
1

Massively Parallel
Computing with CUDA

Antonino Tumeo
Politecnico di Milano

GPUs have evolved to the point where many real
world applications are easily implemented on them
and run significantly faster than on multi-core
systems.

Future computing architectures will be hybrid
systems with parallel-core GPUs working in tandem
with multi-core CPUs.

Jack Dongarra
Professor, University of Tennessee; Author of “Linpack”

Why Use the GPU?

• The GPU has evolved into a very flexible and powerful processor:
• It’s programmable using high-level languages
• It supports 32-bit and 64-bit floating point IEEE-754 precision
• It offers lots of GFLOPS:

• GPU in every PC and workstation

What is behind such an Evolution?
• The GPU is specialized for compute-intensive, highly parallel

computation (exactly what graphics rendering is about)
• So, more transistors can be devoted to data processing rather than data

caching and flow control

• The fast-growing video game industry exerts strong economic
pressure that forces constant innovation

DRAM

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU GPU

GPUs

• Each NVIDIA GPU has 240 parallel cores
• Within each core

• Floating point unit
• Logic unit (add, sub, mul, madd)
• Move, compare unit
• Branch unit

• Cores managed by thread manager
• Thread manager can spawn and manage

12,000+ threads per core
• Zero overhead thread switching

NVIDIA GPU
1.4 Billion Transistors

1 Teraflop of processing power

Heterogeneous Computing Domains

Oil & Gas Finance Medical Biophysics Numerics Audio Video Imaging

GPU
(Parallel Computing)

Graphics

CPU
(Sequential Computing)

Massive
Data

Parallelism

Instruction
Level

Parallelism

Data Fits in Cache Larger Data Sets

CUDA Parallel Programming Architecture and Model
Programming the GPU in High-Level Languages

CUDA is C for Parallel Processors

• CUDA is industry-standard C with minimal extensions
• Write a program for one thread
• Instantiate it on many parallel threads
• Familiar programming model and language

• CUDA is a scalable parallel programming model
• Program runs on any number of processors without recompiling

• CUDA parallelism applies to both CPUs and GPUs
• Compile the same program source to run on different platforms

with widely different parallelism
• Map to CUDA threads to GPU threads or to CPU vectors

CUDA Parallel Computing Architecture

ATI’s Compute “Solution”

• Parallel computing architecture
and programming model

• Includes a C compiler plus
support for OpenCL and
DX11 Compute

• Architected to natively support
all computational interfaces
(standard languages and APIs)

• NVIDIA GPU architecture
accelerates CUDA

• Hardware and software designed
together for computing

• Expose the computational
horsepower of NVIDIA GPUs

• Enable general-purpose GPU
computing

CUDA Libraries
cuFFT cuBLAS cuDPP

CUDA Compiler
C Fortran

CUDA Tools
Debugger Profiler

CPU Hardware
PCI‐E Switch1U

Application Software
(written in C)

4 cores

Pervasive CUDA Parallel Computing

• CUDA brings data-parallel computing to the masses
• Over 100M CUDA-capable GPUs deployed since Nov 2006

• Wide developer acceptanceww.nvidia.com/CUDA
• Over 150K CUDA developer downloads (CUDA is free!)
• Over 25k CUDA developers . . . and growing rapidly
• A GPU “developer kit” costs ~ $200 for 500 GFLOPS
• Now available on any new Macbook

• Data-parallel supercomputers are everywhere!
• CUDA makes this power readily accessible
• Enables rapid innovations in data-parallel computing

Massively parallel computing has become a commodity technology!

CUDA Computing with Tesla

• 240 SP processors at 1.5 GHz: 1 TFLOPS peak
• 128 threads per processor: 30,720 threads total
• Tesla PCI-e board: C1060 (1 GPU)
• 1U Server: S1070 (4 GPUs)

Tesla T10

Bridge System Memory

Work Distribution

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

Host CPU

Interconnection Network

SM

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache
MT Issue
C-Cache

SFU SFU

Shared
Memory

CUDA Uses Extensive Multithreading

• CUDA threads express fine-grained data parallelism
• Map threads to GPU threads
• Virtualize the processors
• You must rethink your algorithms to be aggressively parallel

• CUDA thread blocks express coarse-grained parallelism
• Blocks hold arrays of GPU threads, define shared memory boundaries
• Allow scaling between smaller and larger GPUs

• GPUs execute thousands of lightweight threads
• (In graphics, each thread computes one pixel)
• One CUDA thread computes one result (or several results)
• Hardware multithreading & zero-overhead scheduling

CUDA Computing Sweet Spots

Parallel Applications

• High bandwidth:
Sequencing (virus scanning, genomics), sorting, database, …

• Visual computing:
Graphics, image processing, tomography, machine vision, …

• High arithmetic intensity:
Dense linear algebra, PDEs, n-body, finite difference, …

© NVIDIA Corporation 2008

A Highly Multithreaded Coprocessor

The GPU is a highly parallel compute coprocessor
serves as a coprocessor for the host CPU
has its own device memory with high bandwidth interconnect

The application run its parallel parts on GPU,
via kernels.

Many threads execute same kernel
SIMT = Single Instruction Multiple Threads
GPU Threads are extremely lightweight

Very little creation overhead,
Instant switching

GPU uses 1000s of threads for efficiency

102
GigaBytes/sec

Memory
Bandwidth

© NVIDIA Corporation 2008

Heterogeneous Programming

CUDA application = serial program executing parallel kernels, all in C
Serial C code executed by a CPU thread
Parallel kernel C code executed by GPU, in threads (grouped in blocks)

Serial Code

. . .

. . .

Parallel Kernel
KernelA<<< nBlk, nTid >>>(args);

Serial Code

Parallel Kernel
KernelB<<< nBlk, nTid >>>(args);

17© NVIDIA Corporation 2008

Arrays of Parallel Threads

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

A CUDA kernel is executed by an array of threads
All threads run the same program, SIMT (Singe Instruction multiple threads)
Each thread uses its ID to compute addresses and make control decisions

0 1 2 3 4 5 6 7

18

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(2, 1)

Block
(1, 1)

Host

Kernel
2

Kernel
1

Grid 2

Block (1, 1)

CUDA Programming Model

A kernel is executed by a grid,
which contain blocks.

These blocks contain our threads.

• A thread block is a batch of
threads that can cooperate:

• Sharing data through shared memory
• Synchronizing their execution

• Threads from different blocks
operate independently

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Divide monolithic thread array into multiple blocks
Threads within a block cooperate via shared memory
Threads in different blocks cannot cooperate

Enables programs to transparently scale to any number of processors!

© NVIDIA Corporation 2008

threadID

Thread Block 0

…

Thread Block 1 Thread Block N - 1

Thread Blocks: Scalable Cooperation

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

© NVIDIA Corporation 2008

Thread Cooperation

Thread cooperation is a powerful feature of CUDA
Threads can cooperate via on-chip shared memory and synchronization

The on-chip shared memory within one block allows:
Share memory accesses, drastic memory bandwidth reduction
Share intermediate results, thus: save computation

Makes algorithm porting to GPUs a lot easier
(vs. GPGPU and its strict stream processor model)

Reason for blocks: GPU scalability
G80:
128 Cores

G84:
32 Cores

Tesla: 240 SP Cores

© NVIDIA Corporation 2008

Transparent Scalability

Hardware is free to schedule thread blocks on any processor
Kernels scale to any number of parallel multiprocessors

Device BDevice A

Block 1Block 0

Block 3Block 2

Block 5Block 4

Block 7Block 6

Block 1Block 0 Block 3Block 2

Block 5Block 4 Block 7Block 6

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

© NVIDIA Corporation 2008

Tesla T10 chip (Tesla C1060 / one GPU of Tesla S1070)
240 Units execute kernel threads, grouped into 10 multiprocessors
Up to 30,720 parallel threads active in the multiprocessors
Threads are grouped in blocks, providing shared memory: Scalability!!

Parallel Core GPU – Block Diagram

 GPU

Interconnection Network

Host CPU System Memory

Vertex Work
Distribution

Geometry Work
Distribution

Pixel Work
Distribution

Compute Work
Distribution

Input Assemble

Host Interface
Viewport / Clip /
Setup / Raster /

ZCull

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

© NVIDIA Corporation 2008

Registers (per thread)
Shared Memory

Shared among threads in a single block
On-chip, small
As fast as registers

Global Memory
Kernel inputs and outputs reside here
Off-chip, large
Uncached (use coalescing)

Note: The host can read & write global
memory but not shared memory

Grid

Block (1, 0)Block (0, 0)

Host

Memory model seen from CUDA Kernel

Global
Memory

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

25© NVIDIA Corporation 2008

Simple “C” Extensions to Express Parallelism

void
saxpy_serial(int n, float a,

float *x, float *y)
{

for (int i = 0; i < n; ++i)
y[i] = a*x[i] + y[i];

}
// Invoke serial SAXPY kernel
saxpy_serial(n, 2.0, x, y);

__global__ void
saxpy_parallel(int n, float a, float *x, float *y)
{

int i = blockIdx.x*blockDim.x +
threadIdx.x;

if (i < n) y[i] = a*x[i] + y[i];
}
// Invoke parallel SAXPY kernel with
// 256 threads/block
int nblocks = (n + 255) / 256;

saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y);

Standard C Code CUDA C Code

Compilation

• Any source file containing CUDA language extensions must be
compiled with nvcc

• NVCC is a compiler driver
• Works by invoking all the necessary tools and compilers like cudacc, g++, cl, ...

• NVCC can output:
• Either C code (CPU Code)

• That must then be compiled with the rest of the application
using another tool

• Or PTX object code directly
• Any executable with CUDA code requires two dynamic libraries:

• The CUDA runtime library (cudart)
• The CUDA core library (cuda)

Compiling C for CUDA Applications

NVCC CPU Code

C CUDA
Key Kernels

CUDA object
files

Rest of C
Application

CPU object
filesLinker

CPU-GPU
Executable

Hardware Thread Management
Thousands of lightweight concurrent threads
No switching overhead
Hide instruction and memory latency

On-Chip Shared Memory
User-managed data cache
Thread communication / cooperation within blocks

Random access to global memory
Any thread can read/write any location(s)
Direct host access

28© NVIDIA Corporation 2008

Keys to GPU Computing Performance

Shared back-end compiler
and optimization technology

NVIDIA C for CUDA and OpenCL

OpenCL

C for CUDA

PTX

GPU

Entry point for developers
who prefer high-level C

Entry point for developers
who want low-level API

Different Programming Styles

• C for CUDA
• C with parallel keywords
• C runtime that abstracts driver API
• Memory managed by C runtime
• Generates PTX

• OpenCL
• Hardware API - similar to OpenGL and CUDA driver API
• Programmer has complete access to hardware device
• Memory managed by programmer
• Generates PTX

© NVIDIA Corporation 2008

100M CUDA GPUs

Oil & Gas Finance Medical Biophysics Numerics Audio Video Imaging

Heterogeneous Computing

CPU
GPU

30K CUDA Developers

Resources

• NVIDIA CUDA Zone (www.nvidia.com/cuda)
• SDK
• Manuals
• Papers
• Forum
• Courses

32

http://www.nvidia.com/cuda

	Massively Parallel �Computing with CUDA
	Slide Number 2
	Why Use the GPU?
	What is behind such an Evolution?
	GPUs
	Heterogeneous Computing Domains
	Slide Number 7
	CUDA is C for Parallel Processors
	CUDA Parallel Computing Architecture
	Slide Number 10
	Pervasive CUDA Parallel Computing
	CUDA Computing with Tesla
	CUDA Uses Extensive Multithreading
	CUDA Computing Sweet Spots
	A Highly Multithreaded Coprocessor
	Heterogeneous Programming
	Arrays of Parallel Threads
	CUDA Programming Model
	Thread Blocks: Scalable Cooperation
	Thread Cooperation
	Reason for blocks: GPU scalability
	Transparent Scalability
	Parallel Core GPU – Block Diagram
	Memory model seen from CUDA Kernel
	Simple “C” Extensions to Express Parallelism
	Compilation
	Compiling C for CUDA Applications
	Keys to GPU Computing Performance
	NVIDIA C for CUDA and OpenCL
	Different Programming Styles�
	Slide Number 31
	Resources

