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The Staircasing Effect in Neighborhood
Filters and its Solution

Antoni Buades, Student Member, IEEE, Bartomeu Coll, Member, IEEE, and Jean-Michel Morel

Abstract—Many classical image denoising methods are based
on a local averaging of the color, which increases the signal/noise
ratio. One of the most used algorithms is the neighborhood filter
by Yaroslavsky or sigma filter by Lee, also called in a variant
“SUSAN” by Smith and Brady or “Bilateral filter” by Tomasi and
Manduchi. These filters replace the actual value of the color at a
point by an average of all values of points which are simultane-
ously close in space and in color. Unfortunately, these filters show
a “staircase effect,” that is, the creation in the image of flat regions
separated by artifact boundaries. In this paper, we first explain the
staircase effect by finding the subjacent partial differntial equation
(PDE) of the filter. We show that this ill-posed PDE is a variant
of another famous image processing model, the Perona–Malik
equation, which suffers the same artifacts. As we prove, a simple
variant of the neighborhood filter solves the problem. We find the
subjacent stable PDE of this variant. Finally, we apply the same
correction to the recently introduced NL-means algorithm which
had the same staircase effect, for the same reason.

Index Terms—Nonlinear filtering and enhancement, restoration.

I. INTRODUCTION

MANY classical image denoising methods are based on a
local average. The restored value at a pixel is obtained

as an average of its neighboring pixels. The most classical algo-
rithm is the Gaussian filtering. In that case, the restored value is
obtained as a weighted average where the weight at each pixel
depends on the distance to the restored one. This low pass filter
tends to blur the image.

The neighborhood filters avoid the blurring effect by re-
stricting the average to pixels having a similar grey level value.
The idea is that grey level values inside a homogeneous region
slightly fluctuate while pixels belonging to different regions
have a larger grey level difference. The Yaroslavsky neighbor-
hood filter, [20], or sigma-filter [10], defines a neighborhood

, where is a ball of center and radius
and
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Then, the filter takes an average of the values of pixels which
are simultaneously close in grey level value and spatial distance.
Many variants of the neighborhood filter have been introduced.
Let us mention the SUSAN filter [17] and the bilateral filter [18]
which are detailed in Section II-A. These last filters have been
further studied in [7] and [3].

The strategy applied by neighborhood filters to avoid the blur-
ring effect is similar to the one applied by some nonlinear PDEs.
The early Perona–Malik “anisotropic diffusion” [13] reads

(1)

where is a smooth decreasing function
satisfying , . The aim of this equa-
tion is to apply a diffusion process inside the homogeneous re-
gions, where is small, while the diffusion is stopped near
the boundaries or edges, where there is a large grey level dif-
ference between neighboring pixels and, therefore, a large gra-
dient. The similarity between the neighborhood filters and the
nonlinear PDE equations has been discovered in [3]. In the men-
tioned paper, which uses and extends anterior calculations in
[15] and ideas of Weickert [19] it is actually proved that in one
dimension, a discrete version of the Perona–Malik equation can
be made similar to a 3 3 neighborhood filter.

Inthispaper,weuseaPDEformalismand,extendingtheresults
and technique of [3], prove that the neighborhood filter is equiva-
lent toaPerona–Malikequationwhenthesizeof thespatialneigh-
borhood tends to zero. The restored images by both methods are
then compared. Mathematical and experimental evidences show
thatbothfiltersshareanundesirableshockeffect thatcreates large
flat zones and boundaries inside smooth regions.

We finally show that a simple modification of the neighbor-
hood filter, a linear regression correction, allows us to avoid this
shock effect and leads to more natural filtered images. The sub-
jacent PDE of this new model explains the avoidance of the
shock effect. This nonlinear PDE is equivalent to a heat equa-
tion when the image gradient is low and to the mean curvature
motion when the gradient is large. Thus, it is an edge-preserving
parabolic partial differential equation.

Our plan is as follows. In Section II, we give a brief introduc-
tion to neighborhood or bilateral filters and nonlinear PDEs in
image filtering. In Section III, we prove that neighborhood fil-
ters are asymptotically equivalent to the Perona–Malik equation
as the size of the neighborhood tends to zero. In Section IV, we
present a simple modification of the neighborhood filter, a linear
regression correction, which avoids the shock effect and com-
pute its subjacent PDE. Finally, in Section V, we show that the
linear correction can be applied to a recently introduced filter.
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The nonlocal means (NL-means) [4], [5], which is a strong im-
provement of neighborhood filters.

II. NEIGHBORHOOD FILTERS AND PDE’S

A. Neighborhood Filters

We call neighborhood filter any filter which restores a pixel
by taking an average of the values of neighboring pixels with a
similar grey level value. Yaroslavsky [20] and Lee [10] averages
pixels belonging to the neighborhood . This
filter can be rewritten in a more continuous form as

(2)

where and is the
normalization factor. The grey level threshold has been changed
by a weighting function depending on a filtering parameter .
Only pixels inside are averaged. This filter is less known
than more recent versions, namely the SUSAN filter [17] and
the Bilateral filter [18]. Both algorithms, instead of considering
a fixed spatial neighborhood , weigh the distance to the
reference pixel

(3)
where is the nor-
malization factor and is now a spatial filtering parameter.

In principle, there is no difference between and
. The performance of both algorithms is justified by the

same arguments. Inside a homogeneous region, the grey level
values slightly fluctuate because of the noise. In that case, the
first strategy computes an arithmetic mean of the neighborhood
and the second strategy a gaussian mean. At a contrasted edge
separating two regions, if the grey level difference between
both regions is larger than , both algorithms compute averages
of pixels belonging to the same region as the reference pixel.
Thus, the algorithm does not blur the edges, which is its main
scope. Unfortunately, it creates artificial shocks, which it is our
aim to analyze.

B. Image Filtering and Enhancement by PDE Models

Let us return to the Perona–Malik equation [13]

(4)

where is a smooth decreasing function
satisfying , . In order to interpret
this equation, let us consider the second derivatives of in the
directions of and

where is the matrix of the second derivatives of and all
derivatives are evaluated at . Then, (1) can be rewritten as

(5)

where . This last equation is obtained by
decomposing the divergence operator and taking into account
that and

.
Perona and Malik proposed the function

. In that case, the coefficient of the first term
is always positive and, therefore, this term appears as a one
dimensional diffusion in the orthogonal direction to the gra-
dient. The sign of the second coefficient, however, depends on
the value of the gradient. When this second term
appears as a one dimensional diffusion in the gradient direction.
It leads to a reverse heat equation term when . The
equation is ill-posed.

The Perona–Malik model has had many variants and exten-
sions. Tannenbaum and Zucker [8] proposed, endowed in a more
general shape analysis framework, the simplest equation of the
list

This equation had been proposed some time before in another
context by Sethian [16] as a tool for front propagation algo-
rithms. It performs a “pure” diffusion in the direction orthog-
onal to the gradient and is related to two models proposed in
image restoration. The Rudin–Osher–Fatemi [14] total varia-
tion model leads to minimize the total variation of the image

, subject to some constraints. The steepest de-
scent of this energy reads, at least formally

(6)

which is quite related to the mean curvature motion and to the
Perona–Malik equation when . This par-
ticular case, which is not considered in [13], yields again (6).
The existence of a solution and the qualitative properties of
this curvature flow were studied in [1] and [2]. These authors
study mathematically and actually demonstrate the existence of
a staircase effect for this equation.

In the next section, we shall pile up a new argument in favor
of this convergence of image restoration models by PDE to-
ward variants of the curvature equation. We shall indeed prove
that neighborhood filters are consistent with a Perona–Malik
equation with an inverse diffusion term. We shall propose a
straightforward improvement of the neighborhood filter. It con-
sists of replacing the average by a linear regression. This im-
proved neighborhood filter will be shown equivalent to a heat
equation when the image gradient is low and to the mean cur-
vature motion when the gradient is high.

III. RELATION BETWEEN THE NEIGHBORHOOD FILTERS

AND THE PERONA–MALIK FILTER

In the next theorem we compute the asymptotic expansion of
the Yaroslavky neighborhood filter when . We distin-
guish three different cases depending on the order of magnitude
of and : is much larger than , both have the same order, or

is much larger than . The first case takes us back to the heat
equation and is, therefore, uninteresting. The second case leads
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to an equivalence between the Yaroslavky neighborhood filter
and the Perona–Malik equation. The third case is uninteresting
again as it gives back a slightly anisotropic heat equation. Thus,
one of the aims of the next theorem is also to give a relevant re-
lationship between the space scale and the grey level scale .

Theorem 1: Suppose , and let such
that and . Let us consider the continuous
function defined by , for ,

, where . Let be the contin-
uous function defined by

Then, for

1) If

2) If

3) If

Proof: First, we rewrite the difference
as

and denote it by . We denote by
and the gradient and tangent directions
at . If , we take an arbitrary pair of orthogonal
unit vectors for and . Taking into account that and are
orthogonal and with norm equal to 1, we use them to define
a Cartesian reference frame centered at . Then, by taking the
Taylor expansion of in the new coordinate system we
obtain

where , and if

When , we expand the exponential function and obtain

Fig. 1. Comparison of the neighborhood filter and the Perona–Malik filter.
Magnitude of the tangent diffusion (continuous line) and normal diffusion
(dashed line � �) of Theorem 1 in the case that � = h. Magnitude of the
tangent diffusion (continuous line) and normal diffusion (dashed line - - -) of
the Perona–Malik model (7). Both models show nearly the same behavior.

This proves (1). When , we cannot apply the
above expansion because does not tend to zero. However,

, and we can decompose the exponential as

Using the Taylor expansion of and of the exponential function
we obtain

If , then all the terms of above expression have the same
order and rewriting them proves (2). When ,

, we keep the term of lower order and get (3).
Interpretation: According to Theorem 1, the Yaroslavsky

neighborhood filter acts as an evolution PDE with two terms.
The first term is proportional to the second derivative of in the
direction , which is tangent to the level line passing through .
The second term is proportional to the second derivative of
in the direction which is orthogonal to the level line passing
through . The evolution equations and
act as filtering or enhancing models depending on the signs of

and . Following the previous theorem, we can distinguish
three cases, depending on the values of and .

First, if is much larger than , both second derivatives are
weighted by the same positive constant. In that case, the addition
of both terms is equivalent to the Laplacian of , , and we
get back to gaussian filtering.

Second, if and have the same order of magnitude, the
neighborhood filter behaves as a filtering/enhancing algorithm.
The weighting coefficient of the tangent diffusion is given
by . The function is positive and decreasing.
Thus, there is always diffusion in that direction. The weight of
the normal diffusion is given by . As the func-
tion takes positive and negative values (see Fig. 1), the filter
behaves as a filtering/enhancing algorithm in the normal direc-
tion and depending on . If denotes the zero of , then a
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Fig. 2. Comparison between the neighborhood filter and the Perona–Malik equation. Left: Original image. Middle: Perona–Malik filtered image. Right: Filtered
image by the neighborhood filter. The filtered images are very similar and both share artificial contours and flat zones that have been created inside the homogeneous
regions.

filtering model is applied wherever and an en-
hancing strategy wherever . The intensity of the
filtering in the tangent diffusion and the enhancing in the normal
diffusion tend to zero when the gradient tends to infinity. Thus,
points with a very large gradient are not altered.

Finally, if is much larger than , the value tends to
infinity and if the gradient of the image is bounded then the fil-
tering magnitude tends to zero. Thus, the original
image is hardly altered.

We observe that when and have the same order, the neigh-
borhood filter asymptotically behaves like a Perona–Malik
model. Let us be more specific about this comparison. Taking

in the Perona–Malik (5), we obtain

(7)

where . Thus, the Perona–Malik model and
the neighborhood filter can be decomposed in the same way and
with exactly the same weight in the tangent direction. Then the
function has the same behavior as (Theorem 1), as can be
observed in Fig. 1. Thus, in that case, a neighborhood filter has
exactly the same qualitative behavior as a Perona–Malik model,
even if we cannot rewrite it exactly as such.

Fig. 2 displays an experiment comparing both methods. The
filtered images are very similar, although the implementations
are obviously very different. The neighborhood filter is imple-
mented exactly as in its definition and the Perona–Malik model
by the explicit difference scheme proposed in the original paper.
Both filters tend to create large flat zones and boundaries inside
smooth regions as can be observed in the figure. Let us mention
that similar calculations were performed in a particular case for
the neighborhood median filter by Masnou [11].

IV. A REGRESSION CORRECTION

OF THE NEIGHBORHOOD FILTER

In the previous section, we have shown the enhancing char-
acter of the neighborhood filter. We have seen that the neigh-
borhood filter, as the Perona–Malik model, can create large flat
zones and spurious contours inside smooth regions. This effect
depends upon a gradient threshold which is hard to fix in such a
way as to always separate the visually smooth regions from edge
regions. Thus, both models cannot be applied to images without

Fig. 3. Illustration of the shock effect of the YNF on a concave signal. The
number of points y satisfying u(x) � h < u(y) � u(x) is larger than the
number satisfyingu(x) � u(y) < u(x)+h. Thus, the average valueY NF (x)
is smaller than u(x), enhancing that part of the signal. The regression line of u
inside (x�; x+) better approximates the signal at x.

Fig. 4. Weight functions of Theorem 2. Constant function 1/6 (continuous
line) and function ~h (dashed line).

some user’s supervision. In particular, none of them gives satis-
factory results in denoising software. In order to avoid this un-
desirable effect, let us analyze it in more detail.

In Fig. 3, we give a simple illustration of this effect with the
Yaroslavsky neighborhood filter. For each in the concave part
of the signal, the filtered value is the average of the points
such that for a certain threshold

. As it is illustrated in the figure, the number of points sat-
isfying is larger than the number
of points satisfying . Thus, the av-
erage value is smaller than and the concavity
of the signal is enhanced. A similar argument can be applied
in the convex parts of the signal, dealing to the opposite en-
hancing effect. Therefore, shocks appear at inflexion points,
where concave and convex parts meet. Fig. 3 also shows that
the mean is not a good estimate of in that case. In the same
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Fig. 5. Comparison of the neighborhood filter and the linear regression correction. Top left: Original image. Top middle: Filtered image by the neighborhood
filter. Top right: Filtered image by the regression neighborhood filter. Bottom: Level lines of a part of the images on the above line. Both neighborhood filters have
been performed with the same filtering parameters and the same number of iterations. The linear regression neighborhood algorithm has filtered the image while
preserving the main boundaries as the original neighborhood filter. No enhancing has been applied by the linear correction avoiding the shock effect. The level
lines of the neighborhood filter tend to group and create large flat zones. In addition, these level lines oscillate while those of the linear regression algorithm have
been correctly filtered.

figure, we display the regression line approximating inside
. The value of the regression

line at better approximates the signal. In the sequel, we pro-
pose to correct the neighborhood filter with this better estimate.

Definition 1 (Linear Regression Neighborhood Filter): We
call the value obtained at by
finding the plane locally approximating in the following
sense:

(8)

where

Then, the restored value at is given by . The
weights used to define the minimization problem are the same as
the ones used by the neighborhood filter. Thus, the points with
a grey level value close to will have a stronger influence
in the minimization process. The only difference with YNF is
the replacement of an average by a linear regression. The min-
imization process is made explicit, since we can easily derive
the normal equations. Thus, the computation of the above linear
regression reduces to the solution of a 3 3 linear system.

Next, we compute the asymptotic behavior of the filter when
and have the same order and tend to zero. This has shown to

be the interesting case in Theorem 1, but also the one causing a
shock effect.

Theorem 2: Suppose , and let such that
and . Let be the continuous function

defined by

for , where . Then is positive
decreasing and

Proof: We can suppose without loss of generality that
. In that case, , where is given by

the solution of (8). By straightforward computations, it is easy
to prove that , where

and .
By the same arguments of Theorem 1 we take the following

Taylor expansion of :

and
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Fig. 6. Comparison of the NL-means and its regression correction on a noisy image. Left: Noisy image. Middle: NL-means filtered image. Right: Regression
correction image. The face filtered by NL-means presents a shock effect similar to the neighborhood filter. These shocks are not created by the corrected filter
leading to a more natural image.

Fig. 7. Comparison of the linear regression neighborhood filter and the linear regression NL-means. Left: Noisy image. Middle: Linear regression neighborhood
filtered image. Right: Linear regression NL-means filtered image.

where the differential operators , , , are defined in the proof
of Theorem 1 and are evaluated at (0, 0). Taking these approxi-
mations of and into , we obtain

where . The result of the theorem follows.
According to the previous theorem, the filter can be written

as the sum of two diffusion terms in the direction of and .
The behavior of the weight functions is quite different from the
neighborhood filter case as displayed in Fig. 4. The function
weighting the tangent diffusion is a positive constant. The func-
tion weighting the normal diffusion is positive and decreasing,
and, therefore, there is no enhancement effect. The algorithm
combines the tangent and normal diffusions when the gradient
is small. When the gradient is large, the normal diffusion is can-
celled and the image is filtered only in its tangent direction. This
diffusion makes the level lines evolve proportionally to their cur-
vature. In the Perona–Malik model, the diffusion is stopped near
the edges. In this case, the edges are filtered by a mean curvature
motion.

Fig. 5 displays an experiment comparing the neighborhood
filter and the linear regression correction. The linear regression
neighborhood algorithm has filtered the image and preserved the
main boundaries, as the original neighborhoods filters do. The
figure shows that no artificial enhancement has been applied by
the linear correction, thus avoiding the shock effect. Fig. 5 also

displays the level lines of the filtered images which corrobo-
rate the above observations. The level lines of the neighborhood
filter tend to group and create large flat zones. In addition, these
level lines oscillate while those of the linear regression correc-
tion have been correctly filtered.

V. NL-MEANS AND THE REGRESSION CORRECTION

The above regression correction applied to the neighborhood
filter can be applied to all filters involving a local average. Such
filters are characterized by a family of weights for

which can be modified by the previous argument. The
weight reflects the influence that pixel has in the mini-
mization process. Let us apply this strategy to the filter recently
introduced in and [6]. In that case, the similarity between the
pixels and is measured by the grey level differences in a
whole Gaussian neighborhood of and . The NL-means algo-
rithm is defined by

(9)

where

, is a Gaussian kernel of standard
deviation and acts as a filtering parameter. A recent paper
by Kindermann et al. [9] gives a variational interpretation of the
neighborhood and NL-means filters.
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For pixels and , the NL-means algorithm does not only
compare the grey level values and , but also the grey
level values in a Gaussian neighborhood. This permits a more
robust comparison based on the detailed configurations of the
neighborhoods of and . For example, a pixel such that

can have a very small or nearly zero weight in
the restoration of , since the configurations around and
can be very different. For a more exhaustive description of the
NL-means and the comparison with the neighborhood filters and
other algorithms, see [4].

In order to apply the regression correction to the NL-means
algorithm, it is sound to restrict the search zone for a pixel

to a neighborhood . The filtered value is given
by , where , , minimize

and

Fig. 6 displays a denoising experiment with the NL-means
algorithm. The filtered image presents a shock effect similar to
the one of the neighborhood filter. The regression correction
avoids these shocks and restores a more natural image. Finally,
Fig. 7 compares the visual quality of the filtered images by the
linear corrections of the neighborhood filter and the NL-means.
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