has better accuracy. The reason for the performance gap is the difference in
the precision of floating point data. Nonetheless, the GPU implementation still
achieves a good overall accuracy and the mean errors are within sub-pixel level.

200 Z. He and F. Kuester

Fig.10 shows the robustness of the GPU technique with the addition of gaussian
noise. The image with noise has an MRE of 0.5 while the clean image is 0.35.

6 Conclusion

A hardware accelerated gradient vector flow algorithm for image segmentation
was presented. The algorithm utilizes the fragment and texture units of the
GPU. A set of test cases was presented and evaluated comparing CPU and
GPU results. In addition, some new features of GPGPU are exploited and some
important issues involved in porting algorithms onto the GPU are specified,
which provides a foundation for further exploration in this algorithm.

References

1. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Interna-
tional Journal of Computer Vision. 1 (1988) 321–331

2. Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Transaction
on Image Proccessing. 7 (1998) 359–369

3. Kilgariff, E., Fernando, R.: The geforce 6 series gpu architecture. In: GPU Gems
2 : Programming Techniques for High-Performance Graphics and General-Purpose
Computation. (2005) 471–493

4. Zimmer, C., Labruyere, E., Meas-Yedid, V., Guillen, N., Olivo-Marin, J.: Segmen-
tation and tracking of migrating cells in videomicroscopy with parametric active
contours: A tool for cell-based drug testing. IEEE Transaction. on Medical Imaging
21 (2002) 1212–1221

5. Ding, F., Leow, W., Wang, S.: Segmentation of 3d ct volume images using a single
2d atlas. In: Lecture Notes in Computer Science. Volume 3765., Springer (2005)
459–468

6. Vidholm, E., Nystrom, I.: Haptic volume rendering based on gradient vector flow.
In: Proceedings of Swedish symposium on image analysis (SSBA’05). (2005) 97–100

7. Rumpf, M., Strzodka, R.: Level set segmentation in graphics hardware. In: Pro-
ceedings of the 2001 International Conference on Image Processing. Volume 3.
(2001) 1103–1106

8. Kondratieva, P., Krüger, J., Westermann, R.: The application of gpu particle
tracing to diffusion tensor field visualization. In: Proceedings IEEE Visualization
2005(Vis’05). (2005)

9. Fan, Z., Qiu, F., Kaufman, A., Yoakum-Stover, S.: Gpu cluster for high perfor-
mance computing. In: Proceedings of the 2004 ACM/IEEE conference on Super-
computing (SC’04). (2004) 47

10. Kipfer, P., Segal, M., Westermann, R.: Uberflow: a gpu-based particle engine. In:
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware (HWWS’04). (2004) 115–122

11. Fatahalian, K., Sugerman, J., Hanrahan, P.: Understanding the efficiency of
gpu algorithms for matrix-matrix multiplication. In: Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on Graphics hardware (HWWS’04).
(2004) 133–137

12. Lefohn, A.E., Kniss, J., Hansen, C., Whitaker, R.: Interactive deformation and
visualization of level set surfaces using graphics hardware. In: Proceedings of the
14th IEEE Visualization(VIS’03). (2003) 75–82

GPU-Based Active Contour Segmentation Using Gradient Vector Flow 201

13. Yang, R., Welch, G., Bishop, G.: Real-time consensus-based scene reconstruction
using commodity graphics hardware. In: Proceedings of the 10th Pacific Conference
on Computer Graphics and Applications (PG’02). (2002) 225

14. Galoppo, N., Govindaraju, N., Henson, M., Manocha, D.: Lu-gpu: Efficient algo-
rithms for solving dense linear systems on graphics hardware. In: Proceedings of
the 2005 ACM/IEEE conference on Supercomputing (SC’05). (2005) 3–3

15. Lefohn, A.: Gpu memory model overview. In: Proceedings of the ACM Siggraph
2004. (2004)

16. Govindaraju, N., Raghuvanshi, N., Henson, M., Manocha, D.: A cache-efficient
sorting algorithm for database and data mining computations using graphics pro-
cessors. In: UNC Tech. Report. (2005)

17. NVidia: The cg toolkit. In: http://developer.nvidia.com/object/cg toolkit.html.
NVidia Corp. (2005)

18. gpgpu.org: General-purpose computation on gpus. (2005)
19. Microsoft: Hlsl shaders. In: http://msdn.microsoft.com. Microsoft Inc. (2004)
20. OpenGL: Opengl shading language. In: http://www.opengl.org/documentation/

oglsl.html. OpenGL.org (2005)
21. Xu, C., Prince, J.L.: Generalized gradient vector flow external forces for active

contours. Signal Processing — An International Journal 71 (1998) 131–139

	Introduction
	Related Work
	GPU and GPGPU
	Gradient Vector Flow Snake Implementation on GPU
	Experiment Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

