IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 11, NOVEMBER 1993

1101

An Optimal Graph Theoretic Approach to Data
Clustering: Theory and Its Application
to Image Segmentation

Zhenyu Wu and Richard Leahy

Abstract—A novel graph theoretic approach for data clustering
is presented and its application to the image segmentation prob-
lem is demonstrated. The data to be clustered are represented
by an undirected adjacency graph G with arc capacities assigned
to reflect the similarity between the linked vertices. Clustering
is achieved by removing arcs of G to form mutually exclusive
subgraphs such that the largest inter-subgraph maximum flow is
minimized. For graphs of moderate size (~ 2000 vertices), the
optimal solution is obtained through partitioning a flow and cut
equivalent tree of G, which can be efficiently constructed using the
Gomory-Hu algorithm. However for larger graphs this approach
is impractical. New theorems for subgraph condensation are
derived and are then used to develop a fast algorithm which
hierarchically constructs and partitions a partially equivalent
tree of much reduced size. This algorithm results in an optimal
solution equivalent to that obtained by partitioning the complete
equivalent tree and is able to handle very large graphs with
several hundred thousand vertices. The new clustering algorithm
is applied to the image segmentation problem. The segmentation
is achieved by effectively searching for closed contours of edge
elements (equivalent to minimum cuts in G), which consist mostly
of strong edges, while rejecting contours containing isolated
strong edges. This method is able to accurately locate region
boundaries and at the same time guarantees the formation of
closed edge contours.

Index Terms— Clustering, edge contours, flow and cut equiv-
alent tree, graph theory, image segmentation, subgraph conden-
sation.

I. INTRODUCTION

ATA CLUSTERING is an important methodology in

exploratory data analysis. Numerous clustering methods
have been reported in the literature (e.g., see [1], [2]). Given M
data points, X = {z1,%2,- -+, Zn}, the objective of clustering
is to partition the data set into K non-empty subsets such that
alike data are grouped together and data in different subsets
or clusters are not alike. In this paper we propose a new graph
theoretic technique for data clustering. We then demonstrate
its application to the problem of image segmentation.

Manuscript received July 25, 1991; revised June 1, 1992. This work
was supported by the Kaprielian Technology Innovation Fund, a privately
supported fund administered by the School of Engineering at the University
of Southern California, and the Whittaker Foundation. Recommended for
acceptance by Associate Editor R. Kasturi.

Z. Wu is with the Medical Image Processing Group, Department of
Radiology, University of Pennsylvania, Philadelphia, PA 19104-6021.

R. Leahy is with Signal and Image Processing Institute, Department of
Electrical Engineering-Systems, University of Southern California, MC 2564,
Los Angeles, CA 90089-2564.

IEEE Log Number 9212247.

Many graph theoretic techniques have been proposed for
cluster analysis. Commonly known techniques include 1)
single-link and complete-link hierarchical algorithms formu-
lated and implemented using a threshold graph {3], [4]; 2)
forming clusters by breaking inconsistent arcs in the minimum
spanning tree of the proximity graph [5] or graphs constructed
based on limited neighborhood sets [6]; and 3) detecting
clusters using directed trees [7]. The clustering technique
presented in this paper is based on network flow theory. Here
minimum cuts in an undirected adjacency graph are used for
partitioning the data into clusters. This idea was first proposed
in our previous paper [8].

The data to be clustered are represented by an undirected
adjacency graph G: each vertex of G corresponds to a data
point, and an arc links two vertices in G if the corresponding
data points are neighbors according to a given neighborhood
system. A flow capacity is then assigned to each arc in G.
This flow capacity is chosen to reflect the feature similarity
between the pair of linked vertices. The clustering is achieved
by removing arcs of G to form mutually exclusive subgraphs.
For the case of an unconstrained optimal K -subgraph partition
of G, the arcs selected for removal are those in a set of K — 1
minimum cuts with the smallest K — 1 values among all
possible minimum cuts separating all pairs of vertices.

This new clustering strategy possesses some desirable prop-
erties. Unlike many other clustering techniques proposed in
the literature, the resulting K -subgraph partition is a globally
optimal K -partition of the adjacency graph G. It minimizes the
largest inter-subgraph maximum flow among all possible K-
partitions of G, hence minimizing the similarity between the
subgraphs (clusters). The difficulty in reaching a globally op-
timal solution for a particular partitional clustering technique
arises from the requirement that a huge number of possible K-
partitions must be considered. Locally optimal solutions are
often found instead using iterative, hill-climbing techniques.
Attempts have been made to identify and reject large numbers
of obviously non-optimal partitions, using techniques such
as dynamic programming [9], branch-and-bound [10], and
conditional clustering [11]. Despite a substantial reduction
in the number of partitions that need to be evaluated, these
techniques are computationally infeasible even for problems
of moderate size. In contrast, our clustering strategy can
be efficiently implemented to handle very large graphs with
several hundred thousand vertices. In addition, this clustering
technique not only produces an optimal K -subgraph partition

0162-8828/93$03.00 © 1993 IEEE

1102

but also a nested sequence of partitions which are optimal
for cluster numbers ranging from 2 to K. This is especially
attractive when the cluster number has to be determined from
the data.

In order to make this new strategy work as a data clustering
method, two important issues need to be considered: 1) finding
an efficient implementation scheme to make the clustering
technique practical, and 2) constructing an adjacency graph
G which can produce meaningful clusters. The minimum cuts
of the undirected graph G can be computed from a flow
and cut equivalent tree 7* of G, which is constructed using
the Gomory-Hu algorithm which was originally developed
for solving the multi-terminal maximum flow problem for
undirected graphs [12]. The Gomory-Hu algorithm involves
the successive solution of exactly M — 1 maximum flow
problems with M being the number of vertices in G. Once
T* has been computed, the optimal K-partition of G can
be equivalently obtained by simply disconnecting the K-1
arcs in 7* with the K — 1 smallest arc capacities. This
direct implementation is acceptable for graphs of moderate
size (~ 2000). However, it quickly becomes impractical as
the the size of G increases, due to the polynomial complexity
of the algorithm. In order to overcome this problem, a fast
hierarchical algorithm is developed that requires construction
and partition of a partially equivalent tree T of greatly
reduced size. This still results in an optimal solution equivalent
to that obtained by partitioning the complete equivalent tree of
G. The algorithm is based on the observation that most of the
minimum cuts found in G are never used since their associated
values (the value of a cut is defined as the capacity sum of
its arcs) are sufficiently large that the arcs in those cuts will
not be removed to form subgraphs. New theorems providing
sufficient conditions for subgraph condensation are derived.
We show that many of the minimum cuts with large value can
be identified using small local subgraphs, so the vertices linked
by them can be condensed before constructing the equivalent
tree. Consequently the Gomory-Hu algorithm is applied only
to graphs of much smaller size, but without compromising the
overall optimality of the clustering algorithm. As a result the
new clustering technique can be applied to partition very large
graphs.

The problem of properly constructing an adjacency graph
is highly application dependent and involves the appropriate
selection of a neighborhood system and an arc capacity func-
tion. We will address the problem in the context of image
segmentation. It has been a common practice to segment
images based on clustering techniques [13}-{15]. Many of
the thresholding based segmentation techniques [16] are also
implicitly related to clustering. Their approach is basically to
compute a feature vector for each pixel of the image and then
to segment the image by clustering these computed feature
vectors together. Often little or no spatial information about
the image is used. Here a new method for image segmentation
is developed based on our clustering algorithm. This method
effectively searches for closed edge contours which consist
mostly of strong edge elements, while rejecting contours
containing isolated strong edges.

There exists a class of edge operators, such as the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 11, NOVEMBER 1993

Marr—Hildreth method [17], which are based on zero crossings
that also guarantee the formation of closed edge contours. They
usually suffer from inaccurately located region boundaries
because they are tuned to a prespecified spatial resolution,
and boundaries between objects with other spatial resolution
may either be missed or inaccurately located. Furthermore
there is an intrinsic drawback in finding connected regions
using this type of edge operator. Region finding through zero
crossings is essentially image coloring with only two colors.
This forces all closed contours to be shared by exactly two
connected regions. Consequently, complex region formations
in an image may be poorly encoded. Edge detectors based
on local intensity differences are able to locate edges more
accurately at region boundaries, but do not in general provide
closed edge contours for region formation. Another problem
associated with this latter class is that thick edges often occur.
Edge linking and thinning are usually needed to alleviate these
problems. The edge-based, graph theoretic method described
here attempts to combine the advantages of both of these types
of edge detectors. An adjacency graph G is constructed with
each vertex in G corresponding to a pixel of the image, and
an arc is placed between two vertices if their associated pixels
are longitudinal or vertical neighbors of each other. An edge
element is defined as a separating element between the pixel
pair, and its strength is computed using a local derivative
operator. Strong edges are mapped to small capacities and
weak edges are mapped to large capacities. Our clustering
algorithm is applied to find minimum cuts in G with small
value, or equivalently closed contours containing strong edge
elements of the image. This new segmentation approach is
able to accurately locate region boundaries, and at the same
time guarantees the formation of closed edge contours.

This paper is organized as follows. In Section II, we review
several fundamental theorems of network flow theory. These
are used to formulate and develop the basic idea behind
the proposed clustering technique. In Section III, we address
the problem of finding an efficient implementation of the
technique. New theoretical results are presented for subgraph
condensation. From these an efficient hierarchical clustering
algorithm is developed. This hierarchical approach results
in significant reductions in computation cost relative to the
direct implementation. In Section IV, the image segmentation
problem is formulated as a clustering problem which seeks
closed contours of strong edges. Experimental results, in which
the algorithm is applied to tissue segmentation of magnetic
resonance (MR) images of the human brain, are presented in
Section V.

[I. FORMULATION

In this section, we show how the problem of clustering is
formulated in terms of the optimal partitioning of an undirected
graph into a number of subgraphs. The new clustering tech-
nique is described here in the context of image segmentation.
The algorithm is however applicable to other clustering prob-
lems where a neighborhood relationship between data points
can be established and the clustering objective can be properly
defined in terms of an arc capacity function.

WU AND LEAHY: AN OPTIMAL GRAPH THEORETIC APPROACH TO DATA CLUSTERING

A. Review of Network Flow Theory

The problems in network flow theory which particularly
interest us are 1) finding the maximum flow from one vertex
to another and 2) finding the maximum flow between every
pair of vertices. The methods for solving these problems
provide the foundation of our graph theoretic algorithm for
data clustering.

Let G = (V, A) be a graph with vertex set V = {vy, v, - -,
v} and arc set A = {a;;} with a;; denoting the arc between
vertices v; and v;. Associated with every arc a;j, there is a
positive number c¢;; called the flow capacity of a;;. A flow
from an arbitrary vertex s to a vertex ¢ with value Fy is
defined by a set of numbers f;; assigned to all a;; € A which
satisfy the following conditions:

Fy ifv, =s
Z fij = Z Jri=(—Fg ifv,=t 1)
v;€0(v;) v €T=1(v;) 0 otherwise

and 0 < f;; < ¢ for all a;; € A. In (1), F,; denotes the
value of the net flow from s to t, D(v;) = {v;la;; € A}
and T'~'(v;) = {vk|ar; € A}, respectively. In the clustering
procedure described in Section II-C, we are interested in
the maximum net flow, F,,, between all pairs of vertices,
s and ¢. This maximum flow, for a specific pair s and ¢,
is the maximum value of F,, for which there exists a set
{0 < fij < cij,Vai; € A} which satisfies (1).

Theorem 1 (Ford—Fulkerson Theorem [18]): The maximum
flow from a vertex s to vertex &, F., is equal to the value of
the minimum cut (V,, — V,,) separating s and ¢.

Acut (V, — V,) is a set of arcs in A which start from
V, and end in Va,~where V, and V, are two vertex sets such
that s € V,, t € V, and V, U V, = V. The value of the cut
(Vo — V,) is defined as

FV, -V, =

E C,’j.

a;; €(Vo—V,)

The minimum cut (V,, — Vy,,) for the vertex pair s and ¢ is
then the cut with the smallest such value. The proof of the
theorem can be found in [18, ch.1]. Ford and Fulkerson [18]
have also developed an algorithm for solving the maximum
flow problem through finding the minimum cut separating s
from ¢. Observe that the minimum cut optimally partitions V
into two subsets given the “seed” vertices s and ¢.

For an undirected graph G, the problem of finding the
maximum flow between every pair of vertices or the “multi-
terminal maximum flow problem” can be efficiently solved
using an algorithm due to Gomory and Hu [12]. A complete
description of their algorithm can be found in [19, Ch.11] and
will not be given here. However, the following properties of
undirected graphs are fundamental to the use of the Gomory-
Hu algorithm in our work.

Theorem 2 ([12]): Let (V;, — V) be a minimum cut
separating s from t. Let r and r’ be two arbitrary vertices
in V,,, (or in f)m). Then the maximum flow and the minimum
cut between r and ' may be computed from a smaller graph

1103

with all vertices in V,, (or in V,;,) condensed into a single
vertex v, (Or v.). ~

The condensation of V, is such that for each vertex v; € V,,
all arcs a;; in (V,,, — V,,) are replaced by a single arc a5,
of capacity

/
1,0c

v €V NT (v;)

Yv; € Vpu.

Cij,

The implication of the theorem is that if (V,, — V,,) is a
minimum cut separating s from ¢, then there exists a minimum
cut for each pair of vertices in V,, (or in V,,) which will not
further partition V,,, (or Vim). This is crucial to the optimality of
our clustering algorithm, and to the efficiency of the Gomory-
Hu algorithm.

Theorem 3: Let G* = (V, A*) be a hypothetical complete
graph with the capacity of arc a; € .A* equal to the maximum
flow Fij between the corresponding vertices v; and v; of
the original graph G and let 7* be a maximal spanning tree
of G*. Then 7* is flow-equivalent to the original graph G.
Furthermore the flow-equivalent tree 7* constructed using the
Gomory-Hu algorithm is also cut-equivalent to G.

Cut-equivalency (flow-equivalency) means that G and 7*
are indistinguishable as far as the minimum cut (maximum
flow) between vertices is concerned. A proof of this theorem
is given by Gomory and Hu [12]. A more comprehensive proof
of Theorem 3 can be found in [19, ch.11] for flow-equivalency
and in [20, ch.2] for cut-equivalency. From now on we will
refer to this cut and flow equivalent tree 7* simply as an
equivalent tree.

The construction of the equivalent tree 7* using the Go-
mory—Hu algorithm involves the successive solution of pre-
cisely M — 1 maximum flow problems with M being the
number of vertices in G. In addition, most of these maximum
flow problems involve much smaller graphs due to vertex
condensation. Once 7* has been constructed, the maximum
flow between any pair of vertices s and ¢ is equal to the
minimum of the capacities among arcs on the unique path
in 7* which leads from s to . Any arc in that path with
capacity equal to the maximum flow between s and ¢ can be
selected to form a minimum cut separating s and ¢.

B. Clustering Rationale

In this and the following section, we will assume that the
data set can be adequately represented by an adjacency graph
G: each vertex corresponds to a data point (a component);
an arc indicates a neighborhood relationship between the two
linked components, and a similarity measure between these
two is assigned to the arc as its flow capacity. In the case
of image segmentation, one could construct such a graph in
which each vertex represents a pixel in the image and arcs are
placed between pairs of neighboring pixels.

Let G = (V,A) be an adjacency graph, formed from the
data set, with vertex set V = {v;,v2,---,va} and arc set
A = {a;;} with a;; denoting the arc between vertices v; and vj
with capacity c;;. Here ¢;; is a similarity measure between v;
and vj, i.e. the larger the arc capacity c;;, the more similar are

1104

the vertices v; and v;. The purpose of a clustering algorithm
is to group together the components into a reduced number
of clusters. Each cluster contains components with similar
features. This problem can be formulated equivalently in terms
of the adjacency graph G formed from the components: divide
G into a number of unconnected subgraphs by removal of
the arcs joining the subgraphs. The set of vertices in each
subgraph then represents a single cluster. In the case of image
segmentation, each of the remaining subgraphs contains a set
of connected vertices or components whose union represents
a spatially connected region of the image. Recall that the arc
capacities are defined as a measure of similarity between each
component and its connected neighbors, i.e., the larger the arc
capacity, the more similar are the two linked vertices. Suppose
we wish to partition the graph G into two subgraphs with as
dissimilar features as possible. A good criterion for choosing
such a partition is to minimize the maximum flow between
the two subgraphs. Following Theorem 1, such an optimal
partition can be found by removing arcs in G corresponding
to the cut set with the smallest cut value among all minimum
cuts between every pair of vertices in G. Note that any other
cut would result in greater or equal maximum flow (and hence
similarity) between the two subgraphs. Finding these minimum
cuts in an undirected graph is a well known problem in graph
theory and has been efficiently solved by Gomory and Hu [12]
through the construction of an equivalent tree T".

One can extend this principle to the subdivision of the graph
G into K subgraphs. The objective here is to partition a graph
G into K subgraphs where the largest inter-subgraph maximum
flow is minimized among all possible K -partitions of G. We
will illustrate how to find this optimal K -partition for the case
where K = 3. Let (V,, — V) be a minimum cut with
the smallest cut value among all minimum cuts separating
each pair of vertices of G, and let 7 and r’ be any other
pair of vertices. Note that if r and 7' lie on opposite sides
of (Vi — Vim), then (Vi — Vi) has to be a minimum cut
between them. Therefore in order to partition G further, we
need only consider those pairs of vertices, 7 and 7', such that
both r and 7’ belong to either V,, or V. If both 7 and 7/
are in V,, (or in f)m), the minimum cut between r and r’ can
partition further only Vp, (or Vpm) according to Theorem 2,
which implies a partition of G into exactly three subgraphs.
Hence, the optimal 3-partition is obtained by choosing the
second cut with the smallest possible cut value.

A similar argument applies to cases with more clusters.
Namely, the optimal K -partition of G is obtained by choosing
the K — 1 smallest minimum cuts from the set of all minimum
cuts between each pair of vertices. From Theorem 3, the equiv-
alent tree 7* has arcs with capacity equal to the maximum
flow between the vertices. Thus one can easily remove arcs
in T* in order of increasing maximum flow to partition the
original graph into any number of subgraphs. Equivalently, a
K -partition of the graph using the method described above
produces a segmentation of the image into the K regions
which are most dissimilar (in the sense defined by the capacity
function) among all K-region segmentations of the image. A
proof of the optimality of this clustering procedure follows
from Theorem 3, and will be given in the next subsection.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 11, NOVEMBER 1993

C. The Clustering Algorithm and Its Properties

Basic Clustering Algorithm:
Step 1)
Step 2)
Step 3)

Form the adjacency graph G from the data set.
Find an equivalent tree T* for G.

Successively remove arcs in 7* in order of increas-
ing arc capacity until a given stopping condition is
met.

This clustering algorithm produces an optimal partition of
the graph G into a given number of subgraphs, in the sense that
the maximum of the inter-subgraph flows is minimized among
all possible partitions of G into the same number of subgraphs.

Corollary 1 (Corollary to Theorem 3): The K-partition of
an undirected graph G, obtained by removing the K-1 arcs
with the smallest capacity in the equivalent tree 7* of G,
minimizes the largest inter-subgraph maximum flow among
all possible K -partitions of G.

Proof of Corollary 1: Following Theorem 3, the maxi-
mum flow between any two subgraphs is equal to the minimum
of the capacities among arcs on the unique path in 7™ which
connects the subgraphs. Along that path, at least one of the
arcs must have been marked for removal in order to disconnect
the two subgraphs. Hence the maximum flow between any
subgraph pair cannot exceed the largest capacity of those
K — 1 marked arcs. But note also that between those subgraph
pairs linked only by a single marked arc, the maximum flow
must be equal to the capacity of that marked arc. Therefore
we conclude that the largest inter-subgraph maximum flow is
equal to the largest of the K —1 marked arc capacities, which
is minimized when the K — 1 arcs in T* with the smallest
capacity are marked for removal. 0

Note also that in this optimal subgraph partition, the maxi-
mum flow between any pair of vertices in the same subgraph
(intra-subgraph maximum flow) is always greater than or
equal to the maximum flow between vertices in two different
subgraphs (inter-subgraph maximum flow). A given undirected
graph G may have more than one equivalent tree 7%, but 7~
will be unique if all of its arcs have distinct capacities [18, Ch.
4]. In the case of a unique T* a unique optimal K -partition is
indeed guaranteed. However the optimal K -partition may still
be unique even if 7™ is not.

Corollary 2 (Corollary to Theorem 3): The K-partition of
an undirected graph G, obtained by removing the K — 1 arcs
with the smallest capacity in the equivalent tree T* of G,
is unique if all K — 1 arcs in 7* marked for removal have
capacity strictly less than the remaining unmarked arcs.

Proof: Let Fr be the smallest arc capacity of all un-
marked arcs in T*. In other words, the maximum flow between
any pair of vertices in the same subgraph is at least Fr.
However the maximum flow between any pair of vertices
belonging to two different subgraphs is strictly less than Fr
by assumption. Hence any other K -subgraph partition would
have to result in at least one intra-subgraph maximum flow
less than Fr and hence the optimal partition is unique. O

As the number of subgraphs increases, so does the number
of corresponding regions in the segmented image. Since the
goal of clustering is to produce a small number of regions from

WU AND LEAHY: AN OPTIMAL GRAPH THEORETIC APPROACH TO DATA CLUSTERING

TABLE I-A
GRAY SCALE INTENSITIES FOR THE REGIONS OR PATCHES IN FiG. 1
Patch Intensity
1 255
2 176
3 112
4 120
5 112
6 120
7 176
8 255
9 184
10 144
11 136
12 80

the image, a stopping condition should be used to prevent
the formation of too many regions. This could be achieved
either interactively by terminating the arc cutting procedure
when sufficient regions have been formed, or by using a
threshold so that arcs with a maximum flow above a given
threshold are not cut. The problem of systematically choosing
a suitable threshold is clearly important. Currently, we choose
the threshold empirically.

D. A Clustering Example

A simple example is described here to illustrate how the
clustering algorithm works for image segmentation. Fig. 1(a)
shows a computer generated image of 128 x 128 pixels.
Different intensities are assigned to the background, the 4
objects and their overlapped areas. The image is thus partioned
into 12 connected regions (patches) of constant intensity (Fig.
1.b). The respective grey scale intensities for these patches are
listed in Table I-A. Note that the smallest intensity difference
between neighboring overlapped and non-overlapped areas is
8. An adjacency graph, G, is formed from these patches, as
shown in Fig. 1(c). Each vertex of the graph corresponds to
a patch. An arc is placed between a pair of vertices if their
corresponding patches are neighbors of each other, i.e., if they
are spatially connected. A flow capacity is then assigned to
each arc. The capacities may be any nonnegative symmetric
function. For the purposes of this example, we choose these
functions as a measure of similarity between the patches
(vertices). In particular the following capacity function, with
the control parameter 0 = 10, is used in our example:

(i N2
cij=hige T

@

where k; ; denotes the number of neighboring pixels between
vertices v; and vj, and p; and p; are the sample means of
patches i and j. An equivalent tree 7* is then generated
using the Gomory-Hu algorithm; 7* is shown in Fig. 1(d).
The capacity values for all arcs of 7™ are listed in increasing
order in Table I-B.

Arcs are now removed, in order of increasing capacity,
from the equivalent tree 7*. The first arc to be removed is
aj 7, which results in a subtree consisting of the region 7
and another containing the rest of the image. Fig. 2(a) shows
the resulting image partition with all pixels displayed as their

1105

TABLE I-B
VALUES OF THE CAPACITY FOR THE ARCS OF
THE EQUIVALENT TREE SHOWN IN FiG. 1(d)

Order Arc Capacity
I aj ; 7.40 x 10~
1l ai 10 1.56 x 10~1°
I a3 12 3.78 x 10~10
v af 10 432 x 10710
v az 12 7.56 x 1075
\%! a3 10 1.12 x 1074
Vil a} 4 3.1638
VIl at g 3.1638
IX a}s 6.8555
X a3 11.073
X1 ato 12.128

Fig. 1. The test image, its adjacency graph G and theequivalent tree 7*.

respective subtree’s mean intensity. Similarly the arcs ag ;0.
af 12, 0§ 10> 0% 12 and a3 o are removed to further partition
the image (Fig. 2(b)—(f)). Since Fig. 2(f) correctly classifies
neighboring regions with similar features (in our case the pixel
intensity), no additional clusters are needed. The remaining
arcs in 7* are shown in Fig. 1(d) with bold links. Note that
regions 1 and 8 are not clustered together because they are not
spatially connected. The same is true for regions 2 and 7. The
final number of clusters is 7.

III. HIERARCHICAL IMPLEMENTATION

A direct implementation of the new graph theoretic clus-
tering method is practical only for graphs of moderate size.
The number of maximum flow problems involved in the
Gomory-Hu algorithm increases linearly with the number
of vertices in the graph. The time needed for solving those
problems increases at a much faster rate. This is due to the
fact that finding the maximum flow between two vertices has
polynomial complexity with respect to the graph size (see [21]
for complexities of various maximum flow algorithms). In our
experiments on a Sun SPARCstation, our direct implementa-

1106

(@ ®) ©

@ (© ®

Fig. 2. Resulting image partitions at each step of patch clustering. All pixels
are displayed as their respective subtree’s meanintensity. This figure shows
regions formed after removal of 1 (Fig. 2(a)), 2 (Fig. 2(b)), 3 (Fig. 2(c)), 4
(Fig. 2(d)), 5 (Fig. 2(e)), 6 (Fig. 2(f)) arcs of the spanning tree 7 *shown
in Fig. 1(d).

tion of the clustering method could comfortably handle graphs
with up to a couple of thousand vertices and a comparable
number of arcs, i.e., computation times on the order of ten
minutes. Unfortunately, a graph constructed from a 256 x 256
image, with each vertex containing only one pixel, will have
65536 vertices.

The hierarchical implementation developed here is based on
the observation that most of the minimum cuts found in the
equivalent tree are never used since their values are sufficiently
large that the arcs in those cuts will not be removed to form
subgraphs. Consequently one may consider the problem of
identifying these minimum cuts and condensing the vertices
linked by them before constructing the equivalent tree. This
would greatly reduce the size of the graph to which the
Gomory—Hu algorithm is applied, without compromising the
overall optimality of the clustering algorithm.

A. Extensions on Network Flow Theory

The maximum flow between any pair of vertices in a
connected graph G is a global characteristic of G. Its value
must be computed using the complete graph or an appropri-
ately condensed graph. The Gomory-Hu algorithm provides
a way to construct a condensed graph, but this condensation
process itself has to start with the complete graph. It would
clearly be desirable to know if a subgraph may be condensed
without processing the complete graph G. The following new
theorem and its corollary will provide sufficient conditions for
condensation of G using arbitrary subgraphs of G.

Theorem 4: Let G, be a subgraph of an undirected graph
G, and Fa,m‘m be the minimum value of the maximum flows
between all pairs of vertices in G,. Let s and ¢ be an arbitrary
pair of vertices in G such that the value of the maximum flow
between s and £, F, is smaller than F, i,. Then F; can be
equivalently computed from the graph, G., which is obtained
by condensing all vertices of G, into a single vertex.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 11, NOVEMBER 1993

Proof: Let us first show that the minimum cut separating
sandt, (Vm — Vi), may not contain any arcs in G,. Assume
the contrary to be true, i.c., there exists at least one arc a,, in
(Vi — V) such that both 7 and r' belong to G,. Then
by definition, (Vi — V,n) is also a cut (not necessarily
minimum) separating r and r’. However, its cut value, F,
is smaller than F,,s, the maximum flow between r and 7/,
because Fg < —F_O,m;n by assumption, and Fa,min < —F_MI
by definition. This contradicts the definition of F, as the
value of the minimum cut between 7 and r'. Consequently,
Vm — f)m) cannot contain any arc in G, and therefore Go
should be entirely contained by either Vi or f)m. It then
follows that condensing vertices in G, will have no effect on
the minimum cut (V,, — Vin) which separates s from . O

Theorem 4 can be modified to provide a result which is more
useful in developing the hierarchical clustering algorithm. This
result is contained in the following corollary.

Corollary 3 let G, be a subgraph of an undirected graph
G. Let F', min be the minimum value of the maximum flows
between all pairs of vertices in G, computed using an arbitrary
subgraph, G, which contains G,, and let s and ¢ be an arbitrary
pair of vertices in G. If the value, F s, of the maximum flow
between s and ¢, computed using G, is smaller than F'o,m;n,
then F,; can be equivalently computed from the condensed
graph G.. with all vertices in G, condensed into a single vertex.

Before we proceed to prove the corollary, let us introduce
the following lemma. The lemma establishes an important
relationship between the maximum flows computed using
the complete graph and those using a local subgraph. Proof
of Corollary 3 then follows by combining this lemma with
Theorem 4.

Lemma 1: Let g; be a subgraph of an undirected graph g,
and Fst be the value of the maximum flow between a pair
of vertices, s and ¢, in G, computed using g’o. Let F',; be the
maximum flow between s and ¢ computed using G. Then

F' 4 < Fy.

Proof: Let (Vi — V,) be a minimum cut separating s
and ¢ computed in G. The subset of (Vi — V) whose arcs
are in G, is also a cut separating s from ¢ in g;. By definition,
the value of this cut should be greater than or equal to F'g,
the value of the minimum cut between s and ¢ computed in

G.. a
Proof of Corollary 3: 1f Fsr < F o min, then Fop <

Fomin, since F'omin < Fymin from Lemma 1. Therefore,
the conditions for Theorem 4 are satisfied. O

The implication of Corollary 3 is significant since the con-
dition under which a subgraph, G,, may be condensed can be
checked using only a local subgraph which contains G,. Using
this result a hierarchical clustering method may be developed
which uses subgraphs for condensation (local processing) and
the Gomory—Hu algorithm for optimal clustering applied to the
condensed graph (global processing). The theoretic foundation
of such a clustering technique is presented below as a theorem.

Theorem 5: Let G, be a subgraph of an undirected graph
G, and F', nin be the minimum value of the maximum flows

WU AND LEAHY: AN OPTIMAL GRAPH THEORETIC APPROACH TO DATA CLUSTERING

between all pairs of vertices in G, computed in a subgraph G,
which contains G,. Let G, be the graph formed from G with all
vertices in G, condensed into a single vertex and let T be an
equivalent tree constructed from G... Then 7.* is a partially cut
and flow equivalent tree of G, at threshold ', o.min- iN the sense
that the maximum flow, F;, and the corresponding minimum
cut can be computed from 7_* for all pairs of vertices s and ¢
in G such that ', < F o,min- Furthermore for all vertex pairs,
s and ¢, in G with flow F; > F o,min, the maximum flow
value computed in 7. is also greater than or equal to F o,min-

Proof: Let s and t be an arbitrary pair of vertices in G,
and assume the maximum flow between s and ¢, F,, is less
than F', nin. From Corollary 3, F,, and the corresponding
minimum cut separating s and ¢ may be computed from G..
Since G and 7* are flow and cut equivalent, the maximum
flow F,; and the minimum cut can also be computed from
7. Now assume that F,, > F', 'min- From Lemma 1, the
maximum flow computed in G, is at least as large as Fy,. [J

So far, we have derived sufficient conditions for subgraph
condensation when we are only interested in finding minimum
cuts with small cut values. In the remainder of this subsection,
we will derive additional conditions for subgraph condensation
with no cut value constraints attached.

Let (] be a subgraph of an undlrected graph G and T be
an equivalent tree computed from g We wish to construct an
equivalent tree 7* for G using as much information from T *
as p0551ble Specifically we want to identify those minimum
cuts in ’T * which are also minimum cuts in 7*. If successful,
we can initialize the Gomory—Hu algorithm at a much more
advanced stage, since these identified minimum cuts need not
be recomputed, and thus greatly reduce the computation time.

Definition: An interior vertex of a subgraph G, of G is a
vertex such that all of its neighboring vertices also belong to
Q A non-interior vertex is called a boundary vertex.

Theorem 6: Let ’T be an equivalent tree of go, a subgraph
of an undirected graph G, and 7.* be a branch of T consisting
exclusively of interior vertices of g Let G. be the graph
formed from G.with all vertices in 7.* condensed into a single
vertex v;. The equivalent tree 7* of G can be constructed
as follows: construct an equivalent tree 7.* for the condensed
graph G, and then replace the vertex v’ by 7.* connected at
its root vertex.

Here, the root vertex of the branch 7* refers to the only
vertex in 7' which neighbors a boundary vertex in TO'*. The
proof of Theorem 6 is based on the Gomory—Hu algorithm
and its optimality.

Proof: Let s denote the root vertex of the branch 7.*,
t denote the parent vertex of s in ’T . Since all vertlces in
7. are interior vertices, the minimum cut (m Q) separating
s and ¢, which is equivalent to the arc ast in ’T , should
also separate s and ¢ in the complete graph G. Denote this
minimum cut as (G, — G,), where G, is the subgraph of G
which contains all vertices not in G,.

Apply the Gomory—Hu algorithm to G as follows. Choose
s and t as the first vertex pair between which the maximum
flow will be computed. Since (G, — G,) is a minimum cut
separating s and ¢, the resulting tree at this stage should be two

1107

condensed vertices v} and 9} linked by an arc with capac1ty
equal to the cut value of (G, — G,), where v* and U} are
condensed from G, and go, respectively. Now proceed with
the algorithm by selecting only vertex pairs in G, until every
condensed vertex except v} has become a single vertex of G.
Note that we have just constructed the equivalent tree 7.* for
the graph G, which is obtained from G by condensing all the
vertices in G, into a single vertex v}.

Finally, we need to compute the maximum flows between
all vertex pairs in G,. But the resulting maximum flows and
the minimum cuts should be identical to those computed using
the subgraph go, because all the vertices in T * are interior
vertices of g Therefore in order to complete the equivalent
tree 7* of G, the condensed vertex v, can be expanded in
exactly the same manner as when constructing 7;/ * from g;.

|

B. A Clustering Algorithm Using Hierarchical Implementation

In order to perform clustering of the vertices of a graph G
to minimize the largest inter-subgraph maximum flow, it is
not necessary to know the exact arc capacities (minimum cut
values in G) for all arcs in the equivalent tree 7*. This is
because only those arcs with small capacities will be removed
during the clustering process. In other words, if an arc capacity
is greater than a given threshold, Fr, we are no longer
interested in its exact value since the arc will not be cut. The
value of this threshold can be chosen as any value greater than
the largest minimum cut which will be made in partitioning the
graph into its subgraphs. Using this approach and Theorem 5,
a partially equivalent tree can be constructed more efficiently
than 7. This produces a saving in computation time for the
overall clustering process without any loss in optimality. In
this subsection we develop an efficient clustering technique
based on hierarchically constructing a partially equivalent tree
for the graph G.

Consider an arbitrary subgraph, go, of an undirected graph
G, and let ’T be an equivalent tree constructed using g
If the vertices in Q are clustered by removing all the arcs
corresponding to cuts whose capacities are smaller than Fr,
then the maximum flow (computed in g;) between any pair
of vertices belonging to the same cluster must be at least Fr.
From Theorem 5, the equivalent tree 7.*, computed from the
graph with each of the clusters in Q; condensed into a single
vertex, can be used in place of 7* for clustering vertices in
G. Here 7 is referred to as a partially equivalent tree of
G, because 7* is cut and flow equivalent to G only between
vertex pairs with maximum flow values smaller than Fr.

The construction of this partially equ1valem tree 7_* can also
make full use of the mlnlmum cuts in T * that enclose interior
vertices of the subgraph Q A branch of ’T that contains
only interior vertices is referred to here as an interior branch
of 7,*. A maximal interior branch of T,* is then an interior
branch that cannot be contained by any other interior branch
of 'T . From Theorem 6, all vertices in any maximal branch
of ’T can be condensed into a single vertex when computing
7. Furthermore the minimum cut between these condensed
vertices and the rest of 7. is identical to that computed in

1108

IEEE TRANSACTIONS ON PATTERN

d

d

it

& &

Q
e

d

i

ANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 11, NOVEMBER 1993

’I:

P.G. : Partition graph.
G.H. : Gomory-Hu Algorithm.

H
2

Cd : Condensation.

Fig. 3. Block diagram for the construction of a partially equivalent tree using a three level hierarchy.

Yj*. Hence, the Gomory-Hu algorithm may be initialized
using the following tree: every maximal interior branch of
’1;' * corresponds to a condensed vertex in this tree, and each
is linked to a condensed vertex tq that contains the rest of the
vertices of G.. The capacity of each arc in this tree is equal
to the value of the minimum cut between the corresponding
interior branch and the rest of the graph. The Gomory-Hu
algorithm is only used to expand the vertex to. The rest of the
condensed vertices are expanded using the interior branches of
TO’*. Note that not only is the Gomory—Hu algorithm applied
to a graph of reduced size due to the condensation of the
maximal interior branches of ’];I*, but it is also initialized to
solve only as many maximum flow problems as the number of
vertices in t; minus one. Obviously this same interior branch
condensation is also applicable to 7;’,2, the condensed tree of
’To/ * obtained by condensing each cluster of vertices linked by
arcs with capacity > Fr.

This condensation procedure can be applied in a hierarchical
fashion, i.e., G may be partioned into a large number of smaller
subgraphs with the above procedure applied to each. The
resulting condensed subgraphs are then combined in groups of
two or more and the process repeated in a hierarchical fashion
as illustrated in Fig. 3. For a clustering procedure in which
the maximum inter-subgraph flow is constrained to be less
than Fr, the result obtained using this hierarchical approach
is identical to that which would be obtained by applying the
Gomory-Hu algorithm directly to the complete graph. The
computational advantage is significant—in our experiments
CPU times for the direct Gomory—Hu algorithm in excess of
12 hours are reduced to the order of 10 minutes using the
hierarchical approach.

Clustering Algorithm Using Hierarchical Implementation:

Step 1) Form the adjacency graph G, and then arbitrarily

partition G into a number of small subgraphs,
{Q(l,,m}, usually of similar size. Let ¢ = 0.

For each subgraph g;ym find an equivalent tree ’]}:;‘n
using the Gomory—Hu algorithm.

Permanently condense all the subtrees in ’Z;,,*n
which are linked by arcs with capacities > Fr.
Also temporarily condense all the maximal interior
branches of this resulting tree to form a condensed
subgraph g;,myc.

If there is only one subgraph in {g;,m,c}, then
denote the resulting equivalent tree as ’TC' * and go
to Step 6; otherwise continue to Step 5.

Group {g;,m,c} into subsets, each containing anum-
ber of neighboring subgraphs of {Q;’"w}. By con-
necting the subgraphs in each subset using the
inter-subgraph arcs, we form a new subgraph set
{Git1m)- Leti =i+ 1, and goto Step 2.
Expand back all the temporarily condensed vertices
in Tc/* to construct the partially equivalent tree 7"
of the original graph G.

Remove successively arcs in 7.* in order of increas-
ing arc capacity until a given stopping condition
is met. A clustering constraint may be attached in
this last step.

Step 2)

Step 3)

Step 4)

Step 5)

Step 6)

Step 7)

Since constructing an equivalent tree for graphs with few
vertices is very fast, it is usually more efficient to start
the algorithm with a large number of very small subgraphs.
The only restriction in selecting the threshold Fr is that no
minimum cut with value larger than Fr may be used for
partitioning the graph G. Ideally the threshold Fp should
be chosen as the value of the largest minimum cut which
will be made in partitioning G so that the clustering is most

WU AND LEAHY: AN OPTIMAL GRAPH THEORETIC APPROACH TO DATA CLUSTERING

efficient. In practice we can choose any reasonable value for
Fr because the additional cost of having selected a larger Fr
is very small compared to the overall saving of the hierarchical
implementation.

C. Incorporation of Constraints

So far, we have only discussed unconstrained data cluster-
ing. Often we also want the resulting data clusters to possess
certain desirable characteristics, e.g., clusters should not be
too small.

A direct approach to incorporating these requirements is
to impose “hard” constraints on the clustering formulation
as follows: find the K -subgraph partition that minimizes the
largest inter-subgraph maximum flow, while each of the K
subgraphs meets the specified requirements. Unfortunately, the
optimal solution would have to be chosen from a possible
C’Aff,:_ll different combinations, where M. is the number of
vertices in 7. Branch-and-bound algorithms should be a
suitable choice for solving this problem.

Alternatively, we may impose constraints on the minimum
cuts which are used to partition the graph G. For example,
only minimum cuts containing at least a given number of arcs
in the original graph may be selected for graph partitioning.
For this type of constraint, the optimal solution can still be
found in a sequential fashion: remove the arcs of 7* in order
of increasing capacity unless the corresponding cut set in G
does not satisfy the constraint, in which case no action takes
place. This process is repeated until K — 1 arcs have been
removed. The resulting solution is locally optimal, since the
equivalent tree of G may not be unique. However if either all
or none of the arcs in 7. with the same capacity are considered
for removal, the solution becomes globally optimal following
similar arguments used to prove Corollary 2.

Another approach is to select arc capacities in the adjacency
graph G in such a way that the minimum cuts become less
likely to result in undesirable subgraphs. When the constraints
are not strict, this penalty approach may be a preferred one.
In addition, we may also want to give special treatment to
those clusters that do not meet the constraints. For example,
when segmenting images we do not want to form many
small regions. In practice, we find that these small regions
often correspond to boundary pixels between large objects.
Therefore we may simply choose to allow these small regions
to be formed in the clustering stage and then merge them into
large neighboring regions in a refining step.

IV. IMAGE SEGMENTATION BASED ON CLUSTERING

In this section, we will demonstrate how we can apply the
graph theory based clustering algorithm to the image segmen-
tation problem. The segmentation is achieved by searching for
closed contours of edge elements. These edge elements are
computed directly from the image prior to construction of the
graph.

Let the image be represented by an undirected graph G:
each pixel corresponds to a vertex of G, and an arc is placed
between two vertices if their associated pixels are longitudinal
or vertical neighbors of each other. In this paper, only a

1109

0.1 }-0.1 0—1
0.1]0.7§-07 -0.1—| 01107]01
0.1]-0.1 -0.1|-0.7 |-01

-0.1

(@) ®)

Fig. 4. Masks for computing the edge strength: (a) edge between horizontal
neighboring pixels; (b) edge between vertical neighboring pixels.

first order neighborhood system is used although there is no
inherent restriction on using a higher order neighborhood. For
each pair of neighboring pixels, we define an edge element as a
separating element between the pixel pair in a similar manner
to the line processes used in Markov random field models
[22]. The edge strength is computed as a function of intensity
differences between the pixel pair and between pixels in their
vicinity, by using masks similar to those shown in Fig. 4. Let
z;,; be the grey scale intensity of the pixel at coordinate (%, j),
and let DZH] and DXJ- be the edge elements defined between the
pixel pairs (z; ;,z; j41) and (2; j, z;41 ;) respectively, then

Df; = |5 (@i = ®ig1) + (o1 — Tio1j41)

+ (Tiv1,j — Tip141) + (Tij-1 — ~’Ei,j+2)/(5 +3)- 0|’
)]

D} = ’5 A5 = Tit1,5) + (@Tij—1 — Tig1,5-1)

+ (i1 = Tigr,j41) + (@i — $i+2,j)/(5 +3)- 0|7
Q)

where § and o are control parameters. The parameter §
controls the smoothing effect of the edge masks. For the MR
brain images used in our experiments, we have observed that
6 = 7 seems to be a good compromise between reducing
noise sensitivity and preventing thick edge lines. For noiser
images, 6 = 1 and/or larger edge masks may be necessary. The
parameter o is proportional to the smallest intensity difference
that indicates the potential presence of a region boundary in
the image.

For an arbitrary cut in the graph G which partitions G
into 2 subgraphs, the edge elements corresponding to the
arcs belonging to the cut form a closed edge contour. The
value of a cut is equal to the sum of the capacities of its
arcs. Hence, if a small arc capacity is assigned to a strong
edge element and vice versa, then the cuts with small value
correspond to closed contours which contain strong edge
elements. Conversely, isolated strong edges will not produce
boundaries in the segmented image, since there is a high
cost associated with the inclusion of weak edges (large arc
capacities) necessary to form a closed boundary through these
isolated edges. Ideally, the capacity function for a cut should
not penalize long boundaries, but rather penalize the presence
of gaps in the boundaries. This is particularly important in
the segmentation example for an MR image of the brain
presented next. In that case, the boundary between the cortex
and CSF and between the cortex and the white matter is highly

1110

convoluted. Previously we used the negative exponential of
the square of the edge strength to define the arc capacity
[23]. Although the results have generally been satisfactory,
we note that the capacity function drops to zero too fast as
the edge strength increases, which results in indistinguishable
capacities (10~!? is used as the lower bound for arc capacities
to prevent underflow). Consequently isolated regions with very
few pixels are more likely to occur when clustering pixels. Of
course this problem may be alleviated by increasing the value
of the control parameter o. However a small value for o is
necessary to make a clear distinction between strong and weak
edges. Based on our experiments, we found the following arc
capacity function to be a more appropriate choice. Let v; ; be
the vertex corresponding to pixel z; ;, then the capacities for
the arcs connecting v; ; to v; ;41 and to Vit j, CzH] and CI‘J
respectively, are defined as

—(D?)2
ot ={ T,
e,
The arc capacity function defined in this section is simple
and often robust. Its simplicity helps to illustrate the idea of
using clustering to segment images via closed edge contour
finding, without the need for much additional knowledge. At
the same time we also acknowledge the ad hoc nature of the
definitions of edge strength and arc capacity. Attempts have
been made to alleviate this weakness. In [24] we incorporate
prior information about the regions in the image and then
use the likelihood ratio between “no-edge” and “edge” to
define the arc capacity. However, the rather lengthy description
required prevents us from including it in this paper, where our

empbhasis is on presenting a novel data clustering strategy and
its efficient implementation.

if 3> DP.
8g? =HorV. 5
it D7, >3, " ®

V. EXPERIMENTAL RESULTS

A. Edge Based Segmentation of a MR Image

Fig. 5 shows a typical cross-sectional MR image of the
brain for a patient with a large lesion on the left side. Several
other edge based segmentation techniques have been tested
for the image in Fig. 5. Among them, region finding using the
Marr—Hildreth operator is the most promising alternative to the
method described in Section IV. By trial and error, the best
result was achieved using a Marr-Hildreth operator with o =
1.35, implemented using a 9 x 9 window. Fig. 6(a) shows the
filtered image displayed in black (negative pixels) and white
(positive pixels). All connected regions in Fig. 6(a) are then
extracted, and the three largest internal regions found using
this method are shown in Fig. 6(b)~(d). While this method is
effective at finding certain boundaries, it also mislocates many
other boundaries. The most noticeable problem is that one must
break connections between collections of pixels with distinct
features. For example, in Fig. 6(b) pixels corresponding to
white matter and the ventricles are mistakenly linked; these
connections must be broken for accurate segmentation and
labeling. This problem is mainly due to an intrinsic drawback
of techniques based on zero crossings. All closed contours
have to be shared by exactly two connected regions and thus

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 11, NOVEMBER 1993

Fig. 5. An axial MR image of a brain with white matter lesions.

©) G

Fig. 6. (a) Regions from the Marr-Hildreth operator;(b)~(d) three large
connected regions from (a) after region growing.

more complex structures, where three or more regions are
connected, will be segmented into at most two regions.

The same image, Fig. 5, was also segmented using the new
graph theoretic segmentation algorithm. An adjacency graph
G was constructed for the image in Fig. 5, as described in
Section IV. The edge elements were computed using (3) and
(4) with control parameter ¢ = 3.0 (Fig. 7(a)). Since there
are almost twice as many edge elements as there are pixels,
the following convention is used to display the edge image
in Fig. 7(a). At each pixel site (4, j), the maximum of D;H]
and D} is displayed. The capacity function for the arcs in
G is defined according to (5). A partially equivalent tree 7.*
of G is then constructed at threshold Fr = 0.1. Clusters of
pixels are formed by removing all arcs in 7.* with capacity
smaller than Fr. When no constraint is attached to these
clusters, there may be a large number with very few pixels.
In our experiment, the minimum size for a cluster is restricted

WU AND LEAHY: AN OPTIMAL GRAPH THEORETIC APPROACH TO DATA CLUSTERING

to five pixels. All clusters with less than five pixels, except
those clusters connected with other clusters in 7. through
arcs with capacities much smaller than Fr, are merged to
the most similar neighboring cluster which has more than five
pixels, using the merging procedure described in [25]. For the
type of images shown here, that procedure is equivalent to
region growing from the larger regions (> 5 pixels) into their
neighboring small clusters based on the difference between the
mean intensity of the regions. Unmerged clusters that have less
than five pixels will be labeled as unclassified. The algorithm
produced a total of 161 clusters (connected regions) excluding
the unclassified clusters. Fig. 7(b) shows the segmented image
with the pixels in each cluster replaced by their sample mean
and Fig. 7(c) shows the unclassified pixels which are also
displayed in black within the image of Fig. 7(b). Using the
equivalent tree of the adjacency graph of the segmented image,
the skull and the external tissue can be easily removed from
the image. The remaining 79 clusters correspond to brain
tissue (Fig. 7(d)). Eight of these clusters are shown in Fig.
8. Fig. 7(e) shows the edge image associated with the 79 pixel
clusters, where the grey level of edge elements reflects their
strength. To obtain the final tissue classification, these pixel
clusters are further labeled interactively into one of five types.
Figs. 9(a)(d) show the segmented regions corresponding
respectively to (a) grey matter; (b) white matter; (c) ventricle;
and (d) tumor. In each figure, only pixels classified to that
label are displayed while the rest are set to white. The clusters
that do not fit in any of the four tissue types are labeled as
the null type, “unclassified.” The union of the four regions
is shown in Fig. 7(f), with the black spots within the image
indicating unclassified pixels.

By removing fewer arcs from the partially equivalent tree
T, we could obtain fewer than 79 clusters. However, we have
found that this results in the clustering, and hence incorrect
labeling, of inhomogeneous regions. We believe that this
problem reflects the limited nature of the information present
in an MR image, i.e. without providing any form of supervision
to the algorithm (the algorithm does not “know” that the image
is an MR scan), it is conceivably not possible to obtain an
accurate segmentation and clustering into only four regions
(tumor, white matter, grey matter and ventricles). The results
shown in Fig. 9, were obtained by interactively labeling the 79
regions found after clustering. Rather than attempting to force
the current algorithm to form only the desired four regions,
our goal is to use the results of the patch clustering algorithm
as the input to a tissue labeling algorithm which compares
the features of the regions, such as size, shape, location and
spatial relationship with the other regions, with a stored brain
map and label the regions accordingly.

B. Edge Detection of An Airport Image

The edge based segmentation algorithm has also been
applied to edge detection for aerial photographs. Fig. 10.a
shows a photograph of an airport, and Fig. 10(b) shows its
edge image computed using (3) and (4). An adjacency graph is
constructed using the arc capacity defined in (5) with ¢ = 3.5,
and a partially equivalent tree is then computed at threshold

1111

(@) ®)

Fig. 7. Graph theoretic clustering results: (a) edges before clustering; (b)
segmented image with each pixel cluster displayed in its mean; (c) unclassified
pixels; (d) pixels corresponding to brain tissue; (¢) edges after clustering; €3]
combined tissue map.

Fr = 0.1. Clusters of pixels are formed by removing all
arcs in 7% in order of increasing arc capacity with capacity
smaller than Fr, unless doing so will result in a cluster with
less than 5 pixels. This procedure produces a total of 321
clusters. These are shown in Fig. 10(c) with pixels in each
cluster displayed in the cluster’s sample mean intensity. The
edge image corresponding to Fig. 10(c) is shown in Fig. 10(d).
Again the edge images only display the maximum of Df"] and
D}J at each pixel site (z,7).

VI. CONCLUSION

We have presented a novel graph theoretic approach for data
clustering, and demonstrated an application to the problem of
image segmentation. We have also developed a fast algorithm
for computing the maximum flows in an undirected graph,
which is much more efficient than the Gomory—Hu method.

The data to be clustered are represented by an undirected
adjacency graph G. A flow capacity is assigned to each arc
in G to reflect the similarity between the neighboring data
points linked by that arc. Given G, clustering is achieved
by removing arcs corresponding to minimum cuts between

1112

4
Wl N v B

Fig. 8. Examples of regions (pixel clusters) formed by linking edge
elements using clustering.

& @

@ (b)

‘ N
\y

© (@

Fig. 9. The final tissue classification after interactive labeling of regions
found using edge linking. (a) White matter. (b) Gray matter. (c) Ventricles.
(d) Tumor.

vertex pairs in G to form mutually exclusive subgraphs. For an
unconstrained optimal K -subgraph partition, the arcs selected
for removal are those corresponding to the K — 1 minimum
cuts with the smallest K — 1 cut values among all minimum
cuts between every pair of vertices in §. The resulting K-
partition minimizes the largest inter-subgraph maximum flow
among all possible K -partitions of G, hence minimizing the
similarity between the subgraphs (clusters). At the same time,
this procedure also results in a nested sequence of partitions
which are optimal for cluster numbers ranging from 2 to K,
respectively. This is a desirable characteristic of a clustering
technique, especially when the cluster number has to be
determined from the data.

The minimum cuts of G are computed from a flow and
cut equivalent tree 7* of G, which can be constructed using
the Gomory-Hu algorithm. Given 7*, the optimal K -partition
can be equivalently obtained by disconnecting the K — 1 arcs
in 7* with the smallest K — 1 arc capacities. Based on the
observation that most of the minimum cuts found in 7™ are

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 11, NOVEMBER 1993

©

Fig. 10. Results after clustering: (a) original airport image; (b) computed
edges of the airport image before clustering; (c) segmented airport image; (d)
edges after clustering.

never used, since their values are sufficiently large that the arcs
in those cuts will not be removed to form subgraphs, a fast
hierarchical algorithm has been developed which constructs
only a partially equivalent tree 7% of greatly reduced size.
New theorems for subgraph condensation have been derived.
Using these theorems, many of the minimum cuts with large
values can be identified using local subgraphs, hence the
vertices linked by them can be condensed before constructing
the equivalent tree. Consequently the Gomory-Hu algorithm is
applied to graphs of much smaller size without compromising
the overall optimality of the clustering algorithm.

This graph theoretic clustering algorithm has been applied to
the problem of image segmentation. Segmentation is achieved
through seeking closed contours of edge elements of the
image. By properly assigning arc capacities as a function of
the computed edge strength, a minimum cut with small cut
value, found in the adjacency graph formed by the image
pixels, should contain mostly strong edges. We have observed
that the proposed segmentation approach is able to accurately
locate region boundaries while guaranteeing the formation of
closed edge contours. The segmentation is unsupervised. This
new method also offers the flexibility for incorporating prior
information about the image through the arc capacity function.
For example when segmenting MR brain images, the pixel
intensity ranges for different tissues and their relative position
within the brain may be reflected in the capacity function to
provide improved segmentation results.

REFERENCES

[1] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Engle-
wood Cliffs, NJ: Prentice Hall, 1988.

2] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis.
New York: Wiley, 1973.

[3] L. J. Hubert, “Some applications of graph theory to clustering,” Psy-
chometrika, vol. 38, pp. 435-475, 1974.

WU AND LEAHY: AN OPTIMAL GRAPH THEORETIC APPROACH TO DATA CLUSTERING

4

{51
[6
[7]

(8]

]
(10]

(11]
(12]
[13]

(14]

(15]

[16]

[17]
(18]
[19]
[20)
[21]

[22]

D. W. Matula, “Graph theoretic techniques for cluster analysis algo-
rithms,” in Classification and Clustering, J. Van Ryzin, Ed. New York:
Academic Press, 1977, pp. 95-129.

C. T. Zahn, “Graph-theoretic methods for detecting and describing
gestalt clusters,” IEEE Trans. Comput., vol. 20, pp. 68-86, 1971.

R. Urquhart, “Graph theoretical clustering based on limited neighbor-
hood sets,” Pattern Recognit., vol. 15, pp. 173-187, 1982.

W. L. Koontz, P. M. Narendra, and K. Fukunaga, “A graph-theoretic
approach to nonparametric cluster analysis,” I[EEE Trans. Comput., vol.
24, pp. 936-944, Sept. 1976.

Z. Wu and R. Leahy, “Tissue classification in MR images using
hierarchical segmentation,” in Proc. IEEE Int. Conf. Medical Imaging,
Oct. 1990.

R. E. Jensen, “A dynamic programming algorithm for cluster analysis,”
Oper. Res., vol. 17, pp. 1034-1057, 1969.

W. L. Koontz, P. M. Narendra, and K. Fukunaga, “A branch and bound
clustering algorithm,” IEEE Trans. Comput. vol. 24, pp. 908-915, Sept.
1975.

L. P. Lefkovitch, “Conditional clustering,” Biometrics, vol. 36, pp.
43-58, 1980.

R. E. Gomory and T. C. Hu, “Multi-terminal network flows,” SIAM J.
Appl. Math., vol. 9, pp. 551-570, 1961.

G. K. Coleman and H. C. Andrews, “Image segmentation bu clustering,”
Proc. IEEE, vol. 5, pp. 773-785, May 1979.

R. L. Cannon, J. V. Dave, J. C. Bezdek, and M. M. Trivedi, “Seg-
mentation of a thematic mapper image using the fuzzy c-means clus-
tering algorithm,” IEEE Trans. Geoscience Remote Sensing, vol. 24, pp.
400408, May 1986.

D. A. Ortendahl and J. W. Carlson, “Segmentation of magnetic res-
onance images using fuzzy clustering,” in Proc. 10th Conf. Inform.
Processing in Medical Imaging, 1988, pp. 91-106.

P. Sahoo, S. Soltani, and A. K. C. Wong, “ A survey of thresholding
techniques,” Comput. Vision Graphics Image Processing, vol. 41, pp.
233-260, 1988.

D. Marr and E. Hildreth, “Theory of edge detection.” Proc. Roy. Soc.
Lon., vol. 207, pp. 187-217, 1980.

L. R. Ford, Sr. and E. Fulkerson, Flows in Networks.
Princeton Univ. Press, 1962.

N. Christofides, Graph Theory: An algorithmic Approach.
Academic Press, 1975.

L. Lovasz and M. D. Plummer, Matching Theory.
Science Pub. B.V., 1986.

R. K. Ahuja and J. B. Orlin, “ A fast and simple algorithm for the
maximum flow problem,” Oper. Res., vol. 37, pp. 748-759, 1989.

S. Geman and D. Geman, “Stochastic relaxation, Gibbs distribution, and
the Bayesian restoration of images,” IEEE Trans. Patiern Anal. Machine
Intell., vol. 6, pp. 721-741, Nov. 1984.

Princeton NJ:
New York:

Amsterdam: Elsevier

(23]

[24]

[25)

1113

Z. Wu and R. Leahy, “A graph theoretic approach to image segmentation
of MR images,” in Proc. SPIE/SPSE’s Symp. on Elect. Image Sci. &
tech., vol. SPIE-1450, Feb. 1991.

Z. Wu, “Hierarchical and graph theoretic approaches to image segmen-
tation and pattern classification,” Ph.D. dissertation, Signal and Image
Processing Inst., Univ. of Southern California, 1991.

Z. Wu and R. Leahy, “Unsupervised bhierarchical segmentation of
textured images based on homogeneity testing,” USC-Signal & Image
Processing Inst., Tech. Rep. #157, June 1990.

Richard Leahy was born in Surrey, England in
1960. He reccived the B.Sc. and the Ph.D. degrees
in electrical engineering from the University of
Newcastle upon the Tyne, England in 1981 and
1985, respectively.

In 1985, he joined USC, Los Angeles, CA where
he is currently an Associate Professor in the Signal
and Image Processing Institute of the Department
of Electrical Engineering-Systems. He holds a joint
appointment with the Department of Radiology at
USC. His research interests include medical image

reconstruction and analysis, biomedical signal processing, and other applica-
tions of optimization theory and statistics in signal and image processing.

Zhenyu Wu (S’90-M’93) was born in Zhejiang,
China, 1961. He received the B.S. degree in
computer engineering and the M.S. degree in
electrical engineering from the National Uni-
versity of Mexico, Mexico City, in 1984 and
1986, respectively, and the Ph.D. degree in
electrical engineering from the University of
Southern California, Los Angeles, CA, in 1992.
From 1984-1986, he was with the Instituto de
Investigaciones Electricas (IIE) of Mexico. From
1987 to 1992, he was a Research Assistant in the

Signal and Image Processing Institute at USC. Since March 1992, he has
been a postdoctoral fellow in the Medical Image Processing Group of the
Department of Radiology, University of Pennsylvania, Philadelphia. His
current research interests include image processing, pattern classification,
graph theory, and their applications to medical imaging.

