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The Discrete Cosine Transform∗

Gilbert Strang†

Abstract. Each discrete cosine transform (DCT) uses N real basis vectors whose components are
cosines. In the DCT-4, for example, the jth component of vk is cos(j+ 1

2 )(k+ 1
2 ) π
N

. These
basis vectors are orthogonal and the transform is extremely useful in image processing. If
the vector x gives the intensities along a row of pixels, its cosine series

∑
ckvk has the

coefficients ck = (x,vk)/N . They are quickly computed from a Fast Fourier Transform.
But a direct proof of orthogonality, by calculating inner products, does not reveal how
natural these cosine vectors are.

We prove orthogonality in a different way. Each DCT basis contains the eigenvectors
of a symmetric “second difference” matrix. By varying the boundary conditions we get the
established transforms DCT-1 through DCT-4. Other combinations lead to four additional
cosine transforms. The type of boundary condition (Dirichlet or Neumann, centered at
a meshpoint or a midpoint) determines the applications that are appropriate for each
transform. The centering also determines the period: N − 1 or N in the established
transforms, N− 1

2 or N+ 1
2 in the other four. The key point is that all these “eigenvectors

of cosines” come from simple and familiar matrices.
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Introduction. Just as the Fourier series is the starting point in transforming
and analyzing periodic functions, the basic step for vectors is the Discrete Fourier
Transform (DFT). It maps the “time domain” to the “frequency domain.” A vector
with N components is written as a combination of N special basis vectors vk. Those
are constructed from powers of the complex number w = e2πi/N :

vk =
(

1, wk, w2k, . . . , w(N−1)k
)
, k = 0, 1, . . . , N − 1 .

The vectors vk are the columns of the Fourier matrix F = FN . Those columns are
orthogonal. So the inverse of F is its conjugate transpose, divided by ‖ vk ‖2 = N .
The discrete Fourier series x =

∑
ckvk is x = Fc. The inverse c = F−1x uses

ck = (x,vk)/N for the (complex) Fourier coefficients.
Two points to mention, about orthogonality and speed, before we come to the

purpose of this note. First, for these DFT basis vectors, a direct proof of orthogonality
is very efficient:

(vk,v`) =
N−1∑
j=0

(wk)j(w̄`)j =
(wkw̄`)N − 1
wkw̄` − 1

.
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136 GILBERT STRANG

The numerator is zero because wN = 1. The denominator is nonzero because k 6= `.
This proof of (vk,v`) = 0 is short but not very revealing. I want to recommend a
different proof, which recognizes the vk as eigenvectors. We could work with any
circulant matrix, and we will choose below a symmetric A0. Then linear algebra
guarantees that its eigenvectors vk are orthogonal.

Actually this second proof, verifying that A0vk = λkvk, brings out a central point
of Fourier analysis. The Fourier basis diagonalizes every periodic constant coefficient
operator. Each frequency k (or 2πk/N) has its own frequency response λk. The
complex exponential vectors vk are important in applied mathematics because they
are eigenvectors!

The second key point is speed of calculation. The matrices F and F−1 are full,
which normally means N2 multiplications for the transform and the inverse transform:
y = Fx and x = F−1y. But the special form Fjk = wjk of the Fourier matrix allows a
factorization into very sparse and simple matrices. This is the Fast Fourier Transform
(FFT). It is easiest when N is a power 2L. The operation count drops from N2 to
1
2NL, which is an enormous saving. But the matrix entries (powers of w) are complex.

The purpose of this note is to consider real transforms that involve cosines. Each
matrix of cosines yields a Discrete Cosine Transform (DCT). There are four established
types, DCT-1 through DCT-4, which differ in the boundary conditions at the ends
of the interval. (This difference is crucial. The DCT-2 and DCT-4 are constantly
applied in image processing; they have an FFT implementation and they are truly
useful.) All four types of DCT are orthogonal transforms. The usual proof is a direct
calculation of inner products of the N basis vectors, using trigonometric identities.

We want to prove this orthogonality in the second (indirect) way. The basis
vectors of cosines are actually eigenvectors of symmetric second-difference matrices.
This proof seems more attractive, and ultimately more useful. It also leads us, by
selecting different boundary conditions, to four less familiar cosine transforms. The
complete set of eight DCTs was found in 1985 by Wang and Hunt [10], and we want
to derive them in a simple way. We begin now with the DFT.

1. The Periodic Case and the DFT. The Fourier transform works perfectly for
periodic boundary conditions (and constant coefficients). For a second difference
matrix, the constant diagonals contain −1 and 2 and −1. The diagonals with −1
loop around to the upper right and lower left corners, by periodicity, to produce a
circulant matrix:

A0 =


2 −1 −1
−1 2 −1

. . .
−1 2 −1

−1 −1 2

 .
For this matrix A0, and every matrix throughout the paper, we look at three things:

1. the interior rows,
2. the boundary rows (rows 0 and N − 1),
3. the eigenvectors.

The interior rows will be the same in every matrix! The jth entry of A0u is
−uj−1 + 2uj − uj+1, which corresponds to −u′′. This choice of sign makes each
matrix positive definite (or at least semidefinite). No eigenvalues are negative.

At the first and last rows (j = 0 and j = N − 1), this second difference involves
u−1 and uN . It reaches beyond the boundary. Then the periodicity uN = u0 and
uN−1 = u−1 produces the −1 entries that appear in the corners of A0.
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Note: The numbering throughout this paper goes from 0 to N − 1, since SIAM
is glad to be on very friendly terms with the IEEE. But we still use i for

√
−1! No

problem anyway, since the DCT is real.
We now verify that vk = (1, wk, w2k, . . . , w(N−1)k) is an eigenvector of A0. It

is periodic because wN = 1. The jth component of A0vk = λkvk is the second
difference:

−w(j−1)k + 2wjk − w(j+1)k =
(
−w−k + 2− wk

)
wjk

=
(
−e−2πik/N + 2− e2πik/N

)
wjk

=
(

2− 2 cos
2kπ
N

)
wjk .

A0 is symmetric and those eigenvalues λk = 2 − 2 cos 2kπ
N are real. The smallest is

λ0 = 0, corresponding to the eigenvector v0 = (1, 1, . . . , 1). In applications it is very
useful to have this flat DC vector (direct current in circuit theory, constant gray level
in image processing) as one of the basis vectors.

Since A0 is a real symmetric matrix, its orthogonal eigenvectors can also be chosen
real. In fact, the real and imaginary parts of the vk must be eigenvectors:

ck = Re vk =
(

1, cos
2kπ
N

, cos
4kπ
N

, . . . , cos
2(N − 1)kπ

N

)
,

sk = Im vk =
(

0, sin
2kπ
N

, sin
4kπ
N

, . . . , sin
2(N − 1)kπ

N

)
.

The equal pair of eigenvalues λk = λN−k gives the two eigenvectors ck and sk. The
exceptions are λ0 = 0 with one eigenvector c0 = (1, 1, . . . , 1), and for even N also
λN/2 = 4 with cN/2 = (1,−1, . . . , 1,−1). Those two eigenvectors have length

√
N ,

while the other ck and sk have length
√
N/2. It is these exceptions that make the

real DFT (sines together with cosines) less attractive than the complex form. That
factor

√
2 is familiar from ordinary Fourier series. It will appear in the k = 0 term

for the DCT-1 and DCT-2, always with the flat basis vector (1, 1, . . . , 1).
We expect the cosines alone, without sines, to be complete over a half-period.

In Fourier series this changes the interval from [−π, π] to [0, π]. Periodicity is gone
because cos 0 6= cosπ. The differential equation is still −u′′ = λu. The boundary con-
dition that produces cosines is u′(0) = 0. Then there are two possibilities, Neumann
and Dirichlet, at the other boundary:

Zero slope: u′(π) = 0 gives eigenfunctions uk(x) = cos kx ;
Zero value: u(π) = 0 gives eigenfunctions uk(x) = cos

(
k + 1

2

)
x .

The two sets of cosines are orthogonal bases for L2[0, π]. The eigenvalues from −u′′k =
λuk are λ = k2 and λ =

(
k + 1

2

)2.
All our attention now goes to the discrete case. The key point is that every

boundary condition has two fundamental approximations. At each boundary, the
condition on u can be imposed at a meshpoint or at a midpoint. So each problem
has four basic discrete approximations. (More than four, if we open up to further
refinements in the boundary conditions—but four are basic.) Often the best choices
use the same centering at the two ends—both meshpoint centered or both midpoint
centered.
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In our problem, u′(0) = 0 at one end and u′(π) = 0 or u(π) = 0 at the other end
yield eight possibilities. Those eight combinations produce eight cosine transforms.
Starting from u(0) = 0 instead of u′(0) = 0, there are also eight sine transforms. Our
purpose is to organize this approach to the DCT (and DST) by describing the second
difference matrices and identifying their eigenvectors.

Each of the eight (or sixteen) matrices has the tridiagonal form

A =


⊗ ⊗
−1 2 −1

−1 2 −1
· · ·
−1 2 −1

� �

 .(1)

The boundary conditions decide the eigenvectors, with four possibilities at each end:
Dirichlet or Neumann, centered at a meshpoint or a midpoint. The reader may object
that symmetry requires off-diagonal −1’s in the first and last rows. The meshpoint
Neumann condition produces −2. So we admit that the eigenvectors in that case need
a rescaling at the end (only involving

√
2) to be orthogonal. The result is a beautifully

simple set of basis vectors. We will describe their applications in signal processing.

2. The DCT. The discrete problem is so natural, and almost inevitable, that it
is really astonishing that the DCT was not discovered until 1974 [1]. Perhaps this
time delay illustrates an underlying principle. Each continuous problem (differential
equation) has many discrete approximations (difference equations). The discrete case
has a new level of variety and complexity, often appearing in the boundary conditions.

In fact, the original paper by Ahmed, Natarajan, and Rao [1] derived the DCT-
2 basis as approximations to the eigenvectors of an important matrix, with entries
ρ|j−k|. This is the covariance matrix for a useful class of signals. The number ρ (near
1) measures the correlation between nearest neighbors. The true eigenvectors would
give an optimal “Karhunen–Loève basis” for compressing those signals. The simpler
DCT vectors are close to optimal (and independent of ρ).

The four standard types of DCT are now studied directly from their basis vectors
(recall that j and k go from 0 to N − 1). The jth component of the kth basis vector
is

DCT-1: cos jk π
N−1 (divide by

√
2 when j or k is 0 or N − 1) ,

DCT-2: cos
(
j + 1

2

)
k πN (divide by

√
2 when k = 0) ,

DCT-3: cos j
(
k + 1

2

)
π
N (divide by

√
2 when j = 0) ,

DCT-4: cos
(
j + 1

2

) (
k + 1

2

)
π
N .

Those are the orthogonal columns of the four DCT matrices C1, C2, C3, C4. The
matrix C3 with top row 1√

2
(1, 1, . . . , 1) is the transpose of C2. All columns of C2, C3,

C4 have length
√
N/2. The immediate goal is to prove orthogonality.

Proof. These four bases (including the rescaling by
√

2) are eigenvectors of sym-
metric second difference matrices. Thus each basis is orthogonal. We start with ma-
trices A1, A2, A3, A4 in the form (1), whose eigenvectors are pure (unscaled) cosines.
Then symmetrizing these matrices introduces the

√
2 scaling; the eigenvectors become

orthogonal. Three of the matrices were studied in an unpublished manuscript [12] by
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David Zachmann, who wrote down the explicit eigenvectors. His paper is very useful.
He noted earlier references for the eigenvalues; a complete history would be virtually
impossible.

We have seen that A0, the periodic matrix with −1, 2, −1 in every row, shares
the same cosine and sine eigenvectors as the second derivative. The cosines are picked
out by a zero-slope boundary condition in the first row.

3. Boundary Conditions at Meshpoints and Midpoints. There are two natural
choices for the discrete analogue of u′(0) = 0:

Symmetry around the meshpoint j = 0: u−1 = u1 ;
Symmetry around the midpoint j = − 1

2 : u−1 = u0 .
The first is called whole-sample symmetry in signal processing; the second is half -
sample. Symmetry around 0 extends (u0, u1, . . .) evenly across the left boundary to
(. . . , u1, u0, u1, . . .) . Midpoint symmetry extends the signal to (. . . , u1, u0, u0, u1, . . .)
with u0 repeated. Those are the simplest reflections of a discrete vector. We substitute
the two options for u−1 in the second difference −u1 + 2u0 − u−1 that straddles the
boundary:

Symmetry at meshpoint: u−1 = u1 yields 2u0 − 2u1;
Symmetry at midpoint: u−1 = u0 yields u0 − u1.

Those are the two possible top rows for the matrix A:

meshpoint: ⊗ ⊗ = 2 − 2 and midpoint: ⊗ ⊗ = 1 − 1 .

At the other boundary, there are the same choices in replacing u′(π) = 0. Substituting
uN = uN−2 or uN = uN−1 in the second difference −uN−2 + 2uN−1 − uN gives the
two forms for the Neumann condition in the last row of A:

meshpoint: � � = −2 2 and midpoint: � � = −1 1 .

The alternative at the right boundary is the Dirichlet condition u(π) = 0. The
meshpoint condition uN = 0 removes the last term of −uN−2 + 2uN−1 − uN . The
midpoint condition uN + uN−1 = 0 is simple too, but the resulting matrix will be a
little surprising. The 2 turns into 3:

meshpoint: � � = −1 2 and midpoint: � � = −1 3 .

Now we have 2× 4 = 8 combinations. Four of them give the standard basis functions
of cosines, listed above. Those are the DCT-1 to DCT-4, and they come when the cen-
tering is the same at the two boundaries: both meshpoint centered or both midpoint
centered. Zachmann [12] makes the important observation that all those boundary
conditions give second-order accuracy around their center points. Finite differences
are one-sided and less accurate only with respect to the wrong center! We can quickly
write down the matrices A1 to A4 that have these cosines as eigenvectors.

4. The Standard Cosine Transforms. Notice especially that the denominator in
the cosines (which is N − 1 or N) agrees with the distance between “centers.” This
distance is an integer, measuring from meshpoint to meshpoint or from midpoint to
midpoint. We also give the diagonal matrix D that makes D−1AD symmetric and
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makes the eigenvectors orthogonal:

DCT-1

Centers j = 0 and N − 1
Components cos jk π

N−1
D1 = diag

(√
2, 1, . . . , 1,

√
2
) A1 =


2 −2
−1 2 −1

· · ·
· −1 2 −1

−2 2


DCT-2

Centers j = − 1
2 and N − 1

2
Components cos

(
j + 1

2

)
k πN

D2 = I

A2 =


1 −1
−1 2 −1

· · ·
−1 2 −1

−1 1


DCT-3

Centers j = 0 and N
Components cos j

(
k + 1

2

)
π
N

D3 = diag(
√

2, 1, . . . , 1)

A3 =


2 −2
−1 2 −1

· · ·
−1 2 −1

−1 2


DCT-4

Centers j = − 1
2 and N − 1

2
Components cos

(
j + 1

2

) (
k + 1

2

)
π
N

D4 = I

A4 =


1 −1
−1 2 −1

· · ·
−1 2 −1

−1 3


Recently Sanchez et al. [7] provided parametric forms for all matrices that have
the DCT bases as their eigenvectors. These are generally full matrices of the form
“Toeplitz plus near-Hankel.” Particular tridiagonal matrices (not centered differ-
ences) were noticed by Kitajima, Rao, Hou, and Jain. We hope that the pattern of
second differences with different centerings will bring all eight matrices into a common
structure. Perhaps each matrix deserves a quick comment.

DCT-1: The similarity transformation D−1
1 A1D1 yields a symmetric matrix.

This multiplies the eigenvector matrix for A1 by D−1
1 . (Notice that Ax = λx leads to

(D−1AD)D−1x = λD−1x.) The eigenvectors become orthogonal for both odd N and
even N , when D−1

1 divides the first and last components by
√

2:

N = 3
(

1√
2
, 1, 1√

2

) (
1√
2
, 0,− 1√

2

) (
1√
2
,−1, 1√

2

)
for k = 0, 1, 2 ;

N = 4
(

1√
2
, 1, 1, 1√

2

)
. . .

(
1√
2
,−1, 1,− 1√

2

)
for k = 0, 1, 2, 3 .

The first and last eigenvectors have length
√
N − 1; the others have length

√
(N − 1)/2.

DCT-2: These basis vectors cos
(
j + 1

2

)
k πN are the most popular of all, because

k = 0 gives the flat vector (1, 1, . . . , 1). Their first and last components are not
exceptional. The boundary condition u−1 = u0 is a zero derivative centered on a
midpoint. Similarly, the right end has uN = uN−1. When those outside values are
eliminated, the boundary rows of A2 have the neat 1 and −1.

I believe that this DCT-2 (often just called the DCT) should be in applied math-
ematics courses along with the DFT. Figure 1 shows the eight basis vectors (when
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Fig. 1. The eight DCT-2 vectors and their Fourier transforms (absolute values).

N = 8). On the right are the Fourier transforms of those vectors. Maybe you can see
the first curve |Σe2πij/8| and especially its second lobe, rising to 13 decibels (which is
20 log10 13) below the top. This is not a big dropoff! Like the closely connected Gibbs
phenomenon, it does not improve as N increases. A good lowpass filter can drop by
40 or 50 db. The other seven transforms vanish at zero frequency (no leakage of the
direct current DC term). Those seven vectors are orthogonal to (1, 1, . . . , 1).

This basis was chosen for the JPEG algorithm in image compression. Each 8× 8
block in the image is transformed by a two-dimensional DCT. We comment below
on the undesirable blocking artifacts that appear when the transform coefficients are
compressed.

DCT-3: The vectors cos j
(
k + 1

2

)
π
N are the discrete analogues of cos(k + 1

2 )x.
The Neumann condition at the left and Dirichlet condition at the right are centered
at meshpoints. For orthogonality we need the factor D−1

3 that divides the first com-
ponents by

√
2. This basis loses to the DCT-4.

DCT-4: We had never seen the final entry “3” in the matrix A4 but MATLAB
insisted it was right. Now we realize that a zero boundary condition at a midpoint
gives uN ≈ −uN−1 (the extension is antisymmetric). Then −1, 2, −1 becomes −1, 3.
The eigenvectors are even at the left end and odd at the right end. This attractive
property leads to j + 1

2 and k + 1
2 and a symmetric eigenvector matrix C4. Its

applications to “lapped transforms” are described below.
Remember our proof of orthogonality! It is a verification that the cosine vectors

are eigenvectors of A1, A2, A3, A4. For all the −1, 2, −1 rows, this needs to be done
only once (and it reveals the eigenvalues λ = 2 − 2 cos θ). There is an irreducible
minimum of trigonometry when the jth component of the kth vector ck is cos jθ in
types 1 and 3, and cos(j + 1

2 )θ in types 2 and 4:

− cos(j − 1)θ + 2 cos jθ − cos(j + 1)θ = (2− 2 cos θ) cos jθ ,

− cos
(
j − 1

2

)
θ + 2 cos

(
j +

1
2

)
θ − cos

(
j +

3
2

)
θ = (2− 2 cos θ) cos

(
j +

1
2

)
θ .

This is Ack = λkck on all interior rows. The angle is θ = k π
N−1 for type 1 and θ = k πN
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for type 2. It is θ =
(
k + 1

2

)
π
N for A3 and A4. This leaves only the first and last

components of Ack = λkck to be verified in each case.
Let us do only the fourth case, for the last row −1, 3 of the symmetric matrix

A4. A last row of −1, 1 would subtract the j = N − 2 component from the j = N − 1
component. Trigonometry gives those components as

j = N − 1 :cos
(
N − 1

2

)(
k +

1
2

)
π

N
= sin

1
2

(
k +

1
2

)
π

N
,

j = N − 2 :cos
(
N − 3

2

)(
k +

1
2

)
π

N
= sin

3
2

(
k +

1
2

)
π

N
.

We subtract using sin a− sin b = −2 cos
(
b+a

2

)
sin
(
b−a

2

)
. The difference is

−2 cos
(
k +

1
2

)
π

N
sin

1
2

(
k +

1
2

)
π

N
.(2)

The last row of A4 actually ends with 3, so we still have 2 times the last component
(j = N − 1) to include with (2):(

2− 2 cos
(
k +

1
2

)
π

N

)
sin

1
2

(
k +

1
2

)
π

N
.(3)

This is just λk times the last component of ck. The final row of A4ck = λkck is
verified.

There are also discrete sine transforms DST-1 through DST-4. The entries of the
basis vectors sk are sines instead of cosines. These sk are orthogonal because they
are eigenvectors of symmetric second difference matrices, with a Dirichlet (instead of
Neumann) condition at the left boundary. In writing about the applications to signal
processing [9], we presented a third proof of orthogonality—which simultaneously
covers the DCT and the DST, and shows their fast connection to the DFT matrix of
order 2N . This is achieved by a neat matrix factorization given by Wickerhauser [11]:

e−πi/4NRTF2NR =
[
C4 0
0 −iS4

]
.

The entries of S4 are sin(j + 1
2 )(k + 1

2 ) πN . The connection matrix R is very sparse,
with w = eπi/2N :

R =
1√
2

[
D D
E −E

]
with

D = diag(1, w̄, . . . , w̄N−1) ,

E = antidiag(w,w2, . . . , wN ) .

Since RT and F2N and R have orthogonal columns, so do C4 and S4.

5. Cosine Transforms withN− 1
2 andN+ 1

2 . There are four more combinations
of the discrete boundary conditions. Every combination that produces a symmetric
matrix will also produce (from the eigenvectors of that matrix) an orthogonal trans-
form. But you will see N − 1

2 and N + 1
2 in the denominators of the cosines, because

the distance between centers is no longer an integer. One center is a midpoint and
the other is a meshpoint.
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The transforms DCT-5 to DCT-8, when they are spoken of at all, are called “odd.”
They are denoted by DCT-IO to DCT-IVO in [5] and [7]. Three of the tridiagonal
matrices (A5, A6, A8) are quite familiar:

DCT-5

Centers j = 0 and N − 1
2

Components cos jk π
N− 1

2

D5 = diag(
√

2, 1, . . . , 1)

A5 =


2 −2
−1 2 −1

· · ·
−1 2 −1

−1 1


DCT-6

Centers j = − 1
2 and N − 1

Components cos
(
j + 1

2

)
k π
N− 1

2

D6 = diag(1, . . . , 1,
√

2)

A6 =


1 −1
−1 2 −1

· · ·
−1 2 −1

−2 2


DCT-7

Centers j = 0 and N − 1
2

Components cos j
(
k + 1

2

)
π

N− 1
2

D7 = diag(
√

2, 1, . . . , 1)

A7 =


2 −2
−1 2 −1

· · ·
−1 2 −1

−1 3


DCT-8

Centers j = − 1
2 and N

Components cos
(
j + 1

2

) (
k + 1

2

)
π

N+ 1
2

D8 = I

A8 =


1 −1
−1 2 −1

· · ·
−1 2 −1

−1 2

 .

We could study A8 by reflection across the left boundary, to produce the pure Toeplitz
−1, 2, −1 matrix (which is my favorite example in teaching). The eigenvectors become
discrete sines on a double interval—almost. The length of the double interval is not
2N , because the matrix from reflection has odd order. This leads to the new “period
length” N + 1

2 in the cosines.
Notice that A5 has the boundary conditions (and eigenvector components) in

reverse order from A6. The first eigenvectors of A5 and A6 are (1, 1, . . . , 1), corre-
sponding to k = 0 and λ = 0. This “flat vector” can represent a solid color or a fixed
intensity by itself (this is terrific compression). The DCT-5 and DCT-6 have a coding
gain that is completely comparable to the DCT-2.

So we think through the factors that come from D6 = diag(1, . . . , 1,
√

2). The
symmetrized D−1

6 A6D6 has −
√

2 in the two lower right entries, where A6 has −1 and
−2. The last components of the eigenvectors are divided by

√
2; they are orthogonal

but less beautiful. We implement the DCT-6 by keeping the matrix C6 with pure
cosine entries, and accounting for the correction factors by diagonal matrices:

4
2N−1 C6 diag

( 1
2 , 1, . . . , 1

)
CT6 diag

(
1, . . . , 1, 1

2

)
= I.(4)

The cosine vectors have squared length 2N−1
4 , except the all-ones vector that is ad-

justed by the first diagonal matrix. The last diagonal matrix corrects the Nth com-
ponents as D6 requires. The inverse of C6 is not quite CT6 (analysis is not quite
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the transpose of synthesis, as in an orthogonal transform) but the corrections have
trivial cost. For N = 2 and k = 1, the matrix identity (4) involves cos 1

2
π

3/2 = 1
2 and

cos 3
2
π

3/2 = −1:

4
3

[
1 1

2
1 −1

] [ 1
2

1

] [
1 1
1
2 −1

] [
1

1
2

]
=
[

1
1

]
.

Malvar has added a further good suggestion: Orthogonalize the last N − 1 basis
vectors against the all-ones vector. Otherwise the DC component (which is usually
largest) leaks into the other components. Thus we subtract from each c6

k (with k > 0)
its projection onto the flat c6

0:

c̃6
k = c6

k −
(−1)k

2N
(1, 1, . . . , 1) .(5)

The adjusted basis vectors are now the columns of C̃6, and (5) becomes

C6 = C̃6


1 −1

2N
+1
2N . . .

1
. . .

1

 .
This replacement in equation (4) also has trivial cost, and that identity becomes
C̃6C̃

−1
6 = I. The coefficients in the cosine series for x are y = C̃−1

6 x. Then x is
reconstructed from C̃6y (possibly after compressing y). You see how we search for a
good basis. . . .

Transforms 5 to 8 are not used in signal processing. The half-integer periods are
a disadvantage, but reflection offers a possible way out. The reflected vectors have an
integer “double period” and they overlap.

6. Convolution. The most important algebraic identity in signal processing is the
convolution rule. A slightly awkward operation in the time domain (convolution, from
a Toeplitz matrix or a circulant matrix) becomes beautifully simple in the frequency
domain (just multiplication). This accounts for the absence of matrices in the leading
textbooks on signal processing. The property of time invariance (delay of input simply
delays the output) is always the starting point.

We can quickly describe the rules for doubly infinite convolution and cyclic con-
volution. A vector h of filter coefficients is convolved with a vector x of inputs. The
output is y = h ∗ x with no boundary and y = h ∗c x in the cyclic (periodic) case:

yn =
∞∑
−∞

hkxn−k or yn =
∑

k+`≡n(modN)

hkx` .(6)

Those are matrix-vector multiplications y = Hx. On the whole line (n ∈ Z) the
doubly infinite matrix H is Toeplitz; the number hk goes down its kth diagonal. In
the periodic case (n ∈ ZN ) the matrix is a circulant; the kth diagonal continues with
the same hk onto the (k−N)th diagonal. The eigenvectors of these matrices are pure
complex exponentials. So when we switch to the frequency domain, the matrices are
diagonalized. The eigenvectors are the columns of a Fourier matrix, and F−1HF is
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diagonal. Convolution with h becomes multiplication by the eigenvalues H(ω) in the
diagonal matrix:

(7)
(∑∞
−∞ hke

−ikω) (∑∞
−∞ x`e

−i`ω) =
∑∞
−∞ yne

−inω is H(ω)X(ω) = Y (ω) ,

(7)N
(∑N−1

0 hkw
k
)(∑N−1

0 x`w
`
)

=
∑N−1

0 ynw
n is H(w)X(w) = Y (w) .

The infinite case (discrete time Fourier transform) allows all frequencies |ω| ≤ π. The
cyclic case (DFT) allows the N roots of wN = 1. The multiplications in (7) agree
with the convolutions in (6) because e−ikxe−i`x = e−i(k+`)x and wkw` = wk+`. The
question is: What convolution rule goes with the DCT?

A complete answer was found by Martucci [5]. The finite vectors h and x are
symmetrically extended to length 2N or 2N−1, by reflection. Those are convolved in
the ordinary cyclic way (so the double length DFT appears). Then the output is re-
stricted to the original N components. This symmetric convolution h∗sx corresponds
in the transform domain to multiplication of the cosine series.

The awkward point, as the reader already knows, is that a symmetric reflection
can match u−1 with u0 or u1. The centering can be whole sample or half sample at
each boundary. The extension of h can be different from the extension of x! This
confirms again that discrete problems have an extra degree of complexity beyond
continuous problems. (And we resist the temptation to compare combinatorics and
linear algebra with calculus.)

In the continuous case, we are multiplying two cosine expansions. This corre-
sponds to symmetric convolution of the coefficients in the expansions.

7. The DCT in Image Processing. Images are not infinite, and they are not
periodic. The image has boundaries, and the left boundary seldom has anything
to do with the right boundary. A periodic extension can be expected to have a
discontinuity. That means a slow decay of Fourier coefficients and a Gibbs oscillation
at the jump—the one place where Fourier has serious trouble! In the image domain
this oscillation is seen as “ringing.” The natural way to avoid this discontinuity is
to reflect the image across the boundary. With cosine transforms, a double-length
periodic extension becomes continuous.

A two-dimensional (2D) image may have (512)2 pixels. The gray level of the
pixel at position (i, j) is given by an integer x(i, j) (between 0 and 255, thus 8 bits
per pixel). That long vector x can be filtered by x ∗ h, first a row at a time (j fixed)
and then by columns (using the one-dimensional (1D) transforms of the rows). This
is computationally and algebraically simplest: the 2D Toeplitz and circulant matrices
are formed from 1D blocks.

Similarly the DCT-2 is applied to rows and then to columns; 2D is the tensor
product of 1D with 1D. The JPEG compression algorithm (established by the Joint
Photographic Experts Group) divides the image into 8 × 8 blocks of pixels. Each
block produces 64 DCT-2 coefficients. Those 64-component vectors from the separate
blocks are compressed by the quantization step that puts coefficients into a discrete
set of bins. Only the bin numbers are transmitted. The receiver approximates the
true cosine coefficient by the value at the middle of the bin (most numbers go into the
zero bin). Figures 2a–d show the images that the receiver reconstructs at increasing
compression ratios and decreasing bit rates:

1. the original image (1:1 compression, all 8 bits per pixel);
2. medium compression (8:1, average 1 bit per pixel);
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(a) (b)

(c) (d)

Fig. 2 (a) Original Barbara figure. (b) Compressed at 8:1. (c) Compressed at 32:1. (d) Compressed
at 128:1.

3. high compression (32:1, average 1
4 bit per pixel);

4. very high compression (128:1, average 1
16 bit per pixel).

You see severe blocking of the image as the compression rate increases. In telecon-
ferencing at a very low bit rate, you can scarcely recognize your friends. This JPEG
standard for image processing is quick but certainly not great. The newer standards
allow for other transforms, with overlapping between blocks. The improvement is
greatest for high compression. The choice of basis (see [8]) is crucial in applied mathe-
matics. Sometimes form is substance!

One personal comment on quantization: This more subtle and statistical form of
roundoff should have applications elsewhere in numerical analysis. Numbers are not
simply rounded to fewer bits, regardless of size. Nor do we sort by size and keep only
the largest (this is thresholding, when we want to lose part of the signal—it is the basic
idea in denoising). The bit rate is controlled by the choice of bin sizes, and quantiza-
tion is surprisingly cheap. Vector quantization, which puts vectors into multidimen-
sional bins, is more expensive but in principle more efficient. This technology of coding
is highly developed [3] and it must have more applications waiting to be discovered.
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A major improvement for compression and image coding was Malvar’s [4] ex-
tension of the ordinary DCT to a lapped transform. Instead of dividing the image
into completely separate blocks for compression, his basis vectors overlap two or more
blocks. The overlapping has been easiest to develop for the DCT-4, using its even–odd
boundary conditions—which the DCT-7 and DCT-8 share. Those conditions help to
maintain orthogonality between the tail of one vector and the head of another. The
basic construction starts with a symmetric lowpass filter of length 2N . Its coefficients
p(0), . . . p(2N − 1) are modulated (shifted in frequency) by the DCT-4:

The kth basis vector has jth component p(j) cos
[
(k + 1

2 )(j + N+1
2 ) πN

]
.

There are N basis vectors of length 2N , overlapping each block with the next block.
The 1D transform matrix becomes block bidiagonal instead of block diagonal. It is still
an orthogonal matrix [4, 9] provided p2(j)+p2(j+N) = 1 for each j. This is Malvar’s
modulated lapped transform (MLT), which is heavily used by the Sony mini disc and
Dolby AC-3. (It is included in the MPEG-4 standard for video.) We naturally wonder
if this MLT basis is also the set of eigenvectors for an interesting symmetric matrix.
Coifman and Meyer found the analogous construction [2] for continuous wavelets.

The success of any transform in image coding depends on a combination of
properties—mathematical, computational, and visual. The relation to the human
visual system is decided above all by experience. This article was devoted to the
mathematical property of orthogonality (which helps the computations). There is no
absolute restriction to second difference matrices, or to these very simple boundary
conditions. We hope that the eigenvector approach will suggest more new transforms,
and that one of them will be fast and visually attractive.

Web Links.
JPEG http://www.jpeg.org/public/jpeglinks.htm
DCT http://www.cis.ohio-state.edu/hypertext/faq/usenet/

compression-faq/top.html (includes source code)
Author http://www-math.mit.edu/∼gs/
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