
University of Huddersfield Repository

Brotherton, Mark

GPU Accelerated X-Ray Image Enhancement

Original Citation

Brotherton, Mark (2011) GPU Accelerated X-Ray Image Enhancement. Masters thesis, University
of Huddersfield.

This version is available at http://eprints.hud.ac.uk/11044/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

GPU Accelerated X-Ray

Image Enhancement

Mark James Brotherton

A thesis submitted to the University of Huddersfield
in partial fulfilment of the requirements for

the degree of Masters of Science by Research

The University of Huddersfield

April 2011

2

Copyright Statement

i. The author of this thesis (including any appendices and/or schedules to this thesis) owns any

copyright in it (the “Copyright”) and s/he has given The University of Huddersfield the right

to use such copyright for any administrative, promotional, educational and/or teaching

purposes.

ii. Copies of this thesis, either in full or in extracts, may be made only in accordance with the

regulations of the University Library. Details of these regulations may be obtained from the

Librarian. This page must form part of any such copies made.

iii. The ownership of any patents, designs, trademarks and any and all other intellectual

property rights except for the Copyright (the “Intellectual Property Rights”) and any

reproductions of copyright works, for example graphs and tables (“Reproductions”), which

may be described in this thesis, may not be owned by the author and may be owned by third

parties. Such Intellectual Property Rights and Reproductions cannot and must not be made

available for use without the prior written permission of the owner(s) of the relevant

Intellectual Property Rights and/or Reproductions

3

Abstract

This paper presents an automated method for preparing digital X-rays for use by a procedural mesh

generator. This process will facilitate the generation of a 3D polygon mesh depicting the bones

contained within the X-ray image. The process of preparing the image involves identifying and

retaining bone elements whilst removing any superfluous aspects contained within the image, such

as text and orientation markers. This will allow a virtual podiatric surgical simulator, VirtuOrtho to

feature patient specific bone models generated from the processed X-rays. The algorithm

additionally employs parallel processing techniques that are capable of utilizing either multi-core

CPUs or a GPU to help to reduce the computational time required to process an image. The relative

performance of the multi-core CPU implementation will be compared and contrasted to the

performance of the GPU version. As part of the image processing algorithm, two GPGPU algorithms

for median filter are proposed: a caching method improves upon the fast, small-radius median filter

(McGuire, 2008) and a second method which uses a histogram based technique (Huang et al., 1979)

to facilitate filters with large-radius masks to be processed using the GPU.

Keywords: Image Processing, GPGPU, Parallel Processing, X-Ray, Median Filtering

4

Acknowledgements

The author would like to thank to Andrew Boothroyd, Damian De Luca, Daniel Fitchie, Dr Duke

Gledhill, Dr Jim Picard and Ruth Taylor for their help and support with this project.

5

Table of Contents

Copyright Statement ... 2

Abstract ... 3

Acknowledgements ... 4

List of Figures .. 9

List of Abbreviations ... 13

Glossary ... 15

1. Introduction .. 21

1.1. Overview ... 21

1.2. VirtuOrtho ... 22

1.3. Problem Statement ... 23

1.4. Project Aims .. 26

1.4.1. Algorithm Objectives ... 26

1.4.2. Implementation Objectives... 27

1.4.3. Median Filter Objectives ... 28

1.4.4. Expected Results ... 28

2. Literature Review .. 30

2.1. Research Objectives .. 30

2.1.1. Parallel Processing .. 30

2.1.2. Image Processing and Analysis ... 31

2.2. Parallel Processing .. 32

2.2.1. Background ... 32

2.2.2. General-Purpose Computing on Graphics Processing Units ... 34

2.2.3. Parallel Processor Architectures ... 35

2.2.4. Parallel Algorithm Design .. 40

2.2.5. Parallel Processing APIs ... 45

2.3. Image Processing .. 51

6

2.3.1. Medical Imaging .. 51

2.3.2. Applicable Image Processing Techniques ... 54

2.4. Conclusions ... 59

3. Methodology ... 61

3.1. Overview ... 61

3.2. Implementation .. 61

3.3. Data Gathering .. 61

3.3.1. Algorithm Experiments ... 61

3.4. Results Analysis ... 63

4. Implementation .. 64

4.1. Overview ... 64

4.2. General Algorithm Description ... 64

4.2.1. Median Filter ... 65

4.2.2. Histogram and Image Thresholding .. 66

4.2.3. Sobel Edge Detection .. 68

4.2.4. Active Contour Model Feature Extraction .. 68

4.2.5. Threshold Mask ... 68

4.3. SISD Implementation .. 68

4.4. MIMD Implementation ... 68

4.4.1. Median Filtering .. 69

4.4.2. Histogram and Thresholding ... 70

4.4.3. Sobel .. 75

4.4.4. Active Contour Model Feature Extraction .. 75

4.4.5. Threshold Mask ... 76

4.5. SIMD Implementation ... 76

4.5.1. Median Filtering .. 76

4.5.2. Histogram and Thresholding ... 81

4.5.3. Sobel .. 82

7

4.5.4. Active Contour Model Feature Extraction .. 82

4.5.5. Threshold Mask ... 83

4.6. Development Issues .. 83

4.6.1. Limited Data Types Available on GPU ... 83

4.6.2. Reduced Functionality in CS4.0 ... 83

4.6.3. Other Issues .. 84

4.6.4. Hardware Specific Optimisations .. 85

5. Results and Analysis .. 87

5.1. Overall Performance ... 87

5.2. Individual Component Performance ... 88

5.3. Data Format Performance .. 90

5.4. Median Filtering Performance .. 91

5.5. Optimum Number of Threads ... 94

5.6. Average Image Error ... 96

5.7. Image Comparison .. 97

6. Conclusions ... 103

6.1. Overview ... 103

6.1.1. Individual Project Aims ... 103

6.2. Parallel Processing .. 104

6.2.1. Multi-core CPU .. 104

6.2.2. GPGPU ... 105

6.3. Algorithm .. 107

6.4. Summary ... 107

7. Future Work .. 108

7.1. Active Contour Model Feature Extraction .. 108

7.2. GPU Median Filter ... 108

7.3. X-Ray Header Information .. 109

7.4. Integration .. 110

8

7.5. Generating Skin Mesh ... 110

7.6. Parallel Mesh Generation Pipeline. .. 110

7.7. Benchmarking ... 110

7.8. Alternative GPGPU Implementations ... 111

8. References .. 112

9. Appendices .. 119

9.1. Appendix A: Hardware Statistics ... 119

9.2. Appendix B: Test Hardware .. 121

9.3. Appendix C: YEF Proposal ... 122

9.4. Appendix D: Performance Results Data .. 125

9.4.1. Overall Execution Time ... 125

9.4.2. Individual Component Execution Time ... 125

9.4.3. Data Format Performance .. 126

9.4.4. Median Filter Performance ... 126

9.4.5. Optimum Number of Threads ... 127

9.5. Appendix E: Source Code .. 128

9.5.1. DirectCompute Fast, Small-Radius Median Filter ... 128

9.5.2. GPU Histogram Median Filter ... 129

9.5.3. GPU Sobel Filter .. 130

9.6. Appendix F: Compute Shader Functionality ... 131

Word Count: 24,968

9

List of Figures

Figure 1 : VirtuOrtho ... 22

Figure 2 : SensAble PHANTOM® Omni .. 23

Figure 3 : Lateral Foot X-ray (Original) .. 24

Figure 4 : Lateral Foot X-ray with Unwanted Elements Highlighted ... 25

Figure 5 : Planar Foot X-Ray (Original) .. 25

Figure 6 : Planar Foot X-Ray with Unwanted Elements Highlighted ... 26

Figure 7 : Intel Core i7 Multi-core CPU Architecture .. 36

Figure 8 : AMD HD 5870 GPU Architecture .. 38

Figure 9 : Nvidia GeForce GTX 580 GPU Architecture .. 39

Figure 10 : GPU Branch Operation .. 40

Figure 11 : Amdahl's Law .. 43

Figure 12 : Dispatch Call .. 49

Figure 13 : Proposed Method for Processing an X-ray Image .. 64

Figure 14 : Anticipated Algorithm Output .. 65

Figure 15 : Typical X-Ray Image Histogram ... 67

Figure 16 : X-ray Image Histogram with Secondary Background .. 67

Figure 17 : Mask Overlaps between Neighbouring Pixels .. 78

Figure 18 : Caching 3x3 Median Filter Diagram .. 79

Figure 19 : Algorithm Performance Results .. 87

Figure 20 : Individual Component Performance Results (Overall) ... 89

Figure 21 : Individual Component Performance Results (In Detail) ... 89

Figure 22 : Data Format Performance .. 91

Figure 23 : Median Filter Performance Results .. 92

Figure 24 : Median Filter Performance Results (Large-radius) ... 93

Figure 25 : Optimum Number of Threads ... 95

Figure 26 : Algorithm Final Output - Integer (Lateral) .. 97

Figure 27 : Algorithm Final Output - Float (Lateral) .. 98

Figure 28 : Image Differences Integer CPU – Integer GPU (Lateral) ... 98

Figure 29 : Image Differences Integer – Floating Point (Lateral) .. 99

Figure 30 : Algorithm Final Output - Integer (Planar) ... 99

Figure 31 : Algorithm Final Output - Float (Planar) ... 100

Figure 32 : Image Differences Integer – Floating Point (Planar) ... 100

Figure 33 : Image Differences Integer CPU – Integer GPU (Planar) .. 100

10

Figure 34 : Improved Caching Median Filter ... 109

11

List of Tables

Table 1 : Source Code Formatting ... 12

Table 2 : Flynn's Taxonomy ... 33

Table 3 : Overall Algorithm Speedup .. 87

Table 4 : Individual Component Speedup ... 90

Table 5 : Median Filter Speedup ... 94

Table 6 : Number of Errors .. 96

Table 7 : Steam Hardware Survey, Number of CPU cores .. 119

Table 8 : Steam Hardware Survey, Advanced CPU Feature Support .. 119

Table 9 : Steam Hardware Survey, DirectX 11 Graphics Cards ... 120

Table 10 : Test Hardware Configuration ... 121

Table 11 : Visual Studio 2010 C++ Compiler Settings ... 121

Table 12 : YEF Funding Application Form.. 122

Table 13 : Overall Execution Time... 125

Table 14 : Individual Component Execution Time .. 125

Table 15 : Data Format Performance .. 126

Table 16 : Median Filter (3 x 3) Performance ... 126

Table 17 : Median Filter (19 x 19) Performance ... 126

Table 18 : Optimum Number of Threads (Median) .. 127

Table 19 : Optimum Number of Threads (Sobel) .. 127

Table 20 : Compute Shader Functionaility .. 131

12

List of Equations

Equation 1 : AMD HD 5770 Processing Cores ... 39

Equation 2 : nVidia GTX 580 Processing Cores ... 39

Equation 3 : Amdahl's Law – Overall Speedup ... 42

Equation 4 : Amdahl's Law - Speedup ... 42

Equation 5 : Gustafson's Law .. 43

Equation 6 : Parallel Speedup ... 44

Equation 7 : Maximum Speedup ... 44

Equation 8 : Parallel Algorithm Efficiency ... 44

Equation 9 : Calculating Parallel Portion ... 53

Equation 10 : Amdahl’s Law for HyperThreading ... 53

Equation 11 : Work per SIMD Engine.. 95

13

Code Listings

Code Listing 1 : OpenMP Loop Declaration .. 46

Code Listing 2 : Example DirectCompute Shader.. 48

Code Listing 3 : DirectCompute Dispatch Function .. 50

Code Listing 4 : Histogram Based Median Filter Algorithm .. 55

Code Listing 5 : Sorting Based Median Filter Algorithm ... 56

Code Listing 6 : OpenMP Synchronisation Constructs .. 69

Code Listing 7 : OpenMP Median Filter .. 70

Code Listing 8 : OpenMP Reduction Operation .. 71

Code Listing 9 : OpenMP Histogram Calculation .. 72

Code Listing 10 : OpenMP Histogram Calculation via Atomic Operations ... 73

Code Listing 11 : OpenMP Threshold Operation .. 74

Code Listing 12 : OpenMP Sobel Filter .. 75

Code Listing 13 : Compute Shader 5.0 Caching Median Filter .. 80

Code Listing 14 : HLSL Median Calculation ... 81

Code Listing 15 : GPU Threshold Filter .. 82

Code Listing 16 : Compute Shader 4.0 Caching Median Filter .. 85

Code Listing 17 : GPU Fast, Small-Radius Median Filter ... 128

Code Listing 18 : GPU Histogram Median Filter .. 129

Code Listing 19 : GPU Sobel Filter ... 130

Source Code Formatting

Note: The source is written in C++ or HLSL.

Table 1 : Source Code Formatting

 Format Notes

Line Number 1: If a line of code is longer that the available space, it will

wrap beneath and not have a line number.

Data Types int variable

Intrinsic Functions if(value)

Compiler Directives #define

Comments //Comment

Array Operator array[index]

End of Instruction ; A single line of code may have multiple instructions.

Function Call Function();

14

List of Abbreviations

2D: Two Dimensional

3D: Three Dimensional

AAM: Active Appearance Model

ACM: Active Contour Model

API: Application Programming Interface

ALU: Arithmetic Logic Unit

ASM: Active Shape Model

AVX: Advanced Vector Extensions

CPU: Central Processing Unit

CS4.0: Compute Shader 4.0

CS5.0: Compute Shader 5.0

CT: Computed Tomography

CUDA: Compute Unified Device Architecture

DICOM: Digital Imaging and Communications in Medicine

Float: Single Precision Floating Point

GPU: Graphics Processing Unit

GPGPU: General-Purpose computing on Graphics Processing Units

HLSL: High Level Shading Language

HT: HyperThreading

half: Half Precision Floating Point

int: Signed Integer

L1: Level 1

15

L2: Level 2

L3: Level 3

MIMD: Multiple Instruction Multiple Data

MISD: Multiple Instruction Single Data

MRI: Magnetic Resonance Imaging

OS: Operating System

PS: Pixel Shader

R16F: Red 16bit Float

R32F: Red 32bit Float

RAM: Random Access Memory

SIMD: Single Instruction Multiple Data

SISD: Single Instruction Single Data

SSE: Streaming SIMD Extensions

uint: Unsigned Integer

ushort: Unsigned Short Integer

VS: Vertex Shader

16

Glossary

Active Appearance Model (AAM): Active Appearance Models are an improvement ASM method of

feature extraction. Like ASMs they track contours but also use the texture surrounding the contours

to reduce the number of landmarks required.

Active Contour Model (ACM): Active Contour Models or “Snakes” is a method of feature extraction

that tracks contours contained in an image by moving a set of points until they enclose the target

feature.

Active Shape Model (ASM): Active Shape Models are an improvement of the popular ACM method

of feature extraction. ASMs locate objects by being trained using a number of images with marked

landmark points covering the possible shape variations.

Advanced Vector Extensions (AVX): Advanced Vector Extensions is an improved version of the SSE

instruction set, capable of processing larger amounts of data (256 bits instead of 128 bits) and

instructions with 3-operands rather than 2-operand instructions available with SSE.

Application Programming Interface (API): An API is an interface which a program can use to obtain

access to functionality provided by procedures, functions and classes from either the operating

system or another application.

Arithmetic Logic Unit (ALU): The Arithmetic Logic Unit is the part of a processor that performs

arithmetic and logic operations on data. The individual processing cores of a GPU’s SIMD engine are

typically referred to as ALUs.

Atomic Operations: Is an operation that is executed in such a manner that only a single thread can

alter the item of data at a time.

Benchmarking: Benchmarks are designed to measure the real-world computational performance of

a given system by mimicking the typical workload a system is expected to perform.

C: Is a procedural, high level programming language.

C++: Is an object oriented, high level programming language based on the C language.

Cache Memory: Cache memory is a type of high speed memory that can be used to store frequently

used data, so that it can be retrieved without having to access main memory. In consumer hardware

cache memory is available in three types: Level 1 (L1), Level 2 (L2) and Level 3 (L3).

17

Note: For the purposes of this report, the term cache will be used to refer to cache memory contained

in each SIMD engine in the case of a GPU and Shared Level 3 Cache Memory in CPUs, unless

otherwise stated.

Central Processing Unit (CPU): The CPU is a general purpose processor in a computer which controls

all other systems in the computer.

Compute Shader: A GPU program for performing calculations on general data rather than vertices or

pixels. It is currently available as two main versions, CS4.0 for DirectX 10 compliant hardware and

CS5.0 which contains additional functionality and other enhancements for DirectX 11 GPUs.

Compute Unified Device Architecture (CUDA): CUDA is a GPGPU API developed by nVidia; it is

programmed in a C Style language. It currently only supports certain models of nVidia Graphics Cards

(NVIDIA, 2010b).

Computed Tomography (CT): A technique that is capable of generating a volumetric (3D) image of

an object using a series of two-dimensional X-ray images taken about a single axis.

Core: A core is the part of the processor that is capable of reading and executing instructions on

data. A single-core processor can process and execute only one instruction at a time, whereas a

multi-core processor can execute one instruction per core.

Note: For the purposes of this report, the term core or processing core will be used to refer to a single

physical processing unit in the context of CPUs. When used in the context of GPUs it will be used to

refer to a single processor within a SIMD engine.

Digital Imaging and Communications in Medicine (DICOM): DICOM is a file format for storing Digital

Medical Images including X-rays, MRI and CT scans.

DirectCompute: Microsoft's DirectCompute is a GPGPU API available as part of the DirectX 11

package of APIs. Programs written with the API can be executed by DirectX 10 and 11 compliant

graphics processors.

DirectX: DirectX is a collection of APIs for handling game programming and other related tasks. It

provides capabilities for 3D graphics rendering, audio and video amongst others. The latest version

of DirectX is version 11 but version 9.0c is still very popular amongst game developers.

General-Purpose computing on Graphics Processing Units (GPGPU): A technique for utilising the

processing capabilities of the Graphics Card to process general computing problems rather than the

typical graphics related ones.

18

Global Memory: This term is used to distinguish between the “main” random access memory

incorporated into a GPU and the cache memory available to each thread group. The term “global

memory” is used specifically in the context of GPUs and does not refer to the “main” random access

memory of the computer.

Graphics Card: See Graphics Processing Unit.

Graphics Processing Unit (GPU): The GPU is a specialised processor primarily designed for

accelerating graphics related data processing to provide real-time 3D rendering.

Haptics: Is a technology used provide to tactile feedback to a user by the application of forces,

vibrations, and/or motions.

High Level Shading Language (HLSL): HLSL is a C style programming language used to create shaders

for use with Microsoft’s DirectX API, including Compute Shaders.

Histogram: A histogram is an array of numbers (bins), where each bin corresponds to the frequency

count of a range of values contained within an image associated with that particular bin.

Instruction Set: An instruction set is a list containing all the instructions a processor compliant with

that particular instruction set can execute.

Integer (int): A data type available in C++ which is used to store integer values using 32bits of

memory. It is capable of storing a whole number value between -2,147,483,648 and 2,147,483,647.

Magnetic Resonance Imaging (MRI): Is a medical imaging method used to visualize internal

structures in great detail. It especially useful in producing images of the brain, muscles, heart, etc.

compared with other medical imaging techniques such as X-rays.

Mesh: A polygon mesh is a collection of vertices, edges and faces that define a polyhedral object in

3D computer graphics.

Multi-core: Multi-core is a term typically used to describe CPUs which contain more than one

processing core.

Multiple Instruction Multiple Data (MIMD): Is a parallel processing architecture which has a number

of processors that are capable of functioning asynchronously and independently of each other. The

data and instructions being processed by a particular processor does not necessarily have to be

related in any way to those being processed by different processor.

19

Multiple Instruction Single Data (MISD): Is an uncommon parallel processing architecture which

executes multiple instructions simultaneously on a single item of data, typically it is used for fault

tolerant computing.

Open Computing Language (OpenCL): OpenCL is designed to be a platform independent

implementation of a GPGPU API.

Open Graphics Language (OpenGL): Is a cross-language and cross-platform API for writing

applications that produce 2D and 3D computer graphics. It fulfils the same roles as the Direct3D API

does in DirectX

Open Multi-Processor (OpenMP): OpenMP is designed to be a platform independent API which

provides a lightweight method of processing data in parallel on multi-processor systems.

Pixel Shader: A GPU program for performing calculations on pixels. It is typically used to calculate

the colour and any lighting effects on a 3D mesh.

Polygon: A polygon is the basic building block for constructing 3D meshes in computer graphics. It is

a triangular surface and contains three vertices describing the location of its corners.

R16F: A texture format that has a single 16bit floating point value red colour channel.

R32F: A texture format that has a single 32bit floating point value red colour channel.

Random Access Memory (RAM): Is a type of memory that can retrieve a piece of data in a constant

time, regardless of its physical location in memory. RAM is also referred to as “Main Memory”

Salt and Pepper Noise: Salt and Pepper noise manifests itself as random speckles within an image.

Scalar Processor: A processor architecture can execute a single instruction on a single item of data at

once.

Shader: A program designed to be executed on a GPU, typically used for lighting calculations.

Shader Model: The shader model specifies what HLSL instruction set is supported by the GPU. The

lowest and most restrictive model being Shader Model 1, with Shader Model 5 currently being

highest and most feature rich.

SIMD Engine: SIMD engine refers to the SIMD processors utilised by GPU architectures. A SIMD

engine consists of a number of processing units which process data using a SIMD architecture.

20

Hardware vendors use different terminology when referring to SIMD processors. AMD use the term

SIMD engine whilst Nvidia uses CUDA Cores.

Note: For the purposes of this report, the term “SIMD engine” will be used when referring to SIMD

processors for both hardware vendors, as AMD GPUs are the main focus of this report.

Single Instruction Multiple Data (SIMD): A parallel processing architecture that performs the same

operation on multiple items of data at the same time.

Single Instruction Single Data (SISD): A parallel processor architecture that can execute a single

instruction on a single item of data at a time.

Single Precision Floating Point (float): Is a data type available in C++ which is used to represent

fractional values. It is capable of storing a fractional value between ±1.5 × 10−45 to ±3.4 × 1038 with 7

digits of precision.

Streaming SIMD Extensions (SSE): Is a SIMD instruction set used to expedite certain operations on a

CPU.

Texture: In computer graphics a texture is an image that is mapped onto a polygon mesh.

Thread: A thread is a part of a computer program comprised of a single sequence of instructions

which can be execute independently to other parts of a computer program. A group of threads can

be executed in parallel by a multi-core processor.

Thread Group: The term refers to a group of threads which are executed by the same SIMD engine

in parallel on a GPU. Threads within a thread group can be synchronised and have access to a shared

region of cache memory.

Three Dimensional (3D): A Three Dimensional object in computer graphics has depth information.

Typical 3D objects in computer graphics are polygon meshes and volumetric models.

Two Dimensional (2D): A Two Dimensional object in computer graphics is flat and contains no depth

information. Typical 2D objects in computer graphics are images and fonts.

Unified Shader Architecture: The unified shader architecture or stream processing replaced

separate vertex and pixel shader processors with a processor that was capable of processing both

data types.

Unsigned Integer (uint): A data type which can store a whole number value between 0 and

4,294,967,295 using 32bits of memory.

21

Unsigned Short Integer (ushort): A data type which can store a whole number value between 0 and

65,535 using 16bits of memory.

Vector Processor: Is a processor architecture that is capable of executing a single instruction on

multiple items of data in a single operation.

Vertex/Vertices: In computer graphics a vertex describes one of the three corners of a triangular

surface (or polygon).

Vertex Buffer: A Vertex Buffer is a memory location for storing mesh vertices relating to a particular

mesh. The vertices are stored in the most efficient manner for the GPU to process them.

Vertex Shader: A GPU program for performing calculations on vertices. It is typically used to

transform vertices to their correct location and orientation in a 3D environment.

Video Memory: Video memory is a term used to differentiate between the “main” random access

memory of a computer and the specialised RAM incorporated into a GPU.

Voxel: A Voxel is a cube shaped object which represents a point in 3D space, similar to a pixel in 2D

space.

X-Ray: A “plain” X-ray image is a flat 2D image which is produced using X-ray radiation.

22

1. Introduction

1.1. Overview

This report details an algorithm that will be capable of providing an automated method for preparing

digital X-rays for use by a procedural mesh generator. The mesh generator will construct a three

dimensional (3D) polygon mesh from a number of X-ray images processed using the algorithm. This

mesh will subsequently be used to provide a patient specific bone model in VirtuOrtho, a virtual

surgical simulator. The algorithm will prepare the X-ray image by identifying and retaining areas of

interest (bone) whilst removing any superfluous aspects contained within the image including text,

orientation markers and backgrounds. Noise reduction techniques will be employed to suppress any

noise present in the image. This will ensure that the mesh generated from the processed X-rays will

have sufficient accuracy for the purposes of the simulation.

The proposed algorithm requires the processing of a considerable quantity of data and as a result

this will have an impact on the time required to execute the algorithm. A significant portion of this

computation could potentially be performed in parallel, minimising the time required to process an

image. Therefore techniques which allow the algorithm to exploit the parallel processing capabilities

of either a multi-core CPU or a GPU will be employed. Additionally the relative performance of the

multi-core CPU implementation will be compared and contrasted to the performance of the GPU

version.

As part of the GPU version of the algorithm, two methods for accelerating the calculation of a

median filter using a GPU are suggested. The caching method improves upon the fast, small-radius

median filter (McGuire, 2008) by utilising the cache memory provided in the latest generation of

consumer graphics cards. The second technique uses the cache memory to implement a histogram

based (Huang et al., 1979) method for applying median filters this enables the GPU to process

median filters with a large-radius mask unlike previous GPU accelerated methods.

23

1.2. VirtuOrtho

Figure 1 : VirtuOrtho

The functionality provided by VirtuOrtho can be broken down into a number of components. The

algorithm proposed in this report relates specifically to the enhancement of X-ray images in

preparation for their use by the mesh generator, which is being developed separately.

VirtuOrtho is intended to be a virtual surgical simulator for use as part of a training regime for

trainee podiatric surgeons. The software will utilise a SensAble PHANTOM® Omni haptic input device

as the primary input method during the virtual surgery. The device's capabilities (SensAble

Technologies, 2010) enable the software to feature accurate, real time tracking of user input in three

dimensions. It also provides haptic force feedback effects, which will be used to mimic the forces felt

by the surgeon whilst performing a surgical procedure. The software will procedurally generate a 3D

polygon mesh of the bones within a patient's foot by analysing a set of digital X-ray images taken at

a number of predefined angles1. The use of a procedural mesh generator enables the incorporation

of patient specific bone models into the virtual environment, allowing the training to be tailored to

suit a particular operation. An additional benefit is that this also will greatly reduce the complexity of

reproducing a range of afflictions, enabling VirtuOrtho to replicate the corresponding surgical

procedure. To further enhance the realism of the training environment provided by VirtuOrtho, it

will incorporate support for a 3D stereoscopic monitor which offers the user improved depth

perception within the virtual environment.

1
 Currently only X-rays taken at lateral and planar orientations are used.

Virtual

Surgery

X-Ray Image

Capture

Mesh

Generation

X-Ray Image

Enhancement

VirtuOrtho

24

Figure 2 : SensAble PHANTOM® Omni

The SensAble PHANTOM® Omni is a haptic input device capable of tracking user input and providing

force feedback in 3 dimensions.

1.3. Problem Statement

VirtuOrtho requires a number of polygon meshes depicting a variety of afflictions, so that it is

capable of simulating a broad range of surgical procedures which occur in Podiatric Surgery. Typically

these meshes are created by a digital artist using 3D modelling software such as 3Ds Max. This can

be a time consuming and expensive process. Due to the intricate and highly detailed nature of the

meshes required, it is realistic to assume that they may contain a number of inaccuracies, which

would in turn affect the usefulness of the simulation. The inclusion of a procedural mesh generator

into VirtuOrtho would eliminate the need for a digital artist to create the mesh, negating the cost

issues mentioned. Procedurally generated meshes should contain fewer inaccuracies because they

can utilise the maximum precision of the X-ray image and it reduces the chance that errors may be

introduced. However, a process of determining the accuracy of both a procedurally generated and a

handmade mesh would have to be devised. An additional benefit is that this would allow the

software to incorporate patient specific meshes rather than a generic mesh for each affliction.

Consequently this would make the software a more comprehensive and therefore useful training

tool.

The mesh generator must construct a polygon mesh using 2D digital X-rays rather than a 3D scan

such as those obtained using MRI or CT imaging. This is because 3D imaging techniques are rarely

used in Podiatric Surgery, primarily due to X-rays being the most cost effective method of creating

an image which contains all the pertinent information required to perform a surgical procedure.

From a software development standpoint a CT scan or similar 3D imaging technique would provide a

much simpler basis from which to generate a 3D polygon mesh, as it contains three dimensional data

(FAKULTI KEJURUTERAAN ELEKTRIK, n.d., p.2). A CT scan is able to achieve this because unlike a

conventional X-ray which scans from a single direction, it scans from multiple directions. Three

25

dimensional data would allow the implementation of either an iso-surface extraction technique (JaJa

et al., 2008) or a voxel based system (Jeong et al., 2007). A voxel based representation as an

alternative to a polygon mesh greatly simplifies the generation process, however there is a

considerable increase in the computational cost for the visualization of the 3D model compared to

polygon meshes.

The images contained within digital X-rays are monochrome, typically stored as 12bit brightness

values. The properties of X-ray radiation which is used to capture X-ray images means that the

density of a material affect its brightness, with high density materials like bone being brighter than

materials with a low density such as soft tissue. This is not a uniform brightness, as the relative

distance of the material from the capture device also affects its brightness2. Salt-and-pepper noise

(Myler and Weeks, 1993, p.202) occurs in X-ray images due to the imprecise nature of the radiation

which is used to capture an X-ray. X-ray images may also contain the following superfluous elements

which need to be removed before the X-ray can be used by the mesh generator [Figure 4, Figure 6]:

text, orientation markers, rulers and secondary backgrounds. Removing these would result in a more

accurate mesh being generated.

Figure 3 : Lateral Foot X-ray (Original)

The above image shows the original lateral image encoded in the DICOM file.

2
 For the same density, objects further away of the same material appear darker.

26

Figure 4 : Lateral Foot X-ray with Unwanted Elements Highlighted

This image highlights those unwanted elements contained within the X-ray image which need to be

removed by the algorithm. Blue is the primary background, Red is descriptive text and Green is the

orientation marker.

Figure 5 : Planar Foot X-Ray (Original)

The above image shows the original planar image encoded in the DICOM file.

27

Figure 6 : Planar Foot X-Ray with Unwanted Elements Highlighted

This image highlights those unwanted elements contained within the X-ray image which the

algorithm needs to remove. Blue is the primary background, Yellow the secondary background, Red

is descriptive text and Green is an orientation marker

1.4. Project Aims

It is the aim of this project to produce an algorithm that is capable of removing unwanted features

such as text and orientation markers from a digital X-ray whilst retaining areas of interest such as the

various bones contained within the image. This algorithm should be developed so that it is capable

of making optimal use of a parallel processor such as a multi-core CPU or a GPU. It is hoped that by

adopting parallel processing techniques, the algorithm will have a considerably reduced execution

time in comparison to a serial CPU implementation. The images processed by the algorithm will

subsequently be used to generate a 3D mesh replicating the bones depicted within the X-ray images.

The mesh generation and virtual surgery functionality of VirtuOrtho are being developed separately.

The objectives for this project have been split into two distinct categories, those objectives which

directly relate to the capabilities of the algorithm and those which affect its implementation.

1.4.1. Algorithm Objectives

1. Separate Soft Tissue and Bone: The algorithm requires the ability to accurately identify and

subsequently isolate soft tissue and bone within an X-ray image. Ideally the algorithm will also

be able to separate them from each other.

28

2. Remove Unwanted Features: Generally X-rays contain unwanted features [Figure 4, Figure 6]

such as text, various backgrounds and orientation markers. These need to be removed from the

image to simplify the mesh generation process.

3. Noise Reduction: Appropriate techniques should be employed to diminish the amount of noise

present within the X-ray image, on the condition that it does not negatively impact the fine

details stored in useful areas of the image.

4. Planar and Lateral X-Rays: The algorithm must be capable of adapting to compensate for the

differences between X-rays taken at lateral and planar orientations. This will allow it to correctly

process images irrespective of their capture orientation. The mesh generator is currently limited

to constructing polygon meshes utilising only X-rays captured in planar and lateral orientations.

However it is envisioned that additional orientations will be used to increase the accuracy of the

generated mesh. Therefore, if possible it should also be capable of processing X-rays taken at

additional intermediate angles.

5. Non-Uniform Brightness: Due to the method by which X-ray images are created, some bones,

particularly those at the extremities, are of a significantly lower brightness than other areas of

bone. The algorithm must therefore be able to recognise this and adapt accordingly.

1.4.2. Implementation Objectives

1. DICOM X-Rays: In-order to help ensure that the mesh generation process is as straightforward

and seamless as possible for the end user; the algorithm should be capable of processing digital

X-ray images in their native file format (DICOM file). This will allow VirtuOrtho to generate a

patient specific model in the simplest manner possible, requiring only the location where the X-

rays are stored on the computer.

2. Fully Automated: VirtuOrtho is designed as a training tool; the algorithm should therefore

require minimal human input wherever possible.

3. Consumer Hardware: The algorithm must be restricted to utilising only parallel processing

technologies that are available in current consumer hardware. This will help to minimise the

cost of purchasing hardware for the client.

4. Single Instruction Single Data Implementation: The algorithm will need to be implemented as a

serial process for the CPU in addition to the proposed parallel versions. This implementation

will be used to provide a control group in the performance comparison experiments and

therefore will serve as the baseline execution time for the algorithm on a given X-ray image.

This will be used in the calculation of the potential speed-up derived from parallelising the

process.

This version of the algorithm will be referred to as the SISD algorithm.

29

5. Multiple Instruction Multiple Data Algorithm: A version of the algorithm that can be executed

on a multi-core CPU should be implemented. This will allow a more comprehensive analysis

when determining how substantial the reduction of the algorithm’s execution time a GPGPU

implementation achieves compared to an optimised CPU version.

This version of the algorithm will be referred to as the MIMD algorithm.

6. Single Instruction Multiple Data Algorithm: A GPGPU version of the algorithm will be

implemented using the DirectCompute API. If possible the algorithm will be designed so that it

can target hardware supporting the minimum version of the Compute Shader (CS 4.0). This will

enable the algorithm to be executed on the lowest class GPU hardware supported by the

DirectCompute API, Shader Model 4.0 (DirectX 10.0) compliant hardware3 rather than the

Shader Model 5.0 (DirectX 11.0) GPUs4 required by CS 5.0.

This version of the algorithm will be referred to as the SIMD algorithm.

7. Native Resolution: All implementations of the algorithm must be capable of processing the X-

ray images at their native resolution. Additionally, if the data format used to encode the image

is not available on a particular parallel processing architecture then it must be converted to a

data type capable of equal or greater precision than the original. These requirements are to

prevent image quality from being sacrificed to expedite processing on a particular architecture.

1.4.3. Median Filter Objectives

1. Caching Median Filter: A version of the fast, small-radius median filtering algorithm should be

implemented which utilises the cache memory accessible via DirectCompute to improve

performance.

2. GPU Histogram Median Filter: A GPU accelerated implementation of the standard histogram

median filter should be developed. It will employ the cache memory accessible via

DirectCompute to allow large-radius median filters to be processed without incurring the

considerable performance penalties associated with using the graphics card’s global video

memory.

1.4.4. Expected Results

The results of this project are expected to show that parallel processing offers a considerable

reduction in the execution time, with GPGPU producing the greatest reduction by a sizeable margin.

The data will be processed in two formats, its native integer format and floating point. It is

anticipated that the former should give the CPU an advantage as integers traditionally take longer to

process on the GPU than floating point values. The latter data format should reverse this trend

3
 Nvidia 8000, AMD HD 2000 series or above.

4
 Nvidia 400, AMD HD 5000 series or above.

30

giving the GPU a clear advantage as it is a dedicated floating point processor. In spite of this there

will be an associated penalty arising from converting the data from its native format to floating point

values.

It is anticipated that the caching median filter will yield considerably improved performance

compared to the fast, small-radius median filter. This assumption is based on the filters applying the

same radius mask and both being implemented in DirectCompute. The GPU accelerated histogram

median filter is expected to allow large-radius median filters to be computed by a GPU.

31

2. Literature Review

2.1. Research Objectives

The following literature review encompasses a number of current research topics, including methods

for parallel processing and image processing techniques. The investigation will discuss techniques

which either are currently used or have the potential to be beneficial for medical imaging. The

parallel processing research will concentrate on methods of parallelisation which are suitable for use

with parallel processors which are available in current consumer hardware, such as multi-core CPUs

or GPUs. Research into the architecture of multi-core CPUs and GPUs will be conducted, to gain an

understanding of how best to exploit their parallel processing capabilities. The process by which

parallel algorithms are designed differs significantly to those used in serial algorithm design;

therefore an appropriate parallel algorithm design methodology will be investigated.

The research conducted for this literature review will attempt to answer the following questions to

help with design and implementation of the algorithm:

2.1.1. Parallel Processing

2.1.1.1. Background

1. What are the advantages and disadvantages of parallel processing?

2. What computer architectures utilise parallel processing?

3. How do these architectures differ?

2.1.1.2. General-Purpose Computing on Graphics Processing Units

1. What is General-Purpose Computing on Graphics Processing Units (GPGPU)?

2. How does GPGPU differ from conventional parallel processing?

2.1.1.3. Parallel Processing Architectures

Multi-core CPU Architecture

1. How do CPUs implement a MIMD architecture?

2. What are the advantages of using a MIMD architecture?

GPU Architecture

1. How do GPUs implement a SIMD architecture?

2. What are the advantages of using a SIMD architecture?

2.1.1.4. Parallel Algorithm Design

1. How are parallel algorithms constructed?

32

2. What methodologies are used to design parallel algorithms?

3. Can the speedup derived from parallel processing be predicted?

Performance Profiling Parallel Algorithms

1. How can the efficiency and maximum potential speedup due to parallel processing of an

algorithm be calculated?

2. How can the execution time of a parallel algorithm be accurately measured?

2.1.1.5. Parallel Processing APIs

OpenMP

1. What is OpenMP?

2. What are the advantages of OpenMP compared to other threading APIs?

DirectCompute

1. What is DirectCompute?

2. What are the advantages of DirectCompute compared to competing GPGPU APIs?

2.1.2. Image Processing and Analysis

2.1.2.1. Medical Imaging

1. What are the common techniques used to process and analyse images in medicine?

2. Have any medicinal image processing techniques utilised parallel processors?

2.1.2.2. Applicable Image Processing Techniques

Median Filter

1. What algorithms exist for calculating median filters, particularly for median filters which use

large-radius masks?

2. Do any parallel or GPGPU implementations of a median filter exist?

Histogram Calculation

1. Do methods exist for calculating a histogram using a GPU?

Thresholding

1. Do methods exist for calculating a threshold value and applying a threshold operation?

2. Could the process of calculating the threshold value be automated?

3. Do parallel or GPGPU implementations exist for automated thresholding?

33

Edge Detection

1. What methods are there for performing Edge Detection?

2. Do any parallel or GPGPU implementations exist?

Feature Extraction

1. What methods are commonly used for feature extraction?

2. What are the differences between the various methods for feature extraction?

3. Do any parallel or GPGPU implementations exist?

2.2. Parallel Processing

The term parallel processing covers a range of technologies including: Shared memory, distributed,

and hybrid parallel processors in addition to GPGPU. For the purposes of this project only shared

memory systems in the form of a single multi-core CPU and GPGPU will be investigated.

2.2.1. Background

Parallel processing is a technique whereby the computation of an algorithm is divided into portions

or “threads” which can be executed simultaneously by multiple processors. The result of this process

is that those algorithms which can be effectively parallelised exhibit reduced execution times

compared to those which are processed sequentially by a single processor. Whilst parallel processing

can significantly reduce the time required to execute an algorithm, care has to be taken as a number

of issues can occur which have no equivalent in sequential programming. These include: race

conditions, deadlocks, parallel slowdown and synchronisation. These issues can reduce the

performance of an algorithm or more seriously lead to erroneous data and even prevent it from

finishing altogether. Another peculiarity and a potentially serious but subtle issue that can occur in

parallel programs is that when operating on floating point data an algorithm may be unstable

(Mattson and Strandberg, 2008). This is not readily apparent in a serial implementation because this

instability manifests itself by calculating different results depending on the number of threads used

in the algorithm’s execution.

A number of classifications for computer architectures have been proposed (Flynn, 1966). Almost all

incorporate some form of parallel processing.

34

Table 2 : Flynn's Taxonomy

 The architectures suggested [Table 2] are:

 SISD: Single Instruction, Single Data

 SIMD: Single Instruction, Multiple Data

 MISD: Multiple Instruction, Single Data

 MIMD: Multiple Instruction, Multiple Data

SISD or serial processor architectures have been in

widespread use in consumer hardware for a considerable period of time and are therefore well

understood by software developers. Processing is executed sequentially by a single processing core

on a single item of data.

The availability of SIMD processors in consumer hardware is a relatively recent development, with

the introduction of the graphics processing unit (GPU). Initially limited to processing visualisation

related calculations, research has removed this restriction and facilitated the use of GPUs for the

computation of general problems rather than those exclusively relating to graphics. SIMD

architectures accomplish parallel processing by distributing the computation across a large number

of processing cores (Roosta, 1999, p.6), with each core executing the same operation simultaneously

on different data elements. A SIMD based architecture has the potential for significant performance

bottlenecks to occur because it cannot short-cut execution. Processing cores cannot proceed with

new work until all cores have completed the previously assigned work (Danielsson, 1984).

MISD is a rarely used architecture, typically used in fault tolerant computing and is therefore not

normally employed in consumer hardware. Since the algorithm is restricted to consumer hardware

[Section 1.4.2-3], the research will concentrate on SIMD and MIMD approaches to parallel

processing and the associated hardware. A SISD implementation will be used to provide a control

group for the experiments.

MIMD architectures are less restrictive than SIMD, with each processing core being completely

independent. Therefore each core is able to execute different operations on unique data

simultaneously (Roosta, 1999, p.23). MIMD based parallel processors have come to prominence in

consumer hardware with the introduction and now widespread adoption of multi-core5 CPUs [Table

7]. Multi-processor6 based MIMD architectures have been available for longer than their multi-core

5
 Multi-core CPUs are a single physical chip with multiple independent processing cores.

6
 Multi-processor systems contain a number of physical separate CPUs. Each CPU may however be a multi-core

processor.

 Single
Instruction

Multiple
Instruction

Single
Data

SISD MISD

Multiple
Data

SIMD MIMD

35

counterparts, but are generally restricted to commercial environments due to their prohibitive cost

compared to multi-core solutions.

2.2.2. General-Purpose Computing on Graphics Processing Units

General-purpose computing on graphics processing units (GPGPU) is the term used to describe

“general”7 computational problems that can be processed utilising the graphics rendering pipeline

by a graphics processing unit (GPU). GPGPU is an active area of research covering a broad variety of

subjects ranging from analysis of financial markets (Preis et al., 2009) to the simulation of molecular

dynamics (Davis et al., 2009). The main attraction of GPGPU is the “massively parallel” nature of

GPUs, which can potentially yield significant reductions in the execution time required to perform

computations on large quantities of data. The High Level Shading Language (HLSL) used to create

shader programs in DirectX is credited with being the most widely used programming language for

the parallel processing of data (Boyd, 2008, p.23); this has no doubt encouraged the use of GPUs for

general purpose computation.

The performance benefits of GPU processing are derived from its SIMD based architecture and the

sheer quantity of processing cores a GPU has at its disposal. The result of this is that algorithms

which can be effectively parallelised to suit SIMD processing can yield dramatic increases in

performance compared to serial and parallel CPU implementations. The magnitude of the

performance increase derived from GPGPU processing is disputed (Lee et al., 2010) and can be

disingenuous considering that not all computational algorithms are suitable for processing using

SIMD architectures. Typically algorithms which exhibit a large amount of data parallelism are those

which benefit most from SIMD processing. Research (Bordawekar et al., 2010b) has also indicated

that GPGPU applications take longer to develop than parallel CPU implementations and when this is

taken into account with the performance increase, GPGPU becomes a much less compelling

prospect. A study examining the performance and productivity of parallel processing using GPGPU

and OpenMP reflected these findings (Christadler, 2010), with GPGPU offering superior

performance, but being more time consuming to develop for. It must be acknowledged however

that it is difficult to conduct these tests entirely scientifically as typically programmers are

introduced to SISD and MIMD processing models much earlier that the SIMD model used by GPGPU.

Traditionally GPGPU programs have leveraged the processing power of the GPU by utilising the

graphics pipeline via graphics APIs such as DirectX. Shader programs8 are used to perform the

processing and textures provide equivalent functionality to an array (Davidson, 2006, p.3) in

7
 i.e. non graphics related.

8
 Typically pixel shaders.

36

conventional programming. One significant difference is that individual memory locations are

addressed using floating point values (Lönroth, 2009) with a texture rather than absolute values like

conventional arrays. This makes precise memory indexing more problematic. Using the graphics

pipeline is not an ideal solution; it is designed to maximize the performance of graphics operations

and therefore has numerous restrictions on its use in place. This is not an ideal approach because

the graphics pipeline is restrictive and requires the developer to be familiar with its intricacies to

achieve optimum performance. Constraints such as the format data must be presented to the

graphics card and the lack of thread synchronisation constructs further restrict the computational

problems that can be processed using a GPU.

These limitations and the requirement for the developer to be familiar with the graphics rendering

pipeline have led to the development of several GPGPU APIs including DirectCompute. These APIs

are far more flexible in terms of how GPGPU algorithms can be implemented and provide far greater

control over how data is subsequently processed. Specifically they provide facilities to perform

thread synchronisation during the execution of the algorithm and allow thread allocation to be

explicitly stipulated.

2.2.3. Parallel Processor Architectures

This section of the literature review investigates and details the architecture of two parallel

processors available in current consumer hardware, which can be utilised by the proposed

algorithm. Gaining a detailed understanding of the different approaches taken to parallel processing

by multi-core CPUs and GPUs is fundamental in leveraging the maximum potential performance

from the particular processor architecture. There are considerable architectural distinctions

between CPUs and GPUs arising from their differing approaches to parallel processing.

Developments such as Intel’s Larabee which uses multiple in-order x86 CPU cores (Seiler et al., 2008)

for graphics and general purpose processing and AMD’s new Accelerated Processing Units which

“combine general-purpose x86 CPU cores with programmable vector processing engines9 on a single

silicon die” (Brookwood, 2010) blur these distinctions.

9
 These are based on the SIMD Engines contained in AMD’s HD 5000 Series discrete graphics processors.

37

2.2.3.1. Multi-core CPU Architecture

This section details the architecture used by the Intel Nehalem family of multi-core CPUs.

Figure 7 : Intel Core i7 Multi-core CPU Architecture

This diagram (Gelsinger, 2008) highlights the significant components of an i7 CPU. Note how a

significant portion of the die is encompassed by the processing cores and the shared cache memory.

Prior to the introduction of MIMD multi-core CPUs, consumer CPU designs tended to use SISD

architectures with a single processing core. These single core designs made use of the increased

number of transistors available with each improvement in the manufacturing processor of

integrated circuits, primarily by increasing the clock frequency and thereby the available

computational power. Whilst the rate of increase in number of transistors which can be placed on an

integrated circuit continues to be accurately predicted by Moore’s Law (1965), the physical

limitations of transistors have made it unviable to continue increasing clock frequency as the

primary means of increasing computational performance. The introduction of multi-core CPUs has

negated this problem by utilising the increased number of transistors to provided additional

processing cores, allowing the computational power of a CPU to continue to increase. The additional

computational power gained from multiple processing cores is more difficult to exploit as software

needs to be explicitly designed for parallel processing unlike increases in clock speed.

The Nehalem architecture employs a MIMD approach to processing, relying on fewer, more complex

processing cores compared to a current generation GPU. The majority of transistors and therefore

physical space on the die of a Nehalem CPU [Figure 7] is occupied by either processing cores or the

shared cache memory. These cores are capable of out-of-order execution meaning that they can re-

order instructions to minimise the potential for stalls. Current Nehalem processors feature between

2 and 6 physical cores and some feature HyperThreading (Magro et al., 2002) which provides an

38

additional logical processing core per physical core. HyperThreading functions by duplicating certain

portions of processing hardware whilst sharing others including the execution unit, the idea being

that this will minimise amount of time that the execution unit is idle. Whilst these technologies could

potentially give the multi-core algorithm an increase in performance, it is also possible that it may

degrade performance by increasing the number of cache misses (Dawson, 2010). Furthermore it is

exclusively supported by a limited number of Intel CPUs [Table 8].

The most significant differences between the Nehalem architecture and that of a GPU are the

comparatively large amounts of shared cache memory10 and branch predictors which prevent stalls

caused by logic operations [Figure 10]. Each core on the CPU can also perform SIMD vector based

processing by making use of SSE instructions.

2.2.3.2. GPU Architecture

This section will focus on describing the SIMD architectures utilised in current GPUs. The discussion

will focus on the architecture used by the AMD HD 5000 series graphics processors. An overview of

the differences between architectural approaches taken by AMD and Nvidia will also be included.

The architecture of graphics processors has altered substantially over the past decade, transitioning

from performing simple “Transform and Lighting” (NVIDIA, 1999) operations via fixed function

processing units (Chu, 2010) to a more flexible and capable programmable shader architecture. The

initial generations of programmable shaders were split into pixel and vertex shader each requiring a

specialised processor to execute a particular type of shader, the former using pixel processors and

the latter vertex processors. This processing model could however result in some of the processors

being underutilised and therefore idle depending on whether the workload was pixel shader or

vertex shader intensive. The introduction of a unified shader architecture improved the efficiency of

the programmable pipeline by forcing all shader processors to incorporate the same basic

functionality (MSDN, 2010a), replacing the separate vertex and pixel shader processors with a

shader processor capable of executing any type of shader and thereby maximising resource usage.

10

 A Nehalem CPU has 4MB to 12MB of cache memory which is shared between all cores, compared to 32KB
per SIMD Engine for a DirectX 11 GPU.

39

Figure 8 : AMD HD 5870 GPU Architecture

This diagram (Bit-tech.net, 2009) highlights the various components present in a GPU (AMD HD 5000

Series). In the context of GPGPU the relevant components are SIMD Engines (Red), Local Data Shares

(Purple, Above SIMD Engines), Texture Units (Orange), Instruction (Purple, Bottom Left) and

Constant Caches (Purple, Top Left).

GPUs utilise a SIMD approach to parallel processing; this processing model requires a large quantity

of processing cores compared to a CPU. Fitting the required quantity of processing cores onto a die

necessitates that they are far less complex than their CPU counterparts, lacking features such as

branch predictors. The nature of graphics processing requires that each of the processing cores are

specialised floating point processors. The processing cores are grouped into SIMD Engines, with each

engine containing a small amount of cache memory11 (Fried, 2010, p.5). This cache memory can be

used by all processors in a SIMD engine to share data between themselves. Each SIMD engine is

totally independent and cannot communicate or synchronise with other SIMD engines (Bleiweiss,

2008, p.4) unlike a multi-core CPU. The total number of cores is more difficult to calculate [Equation

1, Equation 2] compared to a CPU because each GPU may have multiple SIMD engines, each of

which contain a number of scalar or vector processors. AMD utilises vector processors in its GPU

architecture whereas Nvidia [Figure 9] GPUs feature a scalar architecture.

11

 16KB for DirectX 10 and 32KB for DirectX 11 compliant graphics cards.

40

Equation 1 : AMD HD 5770 Processing Cores

The number of processing cores available in a particular model of AMD’s 5000 Series is calculated

with the above formula. represents the number of SIMD Engines, the number of processors per

SIMD Engine and each processor is a vector unit capable of simultaneously processing instructions.

Equation 2 : nVidia GTX 580 Processing Cores

The number of processing cores available in Nvidia’s GTX 500 Series is calculated differently because

it is a scalar rather than vector processor architecture. represents the number of SIMD Engines12,

each containing processors. The SIMD Engines are however grouped into Graphics Processing

Clusters ()

Figure 9 : Nvidia GeForce GTX 580 GPU Architecture

12

 Nvidia calls SIMD Engines CUDA cores to highlight that they can be used for GPGPU applications which use
Nvidia’s CUDA API.

41

This diagram (Bit-tech.net, 2010) highlights the architectural design of the Nvidia GTX 580. The main

difference between this design and that utilised by AMD [Figure 11] is that the SIMD engines (Green)

are grouped into Graphics Processing Clusters (GPC).

Branching operations pose a particular problem for the SIMD architecture of a GPU, when a branch

operation is encountered it is capable of processing only a single branch at a time [Figure 10]. This

impairs performance because all the cores that require the alternative branch are stalled.

Figure 10 : GPU Branch Operation

This diagram (Pfister, n.d., p.26) demonstrates how conditional logic operations on a GPU can greatly

impair performance by stalling a number of processing cores (ALU). X represents when the ALU is

stalled and therefore idle. Yellow and Blue boxes represent when each ALU is actively processing

instructions related to a particular branch of the logic operation.

2.2.4. Parallel Algorithm Design

Algorithms which are capable of utilising parallel processor architectures require a different design

methodology to those developed for a serial implementation. Four discrete stages have been

identified for designing parallel algorithms (Roosta, 1999, p.223):

1. Partitioning

2. Communication

3. Agglomeration

4. Mapping

42

The partitioning stage is used to determine whether Functional or Domain decomposition is the

most suitable method for deriving parallelism from a particular problem. Functional decomposition

involves breaking the algorithm down into its constituent tasks and subsequently identifying which

of these tasks can be executed simultaneously. Domain decomposition attempts to isolate where in

the algorithm multiple items of data have the same calculation applied and can therefore be

executed in parallel.

The communication stage is used to ascertain the amount and type of communications that will be

required between individual threads. Algorithms which require a large amount of inter-thread

communication tend to exhibit reduced performance, especially when “Blocking” type

communication is required.

Agglomeration is the process whereby the design produced using the previous two steps is

evaluated and processing is amalgamated wherever possible. This can improve performance by

reducing the number of potential bottlenecks and amount of inter-thread communication necessary.

It is also used to minimise code complexity and thereby development costs.

The final stage in the design process is mapping. This is where the most applicable parallel

processing architecture is selected for the particular problem being computed. When the

architecture has been chosen, the concurrent tasks are “mapped” to the specific hardware being

employed so that the work load is balanced for all processing cores thereby maintaining optimal

resource utilisation and performance.

Ian Foster (1995, pp.27-28,42,49-50,56-57) has produced a checklist for the design process described

above. The basic criteria for each stage are listed below:

1. Partitioning

a. Is the partitioning at least an order of magnitude more than number of cores?

b. Are there significant amounts of redundant computation and memory usage?

c. Are tasks of comparable size?

d. Does the task scale with problem size?

2. Communication

a. Do the tasks require similar amounts of communication?

b. Do the tasks communicate with a small number of neighbours?

c. Is the communication non-blocking?

3. Agglomeration

a. Has agglomeration reduced the amount of communication?

43

b. Does replicating computing impact performance?

c. Does replicating data affect scalability?

d. Does agglomeration leave tasks with similar computation time requirements?

e. Do tasks scale with problem size?

f. Has agglomeration removed too much concurrency?

g. Could the number of tasks be reduced without penalty?

h. Is parallelising the algorithm worth the development cost?

4. Mapping

a. Is a SIMD algorithm better than MIMD algorithm for this problem?

b. Is centralised load balancing a problem13?

c. Is dynamic load balancing too costly?

Amdahl’s Law (1967) [Figure 11] is commonly used to predict the potential speedup which can be

achieved with an algorithm by using parallel processing. It states that the speedup of a particular

program due to the parallelisation of its processing is constrained by the portion of the program

which cannot be executed in parallel and therefore has to be processed sequentially. The law

indicates that as the number of processors working in parallel is increased; the serial portion of the

program becomes more relevant, limiting the maximum speedup achievable with parallel processing

and reducing the efficiency. Algorithms which require minimal sequential processing are capable of

scaling to effectively utilise large numbers of processing cores. The law is based on the assumption

that the problem is of a fixed size and it does not scale with the number of processors.

()

Equation 3 : Amdahl's Law – Overall Speedup

This equation calculates the overall speedup of an algorithm when the parallel section has

a speedup of applied.

()

Equation 4 : Amdahl's Law - Speedup

This equation allows the potential speedup from using processors simultaneously to be calculated

for an algorithm with a parallelisable portion .

13

 This type of load balancing only occurs in SIMD architectures.

44

Figure 11 : Amdahl's Law

This graph depicts the predictions of the potential speedup an algorithm can gain from parallel

processing for a given portion of parallelisable code. It demonstrates how many processors that

Amdahl’s Law predicts can be efficiently utilised in parallel before the serial portions of the algorithm

restrict the amount of speedup. The coloured lines depict how the potential speedup that can be

achieved by parallel processing is limited by the amount of parallelisable code contained within an

algorithm: Blue 95% parallelisable code, Red 90% parallelisable code and Green 75% parallelisable

code.

Gustafson’s Law (1988) rectifies this shortcoming by proposing that software developers tend to

scale the size of the problem to the available processing power, so that it can be executed in an

acceptable timeframe. Crucially it considers the influence that the serial portions of an algorithm

have on the total execution time remains constant whilst the number of processors grows, rather

than increasing as is the assumption made in Amdahl’s law. This hypothesis however only remains

true for problems with “large” repetitive data sets. Any problem that fits this profile is particularly

suited for processing with SIMD type processors and by extension GPGPU processing. Gustafson’s

law explains why “massively” parallel processors can achieve speedups well in excess of those

Amdahl’s law suggests are possible.

Both laws clearly indicate the necessity of minimising the serial components of an algorithm, even at

the cost of increasing the amount of computation the parallel sections have to perform.

 () ()

Equation 5 : Gustafson's Law

0

2

4

6

8

10

12

14

16

18

20

1 2 4 8 16 32 64 128 256 512 1024

Sp
e

e
d

u
p

Number of Processors

95%

90%

75%

45

Gustafson's Law states that the problem size and thus the potential speedup scale relative to the

available processing power given by processors. The serial component of the algorithm is

constant no matter the problem size.

2.2.4.1. Parallel Algorithm Performance Analysis

In order to assess the scaling characteristics of the parallel algorithms developed for this project,

formulae for calculating speedup and algorithm efficiency are required. The following equations

(Grama and Kumar, 2008) facilitate this. The efficiency of a parallel algorithm describes the portion

of the computation that can be effectively processed in parallel. Those algorithms with a high

efficiency are capable of scaling to effectively utilise more cores before becoming restricted by the

serial portions of the computation. The speedup value is the factor by which the execution time was

reduced by parallelising the algorithm compared to a serial implementation.

The majority of the equations identified for calculating the efficiency of a parallel algorithm are not

useful when determining the efficiency of GPGPU implementations. This is because these equations

rely on the assumption that the serial version of an algorithm utilises an identical processor to the

parallel algorithm, albeit using only a single core. This is because the amount of computation a single

CPU processing core can perform is not equivalent to what a single processing core on a GPU can

achieve. A serial GPU version of the algorithm cannot be implemented because the GPGPU APIs do

not provide this functionality; they are designed strictly for parallel processing.

Equation 6 : Parallel Speedup

This equation states that the speedup due to parallel processing can be calculated by dividing the

total execution time of the serial implementation of the algorithm by the total execution time of

the parallel implementation .

()

Equation 7 : Maximum Speedup

The theoretical maximum speedup that an algorithm can achieve is equal to the fraction of the

program which is executed serially and therefore not part of the parallel portion .

Equation 8 : Parallel Algorithm Efficiency

46

The efficiency of a parallel algorithm is proportional to the speedup achieved by utilising

processors. An efficient algorithm has a speedup value approaching the number of processors used to

process the algorithm.

High performance CPU timers (Walbourn, 2005) can be used to measure the elapsed time for all

versions of the algorithm, including the GPGPU implementation. Particular care has to be taken

when profiling the GPGPU programs because GPUs are asynchronous devices. Without a blocking

“Dispatch()” call [Code Listing 3, Line 39] to assign processing to the GPU, the timer measures the

length of time it took the CPU to perform the call rather than how long the GPU took to perform the

computation. OpenCL provides functionality to gather performance timings directly from the GPU

(NVIDIA, 2009) using its internal timing mechanism. Unfortunately, DirectCompute does not provide

equivalent functionality. Profilers such as Intel VTune (Lindberg, 2009, p.3) are capable of more

detailed analysis, but there are currently no profilers available which are capable of analysing both

CPU and GPU programs. Profilers will not be used in the experiments to measure and record the

performance timings; this is because using different profilers to record the performance timings for

each particular parallel processor architecture could introduce inconsistencies in to the results.

Due to the architectural differences between CPUs and GPUs it is difficult to accurately predict the

potential performance increase due to parallelisation based solely on these equations. Therefore

benchmarking using actual hardware is the only method available which allows accurate

recommendations to be made.

2.2.5. Parallel Processing APIs

This section details two APIs: OpenMP and DirectCompute, that can be used to facilitate parallel

processing. The former can be used with shared memory processors and the latter is exclusively for

use with GPU hardware.

2.2.5.1. OpenMP

OpenMP is a directive based14, platform independent API designed to facilitate parallel processing

on shared memory processors, such as a multi-core CPU. This approach uses compiler directives to

indicate to the compiler where the developer wishes parallel processing to occur [Code Listing 1,

Lines 1, 3]. The advantage of this approach is that the compiler can provide automatic optimisations

or ignore directives altogether if the compiler does not support OpenMP (Chandra et al., 2000, p.12).

It is suggested to be a good alternative to low level threading libraries, such as PThreads, because it

is programmed at a much higher level and is suited to processing data parallel tasks.

14

 Some OpenMP functionality is provided by libraries to minimise the problems arising from a purely
declarative approach.

47

OpenMP was chosen because it has a small onetime setup cost (Lindberg, 2009, p.14) compared to

other threading APIs. It features automatic thread pooling and functionality for performing load

balancing. Thread pooling is very useful (Saccone, 2007) as it reduces the amount of time a thread

spends idle; it also reduces the number of threads which have to be created and the associated cost

of doing so. OpenMP uses “thread teams” (Isensee, 2006) which automatically allocate a number of

threads to suit the available number of processing cores. Each time a parallel section is encountered

[Code Listing 1, Lines 1 - 3] the master thread distributes the processing amongst the threads

contained within the thread team. Once all threads within the team have completed their particular

portion of the processing the master thread is permitted to continue with the sequential processing

until the next parallel section is encountered. The thread team concept and the directive based

implementation of OpenMP has the effect of reducing code complexity compared to other threading

libraries.

Code Listing 1 : OpenMP Loop Declaration

The OpenMP instruction “#pragma omp for” *Line 3+ is a compiler directive instructing it to parallelise

the subsequent for loop. The number of iterations is distributed evenly to all processing cores.

2.2.5.2. DirectCompute

DirectCompute is a dedicated GPGPU API provided as part of Microsoft’s DirectX package of APIs. It

is a platform specific API, currently restricted to computers which incorporate a graphics card

compliant with either the Shader Model 4 or 5 specifications and use Microsoft Windows Vista/7

operating systems. It is hardware agnostic, meaning it can utilise GPUs from any hardware vendor15,

unlike Nvidia’s CUDA GPGPU API (NVIDIA, 2010a) which is restricted to Nvidia GPUs. OpenCL

(Khronos Group, 2010) is another alternative GPGPU API that is both platform and hardware vendor

agnostic, but it lacks DirectCompute’s efficiency for sharing data between the GPGPU processing and

the graphics rendering elements of the DirectX API (Howes, 2010).

15

 The graphics processor and its associated drivers must support DirectCompute.

1: #pragma omp parallel
2: {
3: #pragma omp for
4: for(int i = 0; i < 1000; i++)
5: {
6: int value = data[i] * multiplier;
7: }
8: }

48

DirectCompute currently consists of two main16 instructions sets, CS4.0 and CS5.0, reflecting the

capabilities of Shader Model 4 and 5 compliant graphics processors respectively. CS5.0 is the

preferred instructions set for DirectCompute as it features a host of improvements, the most

notable of which are: increased cache memory, improved performance and atomic synchronisation

constructs (Bilodeau, 2009, p.32). DirectCompute also has the following advantages over traditional

GPGPU methods:

 Data does not have to be converted to conform to texture formats in order to be processed.

 A screen aligned quad is not required to process data.

 It has access to high speed cache memory.

 It is able to randomly read from and write to memory locations in video memory (Sandy,

2010, p.20). This technique is known as scattering.

A GPGPU program or “compute shader” is written in HLSL when using the DirectCompute API. The

computation which is to be performed by the GPU is specified in the main method [Code Listing 2,

Lines 17 - 27]. The input and output data is transferred from main memory to the GPU’s video

memory using buffers [Code Listing 2, Lines 11 - 12]. Each thread has a unique identification number,

which can be calculated from its thread group and thread identification numbers [Code Listing 2,

Line 19]. The number of threads each thread group consists of is specified in the shader using the

“numthreads” command *Code Listing 2, Line 16] and cache memory is allocated using the

“groupshared” function [Code Listing 2, Line 14].

16

 CS4.1 is a subset of CS4.0, offering some improvements but has minimal hardware support compared to
CS4.0.

49

Code Listing 2 : Example DirectCompute Shader

This code demonstrates a simple Compute Shader. Using structured data input [Line 11] and output

[Line 12] buffers require their data format(s) to be specified in the shader [Lines 6 - 9]. The allocation

of cache memory [Line 14] and the number of threads per SIMD engine [Line 16] is also explicitly

defined in the shader. Synchronisation of all threads within a thread group can be performed using

the “GroupMemoryBarrierWithGroupSync()” function [Line 23]. The identification number of the

thread within its particular thread group can be calculated using the “uint3 g : SV_GroupID”

parameter and the identification number of the thread group can be determined using the “uint3 gt

: SV_GroupThreadID”. The identification number of the actual thread in relation to all threads across

all thread groups can be calculated using these values [Line 19]. Specifically for our implementation

this allows the location of the actual pixel to be determined. Constant buffers allow useful data

values to be passed into the shader without having to append them to the actual data buffer [Lines 1

- 4].

1: cbuffer Constants : register(b0)

2: {

3: uint multiplier;

4: };

5:

6: struct BufType

7: {

8: uint integer;

9: };

10:

11: StructuredBuffer<BufType> BufferIn : register(t0);

12: RWStructuredBuffer<BufType> BufferOut : register(u0);

13:

14: groupshared uint cache[40];

15:

16: [numthreads(40,1,1)]

17: void CSMain(uint3 g : SV_GroupID, uint3 gt : SV_GroupThreadID)

18: {

19: int i = ((xNumThreads * yNumThreads) * g.x) + ((xNumThreads *

yNumThreads) * g.y * (width/xNumThreads)) + ((gt.x * yNumThreads) + gt.y);

20: cache[g.x] = BufferIn[i].integer;

21:

22: // Comment

23: GroupMemoryBarrierWithGroupSync();

24:

25: value = cache[g.x];

26: BufferOut[i].integer = value * multiplier;

27: }

50

Figure 12 : Dispatch Call

The diagram (MSDN, 2010d) illustrates how a Dispatch Call assigns work to the GPU. The dispatch

call issues work as a 3 dimensional array of thread groups, each of which consists of a 3 dimensional

array of threads.

The Dispatch Call [Code Listing 3, Line 39] assigns work to the GPU as a 3 dimensional array of thread

groups, each of which consists of a 3 dimensional array of threads [Figure 12]. The total number of

threads which DirectCompute will execute is calculated by multiplying the number of thread groups

by the number of threads they contain. Each of these thread groups is subsequently computed using

a SIMD engine (Yang, 2010, p.28). Prior to this, the Compute shader must be compiled into assembly

code [Code Listing 3, Line 20]. Next, the input and output data which will be utilised by the GPU is

transferred to buffers, which are subsequently transferred to the video memory of the GPU so that it

can access the data [Code Listing 3, Lines 22 - 36]. Once the GPU has completed the processing the

“Map” command transfers the output data from video memory back to the main memory of the

computer [Code Listing 3, Lines 42 - 44].

51

Code Listing 3 : DirectCompute Dispatch Function

In order for a GPU to execute a Compute Shader and process data, the CPU must perform a number

of operations. Firstly, the objects which allow interaction with the driver for the GPU must be created

[Lines 1 - 2, 7]. Next buffers are created to store the input and output data [Lines 22 - 25] and these

buffers are converted to a GPU assessable format [Lines 27 - 29]. Subsequently the compiled shader,

the input data and output location are transferred to the GPU [Lines 31 – 36]. The “Dispatch()” [Line

39] call instructs the GPU to allocate the specified number of thread groups and begin processing the

1: ID3D11Device* pDevice = NULL;
2: ID3D11DeviceContext* pContext = NULL;
3: ID3D11ComputeShader* pCS = NULL;
4: ID3D11Buffer* pBuf = NULL;
5: ID3D11Buffer* pBufResult = NULL;
6: ID3D11ShaderResourceView* pBufSRV = NULL;
7: ID3D11UnorderedAccessView* pBufResultUAV = NULL;
8: int* pData = NULL;
9:
10: struct BufType
11: {
12: int i;
13: };
14:
15: int __cdecl main()
16: {
17: LoadData(pData);
18: CreateGraphicsDeviceAndContent(pDevice, pContext);
19: // Compile the shader
20: CreateComputeShader("BasicCompute11.hlsl", "CSMain", pDevice, &pCS);
21:
22: // Input Buffer
23: CreateStructuredBuffer(pDevice, sizeof(BufType), NUM_ELEMENTS,

&pData[0], &pBuf);
24: // Output Buffer
25: CreateStructuredBuffer(pDevice, sizeof(BufType), NUM_ELEMENTS, NULL,

&pBufResult
26:
27: // Create ResourceViews so that GPU can access the data
28: CreateBufferSRV(pDevice, pBuf, &pBufSRV);
29: CreateBufferUAV(pDevice, pBufResult, &pBufResultUAV);
30:
31: // Initialise the shader
32: pContext->CSSetShader(pCS, NULL, 0);
33: // Send Input Data to GPU
34: pContext->CSSetShaderResources(0, 1, &pBufSRV);
35: // Assign an output location for GPU’s computations
36: pContext->CSSetUnorderedAccessViews(0, 1, &pBufResultUAV, NULL);
37:
38: // Instruct GPU to start processing
39: pContext->Dispatch(NUM_ELEMENTS, 1, 1);
40:
41: // Read back the result from GPU, blocks this CPU thread until GPU

has finished
42: ID3D11Buffer* debugbuf = CreateAndCopyToDebugBuf(pDevice, pContext,

pBufResult);
43: D3D11_MAPPED_SUBRESOURCE MappedResource;
44: pContext->Map(debugbuf, 0, D3D11_MAP_READ, 0, &MappedResource);
45: }

52

data asynchronously. The “Map()” command [Lines 41 - 44] transfers the processed data back to the

CPU, furthermore it forces the CPU thread that executed the “Dispatch()” call to wait until the GPU

has finished processing, effectively blocking the thread.

2.3. Image Processing

The algorithm applies a number of image processing techniques to the X-ray image in order to

prepare it for use by the mesh generator. Most image processing algorithms are built around a

combination of averaging, edge detection, neighbourhood and texture analysis (Jähne, 2005, p.11).

2.3.1. Medical Imaging

2.3.2.1. Image Processing Techniques

Median filters are typically utilised in medical imaging as a pre-processing step for image

segmentation algorithms because of their ability to reduce noise whilst preserving edges, improving

the accuracy of the segmentation. Due to the considerable computational cost of applying these

filters, techniques have been developed to facilitate GPGPU processing (Voila et al., 2003), in order

to reduce execution times.

Kindelan and Lezo (1984) have recommended using the Hueckel Basis Function to detect Arteries in

medical images. This method suffers from a number of problems including difficulty processing areas

which contain arteries which are occluded or intersecting arteries. Furthermore it is an interactive

method, requiring user input to suggest an initial location for the algorithm to process the image.

Image registration is the technique used to correct inaccuracies contained within X-ray images by

comparing multiple X-ray exposes of the same area. Strzodka et al. (2004) propose a method of

Image registration which utilises GPGPU processing to improve the performance of the algorithm.

Whilst it may prove useful to incorporate similar functionality into the proposed algorithm, it is not a

simple prospect as multiple exposures are typically taken at different orientations in podiatric

surgery. The result of this restriction is the complexity of the registration process is substantially

increased.

A comprehensive discussion detailing a variety of image processing and analysis techniques

implemented by a system for the segmentation and landmarking of 3D CT scans has been suggested

(Banik et al., 2008). The system is broadly similar to the one we propose, in particular using

histograms, thresholding and active shape model detection to select the areas of interest contained

within the CT scan. The key difference is that system is designed to process 3D image data captured

53

by CT scans. Active Shape Model detection is a method commonly used by algorithms to obtain

areas of interest in medical images, such as nodules on X-ray images of a lung (Wei et al., 2002).

Using an artificial neural network to classify regions of interest (Yin and Tian, 2008) has been

developed; the system allows those regions extracted from an X-ray using edge chain code to be

categorized. An alternative system of automated classification in medical images has been proposed

(Shamir et al., 2008). The system assesses the severity of Osteoarthritis within a knee joint. It uses a

simpler system than an artificial neural network, accomplishing the classification by comparing the

knee joint depicted within an X-ray image to a number of preselected images containing knee joints

suffering from Osteoarthritis to different extents.

The superimposing of bones on top of organs in X-ray images can be a problem for image

segmentation techniques, however a method has been developed (Park et al., 2004) to limit the

effect this may have.

The use of an “edge aware” bilateral grid (Chen et al., 2007) has been suggested as a method to

improve the contrast of images, including medical images. The process increases contrast of the

images whilst respecting the edges contained in the image. A side effect of this process is that any

noise present is amplified along with the contrast. As the test images already have sufficient contrast

for the algorithm to function correctly, it is not necessary to implement similar functionality at this

time.

A system to validate the accuracy of 3D anatomical polygon meshes against CT or MRI images has

been proposed (Cardoso, 2010). A simulated CT or MRI is generated from the polygon mesh; this

allows the generated image to be compared with an image captured by a medical imaging device.

Similar functionality could be useful later in the project, in determining if the mesh created by the

procedural mesh generator is accurate.

2.3.2.2. Parallel Processing in Medical Imaging

GPGPU processing has gained considerable interest for computing various algorithms in medical

imaging because of its ability to significantly reduce execution times compared to a CPU. This has

found to be the case for image registration (Ansorge, 2008) and image segmentation (Roberts et al.,

2010), with the GPU offering substantial performance improvements over CPU implementations.

Schellmann et al. (2008) performed a comparative study into the cost-effectiveness of various

parallel processing architectures when used to perform medical image registration. The results of

the study found that GPGPU offer the most cost effective platform, however the difficulty of

development for the various architectures was not considered in the recommendations.

54

GPGPU processing has been shown to not only expedite the computation of medical imaging

algorithms, but also offer the most cost-effective method of achieving improved performance

(Schellmann et al., 2008) compared to shared memory and distributed CPU processing.

Multi-threading and various optimisation techniques have been trialled (Evans et al., 2010) to

identify the optimal method for reducing the time required to produce a diagnostically useful image

from the original image, when using a CPU to perform the computation. The research found that

multi-threading provides the most substantial speedup surpassing all other optimisations by a

minimum of a factor of five. The test was conducted using 16 threads which results in a 10x

speedup. By rearranging Amdahl’s Law to calculate it can be determined that the parallel portion

is [Equation 9] 96% of the total algorithm, resulting in a maximum potential speedup of 25x. This is

actually misleading because half of the threads are executed using logical processors via

HyperThreading. This offers much reduced computational power compared to 16 physical

processing cores, so the number of processors would in fact be less. Amdahl’s Law can be altered to

account for HyperThreading when calculating [Equation 10], however the performance penalty

incurred by using HyperThreading is difficult to determine as it is specific to the particular algorithm

and the employed processor to compute it.

Equation 9 : Calculating Parallel Portion

By re-arranging the formula proposed by Amdahl’s Law it can be shown that the algorithm being

optimised has 96% of its code which can be processed in parallel.

 (

)

Equation 10 : Amdahl’s Law for HyperThreading

Amdahl’s Law requires some alterations to reflect the performance of logical processors made

available with HyperThreading (Akhter and Roberts, 2006, pp.18-19). A logical processing core offers

only partial performance of a physical core. A speedup is achieved using processors (both

55

physical and logical) with a parallelisable portion and a performance pentalty per thread of to

reflect the reduced performance of logical processors.

2.3.2. Applicable Image Processing Techniques

2.3.2.1. Median Filtering

The median filter was selected to form part of the image processing algorithm because of its ability

to remove salt and pepper noise whilst retaining those edges which are present within the image

(Chan et al., 2005). Median filters are also suggested to be a good pre-filter to apply before

performing edge detection (Bovik et al., 1987). Applying a median filter to an image is a

computationally expensive prospect, especially for large-radius masks. To simplify the process of

removing both noise and the small unwanted elements typically present within an X-ray image, a

large-radius filter should be used (Jähne, 2005, p.317).

Median filtering algorithms tend to fall into two distinct categories: Histogram-Based and Sorting-

Based.

The basic histogram approach (Huang et al., 1979) [Code Listing 4] works by creating a histogram of

all the pixels contained within the mask area. Once all these pixels have been added to the

histogram, the algorithm iterates through the histogram bins until half the total number of pixels

contained within the mask area have been counted. The histogram bin number at which this occurs

is the median value for that particular mask area. The histogram approach is less efficient in terms of

memory payload for filters with small radii than a sorting based method, until (), where it

achieves parity.

56

Code Listing 4 : Histogram Based Median Filter Algorithm

A histogram approach to median filtering initially determines which histogram bin the current data

value corresponds to and then increments the count of the number of pixels in that particular bin

[Lines 2 – 7]. When all the pixels within the mask area have been added to the histogram, the

histogram bins are iterated through and the number of pixels contained within the bin is added to

the count of the total number of pixels processed so far [Lines 9 and 12]. When this count value is

greater than half of the mask area then the number of the particular bin being processed is the

median value [Lines 14 – 18].

The sorting based [Code Listing 5] approach again reads all the pixels within the mask in the same

manner but adds the values to a list instead of a histogram. This list is then subsequently sorted into

ascending17 value order, for example using bubble sort. The median value is located at the midpoint

of the list and as such it is a trivial process to calculate the median value once the list has been

sorted.

17

 The list can also be sorted into descending order.

1: //Iterate through all pixels within the mask
2: for(i = 0; i < maskArea; i++)
3: {
4: //dataValue must be in 0-255 range for 256 bin histogram
5: dataValue = data[maskPixelLocation];
6: histogram[dataValue]++;
7: }
8: count = 0;
9: for(i = 0; i < histogramSize; i++)
10: {
11: //Add the number of pixels at histogram location i
12: count += histogram[i];
13: //The median value is the value which the count equals half of the

mask area. Mask area is an integer so rounding will mean we don’t need to
test if it is equal to.

14: if(count > (maskArea / 2)
15: {
16: //Return the median value
17: return i;
18: }
19: }

57

Code Listing 5 : Sorting Based Median Filter Algorithm

The sorting based approach to median filtering starts by adding the data values of the pixels within

the mask to a list or other storage container such as an array [Lines 2 – 5]. These values are

subsequently sorted into numerical order using an appropriate sorting algorithm [Line 7]. Calculating

the median value is then a trivial process, as it is the value at the midpoint of the list [Lines 9 and 10].

Numerous methods have been devised to reduce the time required to process and apply a median

filter to an image. Of particular interest for this application are those techniques which can

potentially be parallelised or those which perform efficiently using large-radius masks.

Two fast median filtering algorithms which use a successive binning method have been proposed

(Tibshirani, 2008). The first, Binmedian, calculates the exact median value. The second, Binapprox

finds the approximate median value and is therefore faster but introduces the possibility that the

median value calculated may not be the exact value.

The Constant Time median filtering algorithm (Perreault and Hebert, 2007) is an efficient method for

applying large-radius median filters to images, exhibiting order O(1) runtime complexity compared

to the more typical O(n) of other median filtering algorithms. The algorithm reduces runtime

complexity and therefore the time required to apply a median filter by reusing the majority of a

previously calculated histogram to calculate median values of neighbouring pixels. The algorithm is

less than ideal for parallel processing, particularly “massively” parallel implementations such as

GPGPU. This is because it reduces runtime complexity by reusing the previously calculated histogram

which occurs far less frequently when median values are calculated in parallel. This effect is

cumulative, becoming more pronounced as the number of threads used to process the filter

increases. It does however indicate that drastically improved performance can be achieved by

minimising the number of redundant memory accesses required for large-radius filters.

There have been various attempts at producing a GPU accelerated median filter (Mitchell et al.,

2003; McGuire, 2008; NVIDIA, 2010d). Whilst these have managed to yield significant performance

improvements in comparison to their CPU counterpart implementations, they have been limited to

1: //Iterate through all pixels within the mask
2: for(i = 0; i < maskArea; i++)
3: {
4: list.add(data[maskPixelLocation]);
5: }
6:
7: //Sort Items in the list using a fast sorting algorithm
8: list.Sort();
9:
10: int mid = list.Size() / 2;
11: return list[mid];

58

small-radius (and) masks due to limitations of current graphics processors. All of these

GPGPU methods are typified by their adoption of a sorting based approach to median filtering,

which is better suited to GPU architectures. There appears to currently be no GPU median filtering

algorithms which utilise a histogram based approach. This is probably due in part to the restrictions

placed on algorithm design by the hardware limitations of the GPU and the fact that histograms

have a significantly larger memory payload than a sorting based approach, this being more

pronounced for smaller radii.

The fast small-radius (McGuire, 2008) method is essentially a sorting based median filter based on

Paeth’s (1990) CPU algorithm which has been adapted to better suit current GPU architectures. This

has been achieved by the use of a branchless bi-directional bubble sort using hardware accelerated

min and max operations. A similar branchless median filter (Kachelriess, 2009) has been proposed

for CPU utilising SSE instructions. The median filter is processed using a single pass. The fast, small-

radius implementation allows the data to maintain parallelism for each pixel but comes at a cost of

requiring redundant memory accesses, unlike the constant time algorithm. The Separable Median

Filter Approximation (Mitchell et al., 2003) technique for median filtering uses a two pass solution,

sorting first horizontally then vertically. It uses branches to sort these values; therefore it will incur a

performance penalty for this. Additionally the median value calculated by this method is only an

approximation, so the value may be close to the median value but not the actual value.

2.3.2.2. Histogram Calculation

Histograms are one of the basic tools for image analysis and are used by the optimum thresholding

algorithm [Section 2.3.2.3]. Histograms are difficult to parallelise due to the number of potential

conflicts that may occur by different threads writing to the same bin at the same time (this is

reduced with larger numbers of bins). A popular method for parallel histogram calculation is by

reduction, whereby each thread calculates its own sub-histogram for the area it is assigned to. When

all the sub-histograms have been generated, the sub-histograms are then combined together into a

single histogram.

A scatter based method of GPU histogram generation has been proposed (Scheuermann and

Hensley, 2007) and makes use of various Shader Model 3 vertex shader functions, including Vertex

Texture fetch. It allows a large number of bins18 to be used, but it is restricted to processing textures

18

 Up to 1024 bins.

59

with dimensions which are a power of two19. This would require the X-ray images to be resized

(Kazhdan and Hoppe, 2008, p.7) as their native dimensions are not a power of two.

A parallel reduction method of GPU histogram calculation using OpenCL (Podlozhnyuk, 2009) is an

alternative; however the number of histogram bins is restricted by the size of the local cache

memory available. Both of these approaches also suffer from performance bottlenecks when using a

small number of bins, which may be exacerbated by distribution of the input data. In the case of the

partially processed X-rays the distribution is confined to a small range of values resulting in an

increased number of collisions. Two CUDA specific parallel reduction (Shams and Kennedy, 2007)

methods similar to the previously mentioned OpenCL technique have been implemented and

evaluated. The first and fastest method is broadly similar to the OpenCL technique but the second

utilises global memory instead of the local cache memory. This has two benefits over using cache

memory: the distribution of data is not a factor in performance and it allows significantly more bins

to be used per histogram. However a significant performance penalty is incurred because cache

memory is considerably faster than global memory.

2.3.2.3. Thresholding

The optimum thresholding (Myler and Weeks, 1993, p.175) technique analyses an image’s histogram

and locates the value at the valley between the two predominant peaks (one peak is the background

and the other is the object) in the histogram. This value is subsequently used as the threshold value

allowing a threshold operation to remove the image’s background. The technique allows a threshold

value to be determined automatically without requiring user input.

A method for GPU thresholding (Tatarchuk, 2008) an image as part of a GPU-Based Active Contours

algorithm has been developed. This technique converts a colour image into grayscale and then

subsequently uses a manually specified threshold value or one computed using the histogram. It is

not explicitly stated which method is used or indeed if the GPU is used to calculate this threshold

value if it is an automated calculation.

2.3.2.4. Sobel Edge Detection

Sobel edge detection filters are used to highlight edges contained within an image and are typically

employed in conjunction with feature extraction algorithms to improve the accuracy of the

segmentation. They are however affected by noise and therefore are not ideal for use with images

which contain a high level of noise (Petrou and Bosogianni, 1999, p.306). Applying noise reduction

techniques such as median filtering or a 3D bilateral filter (Langs and Biedermann, 2007) to the

19

 Graphics cards typically require textures to have dimensions which correspond to a power of two value.

60

image would prevent this from becoming an issue whilst preserving edges. An improved version of

the Sobel filter (Wang, 2006) has been developed which offers enhanced performance when

performing edge detection on images with a constrained range of luminance values. The basic Sobel

filter should prove sufficient for this project as the X-ray images have a comparatively large range of

luminance values.

2.3.2.5. Feature Extraction

Like most image processing techniques there are a number of methods available for detecting and

extracting features from images, ranging from fairly simple contour tracking to complex algorithms

that analyse not only contours but texture. Active Contours (“Snakes”) (Kass et al., 1988) are a

method of feature extraction which attempts to extract a shape by altering the location of a set of

points so that they enclose the target feature. “Snakes” are the predominant method of feature

extraction in medical imagery (McInerney and Terzopolous, 1996). Active Shape Models (ASMs)

(Cootes et al., 1995) are an improvement of the “Snakes” feature extraction technique, being

capable of locating objects whose appearance may vary. ASMs locate objects by being trained using

a number of images with marked landmark points covering the possible shape variations. Active

Appearance Models (AAMs) are gaining popularity because whilst ASMs are faster to implement

than AAMs, an AMM requires fewer landmark points and typically converges to a better result,

especially in terms of textures (Cootes et al., 1999). AAMs differ from ASMs mainly due to the fact

that they also analyse the texture of areas surrounding the landmarks.

A GPGPU implementation of the “Snakes” feature extraction algorithm has been developed

(Tatarchuk, 2008), offering real time performance. An alternative method of feature extraction is

histogram-based searching (Sizintsev et al., 2008), whereby the histogram of a template image is

compared to the histogram of a subsection of the image to determine the location of the template

within the image. This method is not particularly useful for our algorithm as it will be difficult to

generate templates which will function with the large amount of variety expected in the X-ray

images the algorithm will process.

2.4. Conclusions

This literature review has shown that utilising parallel processing in general and GPGPU in particular

can yield significantly improved performance for the computation of an algorithm compared to a

sequential implementation. A considerable amount of research into GPGPU based image processing

has been conducted, exploring a wide variety of image processing techniques. However the lack of a

GPGPU median filtering algorithm that is capable of applying large-radius masks is a noticeable

61

omission. This can be ascribed to the difficulties of implementing such an algorithm on the restrictive

architecture of a GPU and their limited use in image processing.

The performance benefits of utilising GPGPU are well documented, however they are still disputed

particularly when the performance benefits are considered with the increased difficulty of

development. These results must be approached with some scepticism for a number of reasons:

 A great deal of the research does not compare the performance results with the most

efficient CPU algorithm.

 Those algorithms which benefit most from GPGPU processing are typically suited to SIMD

processing.

 Testing is typically conducted using the most powerful GPU available at the time.

62

3. Methodology

3.1. Overview

The methodology adopted for this research is centred on conducting experiments which generate

quantitative results. This will allow a quantitative analysis of the relative performance of the various

algorithm implementations to be conducted.

3.2. Implementation

The algorithm will be implemented in C++ and HLSL. It will use compiler settings specified in Table 11

to apply the same optimisations to all versions of the algorithm. The GPGPU version will use pre-

compiled shaders to minimise the overhead of compiling at runtime, as this is how GPGPU programs

are typically implemented. Wherever possible, buffers for transferring data to and from the GPU will

be re-used to minimise the overhead incurred by transferring data.

It may not be practical to perform GPGPU processing for all aspects of the algorithm, therefore those

portions of the algorithm which cannot be processed efficiently by a GPU will utilise the MIMD

implementation. The reasoning behind this decision is that GPGPU algorithms tend to be

implemented to reduce the execution time of an algorithm and the MIMD should offer improved

performance over the SISD implementation for those sections which cannot be effectively processed

by a GPU.

3.3. Data Gathering

A number of experiments will be conducted on the various implementations of the algorithm. These

will be mainly quantitative tests, measuring the time required to execute the algorithm or a

particular component. The performance timings will be gathered using high performance timers,

however a GPU is an asynchronous processing device so care has to be taken to ensure that the

timers are setup correctly [Section 2.2.4.1].

3.3.1. Algorithm Experiments

The following tests will be performed on the algorithm and the output images it generates:

1. Overall Algorithm (Quantitative): This test will compare the relative execution times for the

various implementations of the algorithm. The execution times will include the amount of

time required to convert the data to an appropriate format.

63

2. Individual Components (Quantitative): A comparison of the execution times for individual

components of the algorithm will be conducted. This will help to determine if particular

components of the algorithm are particularly suited to parallel processing.

3. Data Formats (Quantitative): This test will determine what is the most appropriate data

format for a particular processor architecture.

4. Median Filters (Quantitative): A comparative test of the performance between the various

implementations of GPU median filters. Performance results of the CPU median filters with

the same size masks will be included to allow better comparisons to be made. This test will

be conducted with both a small-radius () mask and a large-radius () mask.

5. Optimum Number of Threads (Quantitative): An experiment to establish the optimum

numbers of threads per thread group for the development GPU.

6. Average Image Error (Quantitative): A quantitative test to determine if there are any

differences between images produced by each implementation of the algorithm. The test

will record the number and average size of the errors.

7. Image Comparison (Qualitative): A visual inspection of the output images to establish how

significant the impact of any errors or differences are on the images produced.

8. Implementation Difficulty (Qualitative): An assessment of the difficulty of implementing the

algorithm on the various parallel architectures. The test is difficulty to conduct scientifically

therefore the conclusions on this will strictly be the author’s personal opinion.

To ensure the tests are accurate and the results are replicable the following steps will be taken:

 The test will be performed 50 times and the average time of these will be used in any

calculations, this is to reduce the impact any anomalous results may have.

 The computer will be updated to ensure it has the latest video card drivers, DirectX and

Operating System updates.

 All non-essential software, background services and power management will be disabled so

that the performance of the CPU and GPU is not impaired.

 The performance timings for the overall and individual components will be collected at the

same time, this will eliminate any differences in execution time that may occur if these

experiments were conducted separately.

 High performance timers (Dawson, 2010) will be used to measure the execution times of the

various algorithm implementations.

64

3.4. Results Analysis

The results of the various experiments will be analysed using the SISD implementation as the control

group. This will allow the speedup of the multi-core CPU (MIMD) and GPU (SIMD) implementations

of algorithm to be calculated using the formulas detailed in the literature review [Section 2.2.4].

When analysing the overall performance of the algorithm, the additional time required to convert

data into the optimum format must be considered. This will be clearly indicated in the analysis and

added to the overall execution time of the GPU algorithm. However when comparing individual

components of the algorithm it would be unfair to do this as the primary concern is how fast the

GPU implementation is at a particular operation because other applications of these components

may not require the data to be converted, unlike our implementation.

There is a possibility that inconsistencies between the rounding of floating point values by CPUs and

GPUs may introduce errors or produce different images. A quantitative assessment of these

differences will be conducted by comparing the images produced with the control image generated

by the SISD implementation. Whilst the various implementations may produce different images,

these inconsistencies may not unduly affect the final output. Therefore a qualitative test in the form

of a visual inspection will be conducted to ensure that the images produced by the different

implementations are similar enough so as to not affect the results.

65

4. Implementation

4.1. Overview

The proposed algorithm is designed to provide an automated method for isolating and subsequently

separating areas of interest such as bone from other unwanted objects contained within a digital X-

ray image. These manipulated images will be used to generate a 3D mesh representing the foot

depicted in the X-rays. The algorithm will be developed in three variants, one for each of the

following processor architectures: SISD (Single Core CPU), MIMD (Multi-core CPU) and SIMD (GPU).

The SISD implementation will use standard C++ code and will be used to provide a baseline value

when calculating the amount of speedup produced by the parallel implementations. The MIMD

variant will share the majority of its C++ code with the SISD implementation and use OpenMP to

provide the thread management and other parallel processing constructs. The SIMD version will use

DirectCompute to leverage the parallel processing capabilities of the GPU. The algorithm will be

developed to be capable of processing data in both unsigned integer and floating point data formats.

Figure 13 : Proposed Method for Processing an X-ray Image

This diagram demonstrates the process that will be applied to the original X-ray image in order to

produce the required image.

4.2. General Algorithm Description

The algorithm prepares X-ray images by extracting image data from a DICOM file20 and subsequently

converting it to an appropriate data format for processing. The image data is processed in five

discrete stages [Figure 13]; the selected image processing techniques are applied sequentially in the

following order to the entire area of the image: Median Filtering, Histogram Calculation and Image

Thresholding, Sobel Edge Detection, Active Contour Model (ACM) Feature Extraction, Threshold

Mask.

20

 Digital X-rays also contain additional data including information about the method of capture, the X-ray
device and patient details.

Base
Image

Median
Filter

Calculate
Histogram

and
Threshold

Sobel
Edge

Detection

Active
Contour
Model

Feature
Extraction

Threshold
Mask

Final
Image

66

Figure 14 : Anticipated Algorithm Output

The image above depicts the anticipated output of the algorithm at the various stages of the

algorithm. Clockwise from the top left corner the images are: Initial X-ray input, Large-Radius Median

Filter, Threshold and Sobel Edge Detection.

4.2.1. Median Filter

The first stage of the algorithm consists of applying a large-radius () median filter to reduce

the background salt-and-pepper noise present in the image. A median filter is particularly suited to

this task compared to alternative noise reduction techniques such as arithmetic mean filtering

because it preserves edges which are important later in the algorithm, when locating the bones

contained within the image. Additionally a large-radius mask allows the algorithm to remove the

relatively small unwanted objects, such as text [Figure 4, Figure 6] which may be present in the X-ray

image. This removes the need to apply an additional feature extraction pass to the image before the

median filter operation. If these elements were not removed from the image, the histogram and

therefore the threshold value could be skewed, resulting in the threshold operation either retaining

some of the unwanted elements or conversely removing too much of the desired information. The

ability of the median filter to preserve edges depends on how large the radius of the median filter is,

67

relative to the size of the object containing those edges. The bones in the X-rays are comparatively

large compared to the radius size and therefore their edges should be only slightly affected by the

median filter.

4.2.2. Histogram and Image Thresholding

The thresholding process will help to remove the background(s) contained within the X-ray image

whilst retaining the areas of interest. The threshold value is calculated by analysing the image’s

histogram, allowing the thresholding operation to be fully automated. The thresholding operation

examines all the pixels within the image comparing them to the threshold value. All those which do

not meet the threshold criteria are replaced with the minimum brightness value.

After the median filter operation, the algorithm subsequently calculates a 256-bin histogram of the

entire image. This histogram is analysed to obtain a threshold value for use in the threshold

operation. A 256-bin histogram was selected because it represented the best compromise between

the memory payload of the histogram21 and the production of an accurate threshold value.

The analysis of the histogram is accomplished calculating the gradient between each histogram bin

and using this information to ascertain the locations of the peaks and troughs within the histogram.

The threshold value is chosen by finding the leftmost peak which contains over 10%22 of the image’s

total pixels and locating the value at the trough on its left-hand side. It selects the trough rather than

the peak as this gets rid of additional noise at a cost of removing a minimal amount of detail around

the bone edges. This allows the automated threshold value to function correctly when operating on

images both with [Figure 6] and without [Figure 4] secondary backgrounds. Images with a secondary

background produce two distinct peaks [Figure 16] whereas images without produce a single distinct

peak [Figure 15]. For both types of image the tallest peak represents where the majority of the

region of interest resides.

X-ray images are encoded in one of two formats, MONOCROME1 where black is used to represent

bone or MONOCROME2 where white is used. The test X-ray images are encoded in MONOCROME123

format. As a result the algorithm searches right to left to locate the threshold value. For a

MONOCROME2 image the data values would be inverted, requiring either the threshold value

21

 The number of bins affects how much memory a histogram occupies, with larger numbers of bins requiring
large amounts of memory.
22

 This value will vary depending on how much of the total image area is occupied by areas of interest.
23

 Note that whilst the X-rays are processed in MONOCHROME1 format, in this document the X-ray images are
depicted as MONOCROME2 to maintain consistency with how the majority of medical applications handle
MONOCROME1 format X-ray images.

68

calculation to operate left to right or the pixel values to be inverted when they are obtained from

the DICOM file.

Figure 15 : Typical X-Ray Image Histogram

The above histogram is generated from the image in Figure 3. The soft tissue and bone produce a

distinct peak. The threshold value is approximately located at the Red X marked on the graph.

Figure 16 : X-ray Image Histogram with Secondary Background

The above histogram is generated from the image in Figure 5. The soft tissue and bone produced the

largest peak and a second smaller distinct peak is produced by the secondary background. The

threshold value is approximately located at the Red X marked on the graph.

0

100

200

300

400

500

600

700

800

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

N
u

m
b

e
r

o
f

P
ix

e
ls

 Th
o

u
sa

n
d

s

Brightness Value

0

100

200

300

400

500

600

700

800

900

1,000

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

N
u

m
b

e
r

o
f

P
ix

e
ls

Th
o

u
sa

n
d

s

Brightness Value

69

4.2.3. Sobel Edge Detection

Sobel Edge detection is performed on the image resulting from the previous step [Section 4.2.2].

This will highlight the edges of the bones making them more defined and improving the accuracy of

feature extraction process [Section 4.2.4].

4.2.4. Active Contour Model Feature Extraction

Active Contour Model (ACM) feature extraction will be used to ascertain the location of the bones

contained within the image. All data outside the contours produced by ACM will be removed from

the image as this is likely to be the remaining soft tissue which was not removed by the threshold

operation. Overlapping bones could potentially be a considerable problem when segmenting the

image. However as multiple X-rays images taken at a number of different angles are processed to

generate a mesh, it should be possible to identify the bones by comparing images as they will not

overlap in all images.

4.2.5. Threshold Mask

The final image is created by performing a threshold operation on the original unaltered X–ray image

using a mask produced using the previous steps. The areas of interest selected contained within the

contours generated using the feature extraction technique will be written to the mask image as

white pixels and the remainder will be black pixels. Each pixel of the original X-ray is compared in a

simple Boolean threshold operation, and those pixels whose corresponding pixel in the mask image

is not white will be set to black. Those pixels contained in the areas of interest retain their original

brightness value. This is to prevent the median filter from removing the fine details stored within the

bones when applied to the image.

4.3. SISD Implementation

The SISD version was implemented in C++, sharing the majority of its source code with the OpenMP

implementation [Section 4.4] but with the OpenMP statements removed. This forces the code to be

executed sequentially rather than in parallel by the CPU.

4.4. MIMD Implementation

The MIMD implementation shares the majority of its code with its SISD counterpart. OpenMP

instructions are used to execute code in parallel. Simultaneous MultiThreading (SMT) or

HyperThreading (HT) Technologies are not supported any further than the default support provided

by OpenMP constructs.

70

Code Listing 6 : OpenMP Synchronisation Constructs

The OpenMP instruction “#pragma omp barrier” [Line 2] is a compiler directive used for

synchronisation. It instructs the program to wait until all threads have completed processing the

preceding parallel section. Once this has occurred the threads are allowed to continue. The “#pragma

omp master” [Line 4] forces the subsequent code to only execute on a single thread.

4.4.1. Median Filtering

Due to the requirement of the algorithm to employ a large-radius median filter, the most obvious

solution is to adopt a histogram approach to median filtering [Code Listing 4]. This technique offers a

reduced memory payload for the chosen radius compared to sorting based methods. Furthermore

the code complexity of the median calculation is lower as it does not require an efficient sorting

algorithm such as quicksort.

The techniques for reducing the execution time required to process a median filter utilised by the

Constant Time Median Filter (Perreault and Hebert, 2007) could be incorporated. However this could

reduce the scalability of the algorithm and possibly require a significant number of synchronisation

constructs, thereby reducing the benefits derived from parallelisation. Therefore the current

implementation is essentially only a parallelised version of the basic histogram method [Code Listing

4], but this does still allow those techniques employed by the Constant Time Median Filter to be

incorporated if necessary.

The histogram approach is very scalable as each pixel’s calculation of a median value is a self-

contained process, requiring no explicit synchronisation. To process the median filter in parallel

requires OpenMP compiler directive “#pragma omp for” [Code Listing 7, Line 8]. This instruction

distributes the computation required for each pixel evenly to all available processing cores. Each

thread requires its own location in memory to store a histogram of the area that it is currently

computing, therefore the “private” keyword [Code Listing 7, Line 4] is employed to facilitate this.

1: // Wait.
2: #pragma omp barrier
3:
4: #pragma omp master

71

Code Listing 7 : OpenMP Median Filter

This implementation is essentially the basic histogram median filter [Code Listing 4] adapted to suit

an OpenMP parallel processing model; the median value for each pixel is calculated independently

with the pixels being evenly distributed between the processing cores. The main alteration is the

declaration of the histogram so that each thread has a separate histogram [Lines 4 and 6] to utilise,

removing the need for synchronisation constructs.

4.4.2. Histogram and Thresholding

The calculation of the image’s histogram and the optimum threshold value present a more complex

problem to parallelise; specifically it requires a great deal of synchronisation to ensure that the

correct values are calculated. Parallel reduction appears to be the most common method of utilising

parallel processors to computing a histogram. Whilst OpenMP features an intrinsic instruction to

1: int index;
2: int* histograms;
3:
4: #pragma omp parallel private(histograms)
5: {
6: histograms = new int[256];
7:
8: #pragma omp for
9: for(int i = (radius * width); i < numPixels - (radius * width); i++)
10: {
11: //RESET HISTOGRAM!
12: for(int j = 0; j < 256; j++)
13: {
14: histograms[j] = 0;
15: }
16:
17: int index;
18: for(int x = 0; x < radius; x++)
19: {
20: for(int y = 0; y < radius; y++)
21: {
22: index = i + (((y - (radius/2))* width) + (x -

(radius/2)));
23: histograms[(int)(data[index] * 255)]++;
24: }
25: }
26:
27: int count;
28: count = 0;
29: for(int j = 0; j < 256; j++)
30: {
31: count += histograms[j];
32: if(count >= ((radius * radius) / 2))
33: {
34: temp[i] = ((float)j / 255.0f);
35: break;
36: }
37: }
38: }
39: delete[] histograms;
40: }

72

perform parallel reduction [Code Listing 8, Line 3], it cannot be employed when processing arrays

and consequently requires the parallel reduction used to calculate the histogram calculation to be

specified manually [Code Listing 9].

Code Listing 8 : OpenMP Reduction Operation

The “reduction(+ : nSum)” [Line 3] instruction allows a number of processors to increment the

value “nSum” in parallel with minimal synchronisation. Each thread increments its own copy of

“nSum”, and when all threads are finished these are combined by a single thread.

Each thread calculates a histogram for a portion of the image [Code Listing 9, Lines 11 - 16]. Once

this operation has been complete the thread is instructed to wait until all other threads have

completed their histogram [Code Listing 9, Line 19]. A single thread combines these sub-histograms

into a single histogram for the entire image [Code Listing 9, Line 22 – 29]. This requires that the

threads write their particular sub-histograms to a shared location in memory. In order for threads to

share a particular location in memory it must be marked with the “shared” keyword *Code Listing 9,

Line 9].

1: #pragma omp parallel
2: {
3: #pragma omp for reduction(+ : nSum)
4: for (i = 0; i <= 1000; i++)
5: {
6: nSum += i;
7: }
8: }

73

Code Listing 9 : OpenMP Histogram Calculation

The histogram of the entire image is unable to use the OpenMP “reduction” instruction because it

cannot operate on array data structures. The code above effectively replicates the functionality

provided by the “reduction” instruction, but for array data structures.

An alternative would be to use atomic operations [Code Listing 10, Line 14], which would allow all

threads to write to the same histogram. However if two threads attempt to write to the same

memory location at the same time, one thread must yield and remain idle until the other thread has

completed its operation. The likelihood of this occurring is directly related to the distribution of the

brightness values in the image, which in the case of the partially processed X-rays is quite low and

will therefore impair performance.

1: int amount = omp_get_max_threads() * 256; // Allocate enough memory for a
histogram per thread.

2: int* hist = new int[amount];
3:
4: for(int i = 0; i < amount; i++)
5: {
6: hist[i] = 0;
7: }
8:
9: #pragma omp parallel shared(hist)
10: {
11: #pragma omp for
12: for(int i = 0; i < numPixels; i++)
13: {
14: int value = data[i] / 256; // Convert into 0-255 range.
15: hist[value + (omp_get_thread_num() * 256)]++;
16: }
17:
18: // Wait.
19: #pragma omp barrier
20:
21: // Execute only on a single thread and write the merged histogram to

the beginning of the shared memory location.
22: #pragma omp master
23: for(int j = 0; j < 256; j++)
24: {
25: for(int k = 0; k < omp_get_max_threads(); k++)
26: {
27: histogram[j] += hist[j + (k * 256)];
28: }
29: }
30: }

74

Code Listing 10 : OpenMP Histogram Calculation via Atomic Operations

A histogram of the entire image can be calculated by a number of threads using atomic operations to

ensure accuracy. The performance of this method of histogram calculation is directly related to the

distribution of brightness values in the image and typically exhibits poor performance.

The gradients between histogram bins are calculated independently resulting in this operation being

a simple process to parallelise [Code Listing 11, Line 2 – 9]. The next portion of the threshold

operation ascertains the location of the peaks and toughs within the image’s histogram [Code Listing

11, Line 13 – 43]. This is performed sequentially because a significant amount of the arithmetic relies

on the previously calculated value. If the current location is determined to be either a peak or a

trough, it along with related useful information is added to a list. This list is then analysed to

ascertain which histogram bin contains the trough of the leftmost peak which contains at least 10%

of the image’s total number of pixels. The actual threshold operation is processed in parallel, as the

operation performed on each pixel is completely independent, requiring no explicit synchronisation.

1: int* hist = new int[256];
2:
3: for(int i = 0; i < amount; i++)
4: {
5: hist[i] = 0;
6: }
7:
8: #pragma omp parallel
9: {
10: #pragma omp for
11: for(int i = 0; i < numPixels; i++)
12: {
13: int value = data[i] / 256; // Convert into 0-255 range.
14: #pragma omp atomic
15: hist[value]++
16: }
17: }

75

Code Listing 11 : OpenMP Threshold Operation

This source code calculates the appropriate threshold value by analysing the histogram [Lines 2 – 39].

Once this value is determined it then proceeds with the threshold operation using this value [Lines 42

– 52]. Not all of this process can be effectively processed in parallel [Lines 10 – 39]; therefore they are

processed serially using a single processing core. The threshold value is located by analysing the

1: //Reversed Iteration Because Image is inversed!
2: #pragma omp parallel
3: {
4: #pragma omp for
5: for(int i = 255; i >= 0; i--) //skip 0
6: {
7: gradient[i] = ((histogram[i-1]) - histogram[i]) / ((i-1) - i);
8: }
9: }
10: gradient[0] = 0;
11: area = 0;
12:
13: for(int i = 254; i > 0; i--) //SKIP 0 also SKIP 254
14: {
15: area += histogram[i];
16:
17: if(gradient[i+1] > 0)
18: {
19: if(gradient[i] <= 0)
20: {
21: Feature f;
22: f.location = i;
23: f.percentage = (float)area / (float)numPixels;
24: area = 0;
25: features.push_back(f);
26: }
27: }
28: }
29:
30: for(int i = features.size() - 1; i > 0; i--)
31: {
32: if(features[i].percentage >= 0.1f)
33: {
34: largestID = features[i].location;
35: }
36: }
37:
38: //ID is in 0-255 Range
39: threshold = largestID * (4096 / 256);
40:
41: //IMAGE IS INVERTED SO >= THRSHOLD INSTEAD OF <=
42: #pragma omp parallel
43: {
44: #pragma omp for
45: for(int i = 0; i < numPixels; i++)
46: {
47: if(data[i] >= threshold)
48: {
49: data[i] = 0;
50: }
51: }
52: }
53: return data;

76

gradients between histogram bins [Lines 13 – 28] and determining how many of the image’s total

pixels are contained within the particular peak. The peaks are then examined in reverse order to find

the leftmost peak which contains over 10% of the images total pixels [Lines 30 – 36].

4.4.3. Sobel

The Sobel filter is processed in parallel [Code Listing 7, Line 3] with each pixel being totally

independent of its neighbours. No explicit synchronisation constructs are required because as

previously mentioned the operation performed on each pixel is totally autonomous from all other

pixels.

Code Listing 12 : OpenMP Sobel Filter

Each pixel can be calculated in parallel with the Sobel filter [Lines 1 – 4]. The filter contains a

comparatively large amount of arithmetic, multiplying each pixel within the mask area by a

corresponding matrix element [Lines 6 and 8]. This is performed twice, once for the vertical edges

and again for the horizontal edges. These two values are squared and then combined, after which

the square root of this value is calculated [Line 10].

4.4.4. Active Contour Model Feature Extraction

Due to the substantial amount time required to develop the other components of the image

processing algorithm, particularly the various approaches to GPU median filtering, it was decided to

concentrate on improving the median filtering algorithm rather than implement an Active Contour

Model algorithm and to develop this functionality at a later date.

1: #pragma omp parallel
2: {
3: #pragma omp for
4: for(int i = width; i < numPixels - width; i++)
5: {
6: int vert = ((data[i - width - 1] * matrix[0]) + (data[i -

width] * matrix[1]) + (data[i - width + 1] * matrix[2]) + (data[i - 1] *
matrix[3]) + (data[i] * matrix[4]) + (data[i + 1] * matrix[5]) + (data[i +
width - 1] * matrix[6]) + (data[i + width] * matrix[7]) + (data[i + width +
1] * matrix[8]));

7:
8: int horiz = ((data[i - width - 1] * matrix[9]) + (data[i -

width] * matrix[10]) + (data[i - width + 1] * matrix[11]) + (data[i - 1] *
matrix[12]) + (data[i] * matrix[13]) + (data[i + 1] * matrix[14]) + (data[i
+ width - 1] * matrix[15]) + (data[i + width] * matrix[16]) + (data[i +
width + 1] * matrix[17]));

9:
10: int value = (int)sqrt((float)((vert*vert) + (horiz * horiz)));
11:
12: output[i] = (unsigned short) value;
13: }
14: }

77

4.4.5. Threshold Mask

This operation is fundamentally the same as the threshold operation [Section 4.4.2], except that the

threshold value is altered per pixel according to values stored in a mask image.

4.5. SIMD Implementation

The DirectCompute implementation differs considerably from the CPU algorithms. This is due to a

number of reasons, primarily because parallelisation is implicitly implied within the HLSL code.

Synchronisation is still explicitly stated and additionally it can only be performed between the

threads within the same thread group. Another issue is that data has to be transferred into a GPU

accessible data structure and possibly converted to an appropriate data format before it can be

processed. The transferring of data between the GPU and CPU is a necessity but incurs overhead so

therefore should be kept to a minimum.

4.5.1. Median Filtering

Two median filtering algorithms are proposed, the first is a development of the fast, small-radius

median filter algorithm (McGuire, 2008) which exploits the cache memory available in

DirectCompute and the second is a histogram method again utilising cache memory.

The large-radius median filter required by the algorithm is particularly problematic for a GPGPU

implementation because current GPU accelerated methods are limited to performing median filters

with small-radius masks. Performing a small mask multiple times on the image is suggested as a

potential workaround (McGuire, 2008), however for this particular problem it will not produce the

desired result, as text and other unwanted objects will remain because they are larger than the

radius of a small mask. A sorting based method [Code Listing 5] is impractical for use on a GPU as the

memory payload increases with the radius size and using a large number of threads in parallel

exacerbates the situation. The histogram method [Code Listing 4] has a fixed memory payload

regardless of radius size24 making it possible to implement using either the GPU’s global or cache

memory. The number of accesses to global memory required by median filters, particularly those

with large-radius masks is an acute problem for GPU processing. GPGPU algorithms favour a high

compute to memory access ratio (Thibieroz and Cebenoyan, 2009, p.3) to help hide the considerable

latency incurred by accessing global memory on a GPU.

Due to the restrictions on how cache memory can be accessed in CS4.0 [Section 4.6.2] the GPU

accelerated median filters will employ CS5.0 unless specifically stated otherwise. As the X-ray images

24

 This remains true whilst the number of pixels a single histogram bin may possibly contain is less than the
maximum value of a 32bit unsigned integer.

78

tested have dimensions which are not a power of two values, it may not be possible to allocate the

optimum number of threads per SIMD engine on all current GPU architectures. It is possible to pad

the image to make it a power of two, however doing so would unfairly penalise Nvidia GPUs as they

process data in scalar format rather than vectorized like AMD GPUs and in its current for

DirectCompute does not have the functionality to detect which GPU is performing the processing.

4.5.1.1. Fast, Small-Radius Algorithm

This median filtering algorithm is essentially the fast, small-radius median filter algorithm proposed

by McGuire (2008) implemented in compute shader form for purely comparative purposes. Initially it

reads the mask area to a temporary variable. These values are then sorted using a min-max

exchange [Code Listing 13, Line 35 – 39] avoiding the performance penalties incurred when

performing a sorting algorithm which utilises branch operations (McGuire, 2008, p.168).

4.5.1.2. Caching Algorithm

The caching algorithm employs the fast, small-radius algorithm as the basis of the processing, but

crucially it pre-loads the relevant portion of the image data into the available cache memory. The

principal aim is to minimise the number of accesses to global memory required by the median filter,

similar to the caching method suggested by Zink (2010). The median filter masks of neighbouring

pixels overlap considerably [Figure 17], resulting in the fast, small-radius algorithm containing a large

number of redundant accesses to global memory. As each thread group processes a strip of

neighbouring pixels from the image to perform the median filter operation, a significant portion of

these memory accesses can be transferred to cache memory by pre-loading the relevant portion of

the image. The caching algorithm does not reduce the number of redundant memory accesses but it

does transfer them to cache memory which offers improved performance compared to global

memory (Green, 2009).

79

Figure 17 : Mask Overlaps between Neighbouring Pixels

This diagram depicts the amount that overlap (Purple) in a () median filter mask for two

neighbouring pixels. The back layer (White Boxes) represents the entire X-ray image, the mid layer

represents those pixels which need to be accessed to calculate the median values. The front layer is

the two pixels for which the median values are being calculated. Pixel A’s mask (Blue and Purple) and

Pixel B’s (Red and Purple) Mask contain 20 shared pixels within the overlapping area of the masks.

The caching algorithm functions by having each thread within a thread group transfer a single

column25 of pixels from global memory into cache memory. To achieve this, the algorithm requires

one thread for each pixel that is contained within the strip to be processed and an additional (radius

- 1) threads. An alternative method would be to use one thread for each pixel in the strip and to

distribute the pixels contained within relevant portion of the image amongst these threads,

removing the need for the additional (radius - 1) threads. This may however lead to the threads

having unbalanced workloads, which impairs performance on SIMD architectures. A synchronisation

construct [Code Listing 13, Line 18] is used to guarantee that the entirety of the relevant portion of

the image is transferred into cache memory before the threads proceed with the median calculation.

25

 The algorithm would function in the same way if the strip were allocated vertically instead of horizontally,
except that each thread would load a row of pixels instead of a column.

80

The calculation of median value remains identical to the fast, small-radius filter [Code Listing 13, Line

35 – 39] except that the additional threads used to help load the image do not perform the

calculation and remain idle [Code Listing 13, Line 23].

For example, based on this algorithm [Figure 18], if a thread group operates on a strip of four pixels

using a () median filter mask then the fast, small-radius algorithm would require four threads

(one per pixel) but the caching algorithm would require an additional two (radius – 1) threads for a

total of six.

Figure 18 : Caching 3x3 Median Filter Diagram

This diagram demonstrates the number of threads the caching algorithm requires to calculate the

median values for a strip of four neighbouring using a () mask. The back layer (White Boxes)

represents the entire X-ray image, the mid layer represents those pixels which need to be accessed to

calculate the median values. The pixels are colour coded to identify which particular thread they are

loaded into cache memory by. The blue pixels are loaded by thread 1, the red pixels by thread 2, the

green pixels by thread 3, etc. The front layer is the four pixels for which the median values are being

calculated, thread 1 and 6 (Blue and Orange) do not perform any median calculations once they have

loaded data into the cache. The remaining threads (two to five) calculate the median values for their

particular pixel (thread 2 = A, thread 3 = B, etc.) using all the relevant image data loaded into cache

81

memory. For example, thread 2 when calculating the median value of pixel A will use the data values

loaded into cache memory by threads 1 to 3 (Blue, Red, Green) to calculate the median value.

Code Listing 13 : Compute Shader 5.0 Caching Median Filter

This is the implementation of the Caching algorithm using the Compute Shader 5.0. The cache

memory is allocated [Line 1] corresponding to the number of threads [Line 3] and the mask radius.

Each thread loads a column of pixels equal to the size of the radius into cache memory [Lines 12 –

15]. Once completed the thread waits until all other threads have finished performing the same

action. The threads specifically created to load data into the cache do not calculate a median value

[Line 23]. The remaining threads use the min-max exchange sort to calculate the median [Lines 35 –

1: groupshared uint cache[42*1*3];
2:
3: [numthreads(42,1,1)]
4: void CSMain(uint3 g : SV_GroupID, uint3 gt : SV_GroupThreadID)
5: {
6: uint v[9];
7:
8: int i = ((xNumThreads * yNumThreads) * g.x) + ((xNumThreads *

yNumThreads) * g.y * (width/xNumThreads)) + ((gt.x * yNumThreads) + gt.y);
9:
10: int offset;
11: //Each thread caches 3 values, one above, one below and the current

location
12: for(int p = 0; p < 3; p++)
13: {
14: cache[(gt.x *3) + p] = Buffer0[i - width + (p * width)].i;
15: }
16:
17: //Wait till cache is filled
18: GroupMemoryBarrierWithGroupSync();
19:
20: int count = 0;
21:
22: //Skip the outer threads
23: if(gt.x != 0 && gt.x != xNumThreads)
24: {
25: for(int x = 0; x < 3; x++)
26: {
27: for(int y = 0; y < 3; y++)
28: {
29: offset = ((gt.x +(x-1))*3) + y;
30: v[count] = cache[offset];
31: count++;
32: }
33: }
34: uint temp;
35: mnmx6(v[0], v[1], v[2], v[3], v[4], v[5]);//Exchange 7
36: mnmx5(v[1], v[2], v[3], v[4], v[6]); //Exchange 6
37: mnmx4(v[2], v[3], v[4], v[7]); //Exchange 4
38: mnmx3(v[3], v[4], v[8]); //Exchange 3
39: BufferOut[i].i = v[4];
40: }
41: }

82

39]. The mask area for a particular pixel is accessed from the cache memory and loaded into

temporary variables [Lines 25 -33].

4.5.1.3. Histogram Algorithm

The cache memory available in DirectCompute allows a histogram method of median filtering to be

implemented. Essentially the histogram method proposed is the basic histogram median filter [Code

Listing 4] with minor amendments to make it suitable for GPU processing. These include the

allocation of cache memory to allow each thread to store a histogram and alteration of the median

calculation logic to enable it to function with the restrictions on loops in HLSL. Each SIMD engine has

32KB of addressable cache memory and with each histogram requiring 1KB of cache memory this

effectively limits the maximum number of threads to 32 per SIMD engine. The HLSL compiler is

capable of unrolling the loop for median calculation to improve performance, but this operation is

restricted to loops which do not use flow control to escape early [Code Listing 7, Line 35] (MSDN,

2010c). Loop unrolling improves performance because dynamic flow control can take longer to

execute if there are a small number of instruction for each branch (Sander, 2005) as is the case here

[Code Listing 14, Lines 4 - 7].

This algorithm cannot be realized in CS4.0 because threads are restricted to writing to a single

location in cache memory, making it impractical to implement. This method requires a significant

number of branching operations, however the number of branches is constant, unaffected by the

radius size, unlike a sorting based filter.

Code Listing 14 : HLSL Median Calculation

So that the for loop can be unrolled by the HLSL compiler the median calculation is altered slightly

from the basic histogram median filter [Code Listing 4, Lines 14 - 18]. This allows the correct median

value to be found without having to use an intrinsic flow control instruction to escape from the loop

once it is found.

4.5.2. Histogram and Thresholding

As indicated to in the OpenMP implementation, the calculation of the histogram and optimum

threshold value is difficult parallelise. This situation is exacerbated in GPGPU as it is a massively

1: for(int i = 0; i < 256; i++)
2: {
3: count += cache[(threadID * 256) + i];
4: if(count <= midPoint)
5: {
6: value = i;
7: }
8: }

83

parallel processor, so constructing the operation in a manner which allows it to be efficiently

processed on a GPU is extremely difficult. As such the processing of this section of the algorithm will

utilise the MIMD code and perform the computation on the CPU. This negates much of the overhead

which would be incurred transferring data, in order to process the serial components on the CPU.

The actual thresholding operation once the threshold value has been calculated is suitable for

parallel processing and consequently will utilise the GPU. The shader itself is effectively a simple

branch operation. The sheer number of processors executing the code in parallel should limit the

performance impact of using a branch instruction. A vectorized implementation would allow the use

of the hardware accelerated “min” intrinsic instruction to threshold the image improving

performance but requiring a more complex threading model.

Code Listing 15 : GPU Threshold Filter

In the DirectCompute version of the algorithm, only the actual threshold operation can be processed

effectively by the GPU. The histogram and threshold value are calculated by the CPU and passed to

the GPU via the Constant Registers.

4.5.3. Sobel

The final stage in the current implementation of the algorithm is to apply a Sobel filter to the image.

The Sobel filter is ideally suited to a GPGPU, as each pixel can be processed totally independently

and the operation has a high arithmetic intensity compared to the other image processing

techniques implemented as a part of the algorithm. The proposed caching algorithm [Section

4.5.1.2] could be applied to further reduce the execution time of the algorithm.

4.5.4. Active Contour Model Feature Extraction

As previously mentioned [Section 4.4.4], it was decided to not implement Active Contour Model

Detection until the remainder of the algorithm had been satisfactorily developed. However the GPU

1: [numthreads(40,1,1)]

2: void CSMain(uint3 g : SV_GroupID, uint3 gt : SV_GroupThreadID)

3: {

4:

5: int i = ((xNumThreads * yNumThreads) * g.x) + ((xNumThreads *

yNumThreads) * g.y * (width/xNumThreads)) + ((gt.x * yNumThreads) + gt.y);

6:

7: uint value = Buffer0[i].i;

8: if(value >= threshold)

9: {

10: value = 0;

11: }

12:

13: BufferOut[i].i = value;

14: }

84

accelerated active contours algorithm proposed by Tatarchuk (2008) could be used as the basis of

the GPGPU implementation.

4.5.5. Threshold Mask

This operation is essentially the same as the threshold operation [Section 4.5.2], except that the

result of the threshold operation is determined by performing a lookup which compares the pixel to

the corresponding pixel in the mask image.

4.6. Development Issues

The development of the SIMD algorithm encountered a number of problems which required

addressing.

4.6.1. Limited Data Types Available on GPU

The X-ray image’s native data format is 16bit unsigned short integers (ushort) which whilst

supported on the CPU are not available for use on the GPU. Instead DirectCompute supports the

following scalar data types:

 32bit Unsigned Integer (uint)

 32bit Signed Integer (int)

 32bit Floating Point (float)

 64bit Double Precision Floating Point (double)

 16bit Half Precision Floating Point (half)

Due to this restriction, the unsigned integer data type was chosen as it requires only a cast operation

to convert the data from the unsigned short integer data type to unsigned integer, allowing the GPU

processing to conform the objective stating that accuracy must not be compromised to expedite

processing [Section 1.4.2-7]. This is a major problem for the histogram median filter as there is

limited cache memory available. This lack of a 16bit integer data type effectively limits either the

bins each histogram can contain or the maximum number of threads which can be executed in

parallel per thread group as the unsigned integer data type has twice the memory payload of an

unsigned short integer26.

4.6.2. Reduced Functionality in CS4.0

The previously suggested method for improving the fast, small-radius median filter by caching data

[Section 4.5.1.2] is restricted to Shader Model 5 hardware because CS4.0 offers far more limited

functionality. The most significant problem is that CS4.0 devices can only write to locations in cache

26

 16bits for an unsigned short integer compared to 32bits for an unsigned integer.

85

memory that corresponds to the particular thread identity number (Thibieroz, 2009, p.25). This issue

can however be negated for () median filters using CS4.0 hardware by utilising a three element

vector as the storage data type [Code Listing 16, Line 1 & 6] instead of the scalar data type [Code

Listing 13, Line 1 & 6] as used in the CS5.0 implementation. The result is that each thread is required

to write to a single location in cache memory instead of three. This allows the algorithm to conform

to the restrictions of the Compute Shader 4 specification and therefore run on Shader Model 4

hardware. The remaining alterations to the caching algorithm allow it to sort the data in vector

format. The inability of CS4.0 devices to write to random locations in cache memory also prevents

the histogram method of median filtering [Section 4.5.1.3] being implemented due to the number of

memory locations required per thread. CS4.0 has a number of additional limitations including:

 No Atomic Operations.

 Reduced Cache Memory Size.27

 Slower Execution.28

4.6.3. Other Issues

Due to the number of development issues, the considerable variety in the GPU architectures

available and the lack of Nvidia GPUs to test with, it has not been possible to perform extensive

testing, essentially limiting testing to the AMD HD 5000 series GPU architecture. Therefore all

recommendations and assumptions about GPGPU are based solely on the GPGPU performance of

the AMD HD 5000 series GPU architecture.

27

 16KB per thread group instead of 32KB.
28

 A DirectX 11 GPU executing the same program, compiled to CS4.0 instead of CS5.0 exhibits reduced
performance.

86

Code Listing 16 : Compute Shader 4.0 Caching Median Filter

The differences between the Compute Shader 4.0 version of the cached median filter and the

Compute Shader 5.0 implementation [Code Listing 13] are highlighted in red. The uint3 is a vector

data type capable of storing three scalar values.

4.6.4. Hardware Specific Optimisations

Achieving maximum performance of the GPU implementation proved to be a significant challenge

throughout the development of the algorithm, because hardware specific optimisations were

required to leverage maximum performance from the GPU. Some manufacturers utilise vector

processors in their GPU architectures [Section 2.2.3.2] and as such require explicit vectorization of

arithmetic to yield maximum performance unlike GPUs with scalar processors. Research indicates

1: groupshared uint3 cache[42];
2:
3: [numthreads(42,1,1)]
4: void CSMain(uint3 g : SV_GroupID, uint3 gt : SV_GroupThreadID)
5: {
6: uint3 v[3];
7:
8: int i = ((xNumThreads * yNumThreads) * g.x) + ((xNumThreads *

yNumThreads) * g.y * (width/xNumThreads)) + ((gt.x * yNumThreads) + gt.y);
9:
10: int offset;
11: //Each thread caches 3 values, one above, one below and the current

location
12: cache[gt.x].x = Buffer0[i - width].i;
13: cache[gt.x].y = Buffer0[i].i;
14: cache[gt.x].z = Buffer0[i + width].i;
15:
16: //Wait till cache is filled
17: GroupMemoryBarrierWithGroupSync();
18:
19: int count = 0;
20:
21: //Skip the outer threads
22: if(gt.x != 0 && gt.x != xNumThreads)
23: {
24: for(int x = 0; x < 3; x++)
25: {
26: offset = (gt.x + (x - 1));
27: v[count].x = cache[offset].x;
28: count++;
29: v[count].y = cache[offset].y;
30: count++;
31: v[count].z = cache[offset].z;
32: count++;
33: }
34: }
35: float temp;
36: mnmx6(v[0].x, v[0].y, v[0].z, v[1].x, v[1].y, v[1].z); //Exchange 7
37: mnmx5(v[0].y, v[0].z, v[1].x, v[1].y, v[2].x); //Exchange 6
38: mnmx4(v[0].z, v[1].x, v[1].y, v[2].y); //Exchange 4
39: mnmx3(v[1].x, v[1].y, v[2].z); //Exchange 3
40: BufferOut[i].i = v[1].y;
41: }

87

that vectorization can produce performance improvements between 1.45x-6.7x (Jang et al., 2009,

p.1).

Determining the optimum number of threads is a major problem as it varies depending on the

particular GPU hardware executing the program. An additional issue with selecting the optimum

number of threads is that values must be selected before the shader is compiled as they are

manually specified in HLSL code [Code Listing 16, Line 3] using the “numthreads()” instruction.

88

5. Results and Analysis

5.1. Overall Performance

This section examines the speedup in performance achieved by the MIMD and SIMD parallel

processor architectures when computing the algorithm for pre-processing x-ray images compared to

a sequential SISD architecture. All three versions of the algorithm were tested using the X-ray data

both in its native format and converted to floating point format.

Figure 19 : Algorithm Performance Results

This graph illustrates the relative performance of the three processor architectures used to compute

the algorithm. The SIMD algorithm requires the CPU to execute a small portion of the algorithm as

the GPU is unable to efficiently process some components, however this is not clearly visible on the

graph. The graph also demonstrates the size of the performance penalty incurred by converting the

data to floating point format.

Table 3 : Overall Algorithm Speedup

Data Type

Speedup

SISD MIMD SIMD

Integer 1.00x 3.96x 9.22x

Float 1.00x 3.72x 10.08x

0

5

10

15

20

25

30

35

40

45

SISD MIMD SIMD SISD (Float) MIMD
(Float)

SIMD (Float)

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Algorithm Version

Data Conversion

CPU

GPU

89

The results of this experiment clearly indicate that both forms of parallel processing offer a

significant performance improvement over a serial processor. The efficiency of the MIMD

implementation can be calculated [Equation 8] as 96%29 and therefore it is possible to obtain a

maximum potential speedup of 25x30. As previously discussed [Section 2.2.4.1], the efficiency of the

SIMD algorithm cannot be calculated because only the execution times of the three

implementations are directly comparable.

Additionally, the graph [Figure 19] demonstrates that processing the data in floating point format

takes significantly longer, increasing the execution time by approximately 30% for the CPU

implementations and 5% for the GPU. This increase is without considering the additional overhead

incurred converting the data from its native data format to floating point. Whilst the performance

penalty incurred converting data is relatively small, it has comparatively greater impact on the

overall execution time of the GPU. These results would appear to support the hypothesis that whilst

floating point data may be the optimum format for processing data on a GPU, it is only relevant for

those algorithms which are arithmetically intensive rather than those which are memory access

intensive.

The SIMD algorithm cannot be entirely processed by the GPU and requires the CPU to perform some

of the processing. This constrains the maximum potential speedup as those sections which require

processing on the CPU incur additional performance penalties due to the overhead of data being

transferred to and from the GPU each time this occurs.

It should be acknowledged that both the SISD and MIMD algorithms could be optimised to reduce

their execution times using the SIMD capabilities of the CPU via SSE instructions. Research into using

SSE and AVX instructions for image processing (Larsson and Palmer, 2009) indicates that potentially

a two to three fold reduction in execution times can be achieved. This would significantly reduce the

disparity between the execution times attained by the SIMD and the MIMD implementations.

However, this would necessitate additional code and increase code complexity as processing with

SSE or AVX instructions requires data to be aligned to 16 and 32 bytes respectively.

5.2. Individual Component Performance

This section discusses the results of the testing on the individual components of the algorithm.

29

 This is based on the average performance of the MIMD implementation across both data types.
30

 Assuming sufficient processing cores are available to achieve this.

90

Figure 20 : Individual Component Performance Results (Overall)

This graph breaks down the total time required to process the algorithm into its individual

components. The graph clearly illustrates that the median filter is by far the most time consuming

component to process for all architectures.

Figure 21 : Individual Component Performance Results (In Detail)

0

5

10

15

20

25

30

Median Filter Histogram Thresholding Sobel

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Image Processing Technique

SISD

MIMD

SIMD

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Histogram Thresholding Sobel

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Image Processing Technique

SISD

MIMD

SIMD

91

This graph excludes the Median filter so the Histogram, Thresholding and Sobel components can be

examined in detail. The results indicate that the SIMD algorithm does not always offer considerably

improved performance as is the case with the Median Filter.

Table 4 : Individual Component Speedup

Image Processing

Technique

Speedup

SISD MIMD SIMD

Median 1.00x 3.98x 10.00x

Histogram 1.00x 1.00x 0.77x

Thresholding 1.00x 1.54x 2.13x

Sobel 1.00x 3.42x 1.86x

The overall performance graph [Figure 20] illustrates how the time required to compute the median

filter dwarfs the combined execution time of the algorithm’s other components. This is because the

median filter is significantly more computationally intensive than the other techniques combined.

This would be significantly less pronounced if a smaller radius mask was used, although it would not

achieve the desired effect. The results indicate that GPGPU can achieve significant performance

gains over other forms of processing. It also demonstrates that the parallelisation of the other

components has produced negligible impact on the overall execution time and as such concentrating

on improving the performance of the median filter would have been more beneficial. The results

[Table 14] for the histogram component indicate that transferring data to and from the GPU is a

comparatively costly process. This can be surmised because the GPU algorithm actually calculates

the histogram component using the CPU and should therefore take the same amount of time to

execute. However the GPU must transfer the data to the CPU and back again once the histogram is

calculated, which must be the source of the reduced performance. Therefore it is recommended

that wherever possible data transfers are kept to a minimum.

The thresholding and Sobel components imply that GPGPU may not always offer a significant

performance improvement over a MIMD implementation. In fact the results indicate that the Sobel

filter is slower to execute when processed on GPU than a multi-core CPU. As previously suggested

the use of SSE or AVX instruction to enhance the CPU’s performance would exacerbate the situation.

5.3. Data Format Performance

This section compares the overall execution time of the algorithm using different data types.

92

Figure 22 : Data Format Performance

The chart demonstrates the relative performance of different data types when processed using a

particular processor architecture.

Based on the execution timings for a small-radius () mask using the fast, small-radius median

filter, we can establish that the CPU suffers from approximately an 18% penalty from processing

data in floating point format rather than integer. Conversely the opposite is true for GPU, albeit with

a much smaller penalty of 8%. The magnitude of the performance differences recorded for this test

does not reflect the results from testing the entirety of the algorithm [Section 5.1]. This can most

likely be attributed to the fact that the median filter may not in retrospect have been the most

appropriate choice to test the performance difference of the two data formats. This is because it has

relatively few areas where floating point arithmetic occurs, the majority being integer mathematics

regardless of the data format. Performing this test with the Sobel filter may have been a more

appropriate choice in retrospect as it contains far more arithmetic calculations and would have

better reflected the actual performance difference. However this is not without its own drawbacks,

as the Sobel filter’s performance is still relatively dependent on memory accesses.

5.4. Median Filtering Performance

This section details the results of the testing conducted on the various median filtering algorithms.

The median filters were tested with a small () and a large () radius mask to allow a

more comprehensive evaluation of the various algorithms. Specifically the test was used to

determine if the caching algorithm gave any performance increase over the fast, small-radius and if

the GPU histogram method offered enhanced performance over a parallel CPU implementation.

117.82

100 100

108.34

CPU GPU

Processor

R
e

la
ti

ve
 P

e
rf

o
ra

n
ce

 (
%

)
Int Float

93

Figure 23 : Median Filter Performance Results

This chart depicts the performance timings of the various median filtering algorithms applying a

() mask to the X-ray image.

The results of this experiment indicate that the GPU median filters (when it is possible to utilise

them, i.e. for small radius masks or when sufficient cache memory is available, adopting a histogram

based approach) in most cases offer superior performance to either of the CPU implementations.

However for small-radius filters the GPU histogram method is in fact slower than the parallel CPU

implementation. However this trend does not continue with large-radius masks, where the GPU

histogram algorithm offers significantly improved performance compared to the performance of all

other implementations [Figure 24].

The data supports the following conclusions:

 For small-radius masks the fast, small-radius and caching GPU algorithms considerably

reduce execution times in comparison to the CPU implementations and the proposed GPU

Histogram method [Table 5]. They offer at least a fivefold increase in performance

compared to all other implementations.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Integer Float

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Data Format

Serial (CPU)

Parallel (CPU)

Fast, Small-Radius (GPU)

Cached (GPU)

Histogram (GPU)

94

 The GPU histogram method offers increasingly improved performance as the filter’s mask

radius increases. With a () radius mask the GPU histogram implementation reduces

of the execution time by a factor of ten. This result replicates the findings of a comparative

study into the potential speedup processing a median filter using a GPU rather than a CPU

(Castaño-Díeza et al., 2008, p.12).

 That by transferring the redundant memory accesses required by the fast, small-radius filter

from global memory to cache memory offers approximately a 15% reduction in the

processing time required to process a () median filter.

Figure 24 : Median Filter Performance Results (Large-radius)

This chart depicts the performance timings of the various median filtering algorithms applying a

() mask to the X-ray image. The Fast, Small-Radius and Cached GPU implementations are

unable to apply such a large mask.

A detailed analysis of the caching algorithm has revealed that the number of redundant global

memory accesses has been reduced by 66%. This has not however produced a performance increase

as substantial as anticipated. This could be attributed to the algorithm using unaligned memory

accesses to retrieve data from the cache memory, causing them to be serialised and therefore

impairing performance (Bordawekar et al., 2010a).

0

5

10

15

20

25

30

35

40

45

Integer Float

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Data Format

Serial (CPU)

Parallel (CPU)

Fast, Small-Radius (GPU)

Cached (GPU)

Histogram (GPU)

95

The performance improvement achieved by the caching algorithm does however illustrate that

accessing global memory on the GPU incurs performance penalties and should be avoided if

possible. The caching algorithm could in fact be applied to numerous other areas, for example the

GPU Sobel mask and the GPU histogram median filters, both of which have redundant global

memory accesses.

Table 5 : Median Filter Speedup

Radius

Speedup

Serial (CPU) Parallel (CPU) Fast, Small-Radius

(GPU)

Caching (GPU) Histogram (GPU)

3 x 3 1.00x 3.82x 21.10x 24.52x 3.23x

19 x 19 1.00x 3.98x N/A N/A 10.00x

5.5. Optimum Number of Threads

This test is designed to determine the optimum number of threads for the test hardware

configuration. As previously identified [Section 4.6.5], it is difficult to accurately determine the

optimum number of threads per thread group to use for specific GPU hardware. The optimum value

depends on not only the algorithm’s efficiency but also the number of SIMD engines the hardware

contains and the number of processing cores they consist of. Performance timings were taken with

the Sobel filter and the fast, small-radius median filter, primarily because these facilitated large

thread groups which allowed more comprehensive testing to be conducted. The results of this

experiment were considered when selecting the number of threads to utilise for the various

components of the algorithm.

0

1

2

3

4

5

6

7

8

1 2 4 8 16 32 64 128 256 512

Sp
e

e
d

u
p

Number of Threads

Median

Sobel

96

Figure 25 : Optimum Number of Threads

This graph illustrates the speedup obtained on the test GPU by increasing the number of threads

each SIMD engine must execute.

The graph [Figure 25] exhibits a similar trend to that predicted by Amdahl’s Law [Figure 11], with

diminishing returns for larger thread groups. On closer inspection however, when the number of

threads exceeds 100 the performance of the median filter is actually reduced. This can be attributed

to poor balancing of work between thread groups when using large numbers of threads, as the total

amount of computation required remains constant with only the number of threads being varied.

Therefore when using a large number of threads some SIMD engines may be idle as they are being

starved of work. This is because the processing is not distributed evenly to all SIMD engines. The

number of units of work each thread group has to process can be calculated with the following

equation [Equation 11]. If this number is not a whole number then it is likely starvation will occur in

some SIMD engines.

()

Equation 11 : Work per SIMD Engine

The formula calculates the amount of work W, allocated per SIMD Engine, when a GPU consists of S

SIMD Engines executing T threads in parallel for the total amount of work A.

Using this equation it can be determined that for the X-ray images allocating 100 or more threads

per SIMD will result in some starvation occurring. The Sobel filter does not appear to be affected by

the starvation, which can probably be ascribed to the fact that the Sobel filter’s execution time is an

order of magnitude smaller than median filter and therefore not as affected by starvation as is the

case with the median filter.

A further issue is that GPUs tend to have a number of processors per SIMD engine that corresponds

to a power of two value31. Ideally the number of threads should be allocated accordingly, however

this is not practical for this particular problem as the X-ray test images have dimensions that are not

a power of two32 and therefore cannot be distributed evenly when allocated in powers of two.

A number of conclusions can be drawn from this experiment including the fact that increasing the

number of threads increases performance, following a similar trend to that proposed by Amdahl.

However, unlike Amdahl’s Law, performance can actually be inhibited if the number of threads

31

 This refers to the number of processors per SIMD engine. The number of SIMD engines available on a GPU is
typically an even number but not necessarily one which is a power of two.
32

 The test X-ray image’s dimensions are 2920 by 2320 pixels.

97

allocated leads to the starvation of some SIMD engines. The optimum number of threads is

proportional to the computational intensity of the program being executed, with those programs

which have a high computational intensity benefiting more from additional threads being allocated.

The exact number of threads is difficult to predict due to the complexities of the interactions

between the graphics processing hardware and the algorithm (Jang et al., 2009, p.5).

5.6. Average Image Error

This is a quantitative comparison of the number and size of the errors in the images produced by the

various algorithms.

Table 6 : Number of Errors

Test Number of Errors Average Error Maximum Error33

SISD (Int) – MIMD (Int) 0 0 0

SISD (Int) – SIMD (Int) 1,765,303 1 4095

SISD (Int) – SISD (Float) 1,899,198 156 4095

SISD (Float) – MIMD (Float) 0 0 0

SISD (Float) – SIMD (Float) 2,146,427 10 4096

The results in Table 6 suggest that both CPU implementations of the algorithm (SISD and MIMD)

produce the same result and hence the algorithm does not display any instability (Mattson and

Strandberg, 2008), as a consequence of the parallelisation of floating point calculations. The GPU

implementation of the algorithm would appear produce images which contain a significant number

of differences compared to those images produced by the various CPU implementations, however

the average error between the implementations is less than 0.25% and so could be considered to be

acceptable.

The number and size of errors between the floating point and integer results indicate substantial

differences between the image produced using floating point data and those generated from the

original integer data. The size of errors was unexpected, as in theory the images produced using the

algorithm with both data types (int and float) should be almost identical, excluding those

inconstancies caused by rounding. The cause of these can be identified by comparing the images

produced [Figure 33].

These results should not however be considered in isolation, as they can only indicate that there

may potentially be a problem, not the cause. Therefore these results need to be evaluated alongside

the images produced so that the problem can be identified and subsequently rectified.

33

 The data value of a pixel in the X-ray can be anywhere in the range of 0 to 4095.

98

5.7. Image Comparison

The final test is a qualitative test achieved by visually inspecting the images produced by the

algorithm. The differences between the images produced by the various implementations of the

algorithm have been identified and highlighted by overlaying the images in Adobe Photoshop and

performing a difference operation34 (Adobe, 2010). This removes all of the image data apart from

those areas which do not match.

Figure 26 : Algorithm Final Output - Integer (Lateral)

This image is the output of the algorithm after the original lateral X-ray image has been processed

using the algorithm. A considerable portion of the unwanted elements have been removed, leaving

just the bone and soft tissue.

34

 The difference operation examines the colour information in each channel and subtracts either the blend
colour from the base colour or vice versa, depending on which has the greatest brightness value.

99

Figure 27 : Algorithm Final Output - Float (Lateral)

This image is the output of the algorithm after converting the lateral X-ray image data to floating

point format. The algorithm has retained a significant proportion of the background and the

orientation marker remains.

Figure 28 : Image Differences Integer CPU – Integer GPU (Lateral)

This image illustrates the differences between the output of the CPU and GPU algorithms. Whilst it

highlights a considerable number of differences, the majority of these can be ascribed to the images

produced being slightly misaligned.

100

Figure 29 : Image Differences Integer – Floating Point (Lateral)

This image emphasises the differences between the images generated by the CPU algorithm when

using different data types. The floating point output retains a significantly larger proportion of the

unwanted elements including the orientation marker.

Figure 30 : Algorithm Final Output - Integer (Planar)

This image is the output of the algorithm after the original planar X-ray image has had the algorithm

applied. A considerable portion of the unwanted elements including the secondary background have

been removed, leaving just the areas of interest.

101

Figure 31 : Algorithm Final Output - Float (Planar)

This image is the output of the algorithm after converting the planar X-ray image data to floating

point format. The algorithm has retained a significant proportion of the secondary background and

other unwanted elements.

Figure 32 : Image Differences Integer – Floating Point (Planar)

This image highlights the differences between the images produced by the CPU algorithm when

operating on different data types. The floating point output retains far more of the unwanted

elements.

Figure 33 : Image Differences Integer CPU – Integer GPU (Planar)

102

This image illustrates the differences between the output of the CPU and GPU algorithms. Whilst a

considerable number of differences are highlighted, the majority of these can be attributed to the

images produced being slightly out of alignment with each.

A visual inspection of the images produced by the various implementations of the algorithm

indicates that the when operating on the same data type, the images generated are broadly similar

with only minor discrepancies. Conversely when comparing the images produced by using different

data types it is clear that the images have substantial differences. This is particularly evident when

ascertaining how many of the unwanted elements have been removed by the algorithm, especially

the lateral X-ray image [Figure 27] which retains the orientation marker and a considerable portion

of background. These findings correspond to those of the quantitative analysis [Section 5.6]. The

results of the Photoshop difference operation further substantiate this claim, with the outputs of the

various algorithm implementations containing only relatively minor differences when operating on

the same data type [Figure 28 and Figure 33].

The algorithm appears to be capable of removing the majority of the secondary background [Figure

6] contained within the planar X-ray image without unduly affecting the image produced using the

lateral X-ray which contains no such background. Therefore it can be assumed that the method

proposed for calculating the threshold value [Section 4.4.2] functions correctly.

The Sobel Edge detector appears to perform satisfactorily when highlighting the bone edges and

does not need replacing with a more complex and robust method of feature extraction. The bones in

the output images are defined well enough that the Active Contour Model method of Feature

Extraction should be able to correctly identify and extract the bone portions of the image from the

soft tissue. A couple of areas (particularly the toes) are less well defined than other areas, which can

be attributed to the non-uniform brightness of bone identified earlier [Section 6.1.1.1]. This could be

rectified incorporating functionality which will allow the algorithm to adapt to non-uniform

brightness. However, whilst it is difficult to ascertain from the images [Figure 26, Figure 27, Figure 29

and Figure 30] there appears to be enough contrast in those regions which are less well defined for

ACM to still perform feature extraction.

Based on the output images [Figure 26 and Figure 27], it can be assumed that the orientation does

not adversely affect the images generated by the algorithm. It would also give the impression that it

is not necessary to implement any additional functionality to account for orientation in the

algorithm. This is quite likely to occur on the condition that a similar proportion of an image is

occupied with bone and soft tissue, otherwise the peak detection will need to be adjusted

103

accordingly. However this cannot be stated categorically, with only limited testing on two

orientations being conducted. Ideally extensive testing would be performed using X-rays taken at

additional orientations.

The images produced by the SIMD algorithm reveal that the GPU retains a slightly larger amount of

the unwanted data compared with the output of the CPU implementations [Figure 28 and Figure

33]. These minor inconsistencies can be attributed to the fact the GPU median filter produces a

marginally different image to the CPU median filter. This primarily manifests itself in the output

image being marginally out of alignment with the original image. Additionally it should be

considered that the GPU and CPU operate with differing levels of precision for floating point

operations, specifically in the case of the square root operation in the Sobel filter [Code Listing 12,

Line 10].

The most significant problem identified by visual image inspection is the substantial discrepancies

[Figure 29] between the images produced using the floating point data and those generated with the

native integer data. This indicates that the floating point algorithms contain some errors which are

affecting the images produced. A floating point version of the algorithm was developed to determine

if utilising data in floating point format would yield enhanced performance over integer data on the

GPU. Based on the results [Section 5.1 and Section 5.3] of the data format comparison it would

appear to produce only a relatively modest improvement, particularly when considering the

additional overhead incurred converting data into floating point format. These results suggest that

development of the floating point version of the algorithm should be discontinued. However it

cannot be discounted that some of the performance disparity between data types may be due to the

floating point algorithms retaining considerably more unwanted data and therefore requiring

additional processing, hence the longer execution times.

104

6. Conclusions

6.1. Overview

The project has two primary objectives, firstly that the algorithm should be capable of isolating bone

contained within an X-ray image and secondly that it should be accelerated using parallel processing

technologies. Both of these goals have been realised to varying extents. Referring to the individual

aims [Section 1.4] established at the instigation of this project it can be concluded that the majority

of these have been achieved, predominantly in regards to the algorithm’s implementation. The

project cannot however be considered a complete success due to the omission of the Active Contour

Model feature extraction functionality, which is a major component of the algorithm tasked with

isolating the bone portions of the image from soft tissue.

6.1.1. Individual Project Aims

6.1.1.1. Algorithm Objectives

1. Separate Soft Tissue and Bone: The algorithm is capable of identifying and isolating those areas

of the image which contain either soft tissue or bone. However it currently cannot separate

them from each other. This functionality would have been provided by the Active Contour

Model feature extraction technique which was not developed.

2. Remove Unwanted Features: The use of a large-radius median filter has proven successful at

removing the unwanted elements [Figure 4 and Figure 6] contained within the X-ray image in

addition to diminishing the amount of noise present.

3. Noise Reduction: The median filter appears to have successfully reduced the noise present in

the image. The final stage in the image processing algorithm prevents the median filter from

affecting the fine details in the bone portions of the image.

4. Planar and Lateral X-Rays: The algorithm would appear to operate correctly for X-rays taken at

both planar and lateral orientations. In spite of this, there is no specific functionality to

counteract the effects that intermediate angles may have on an X-ray image and therefore as a

result may not be processed correctly.

5. Non-Uniform Brightness: There is no specific functionality to counter non-uniform brightness

but the images produced by the algorithm do not appear to have been negatively affected.

6.1.1.2. Implementation Objectives

1. DICOM X-Rays: The algorithm is capable of reading the X-ray image data directly from a DICOM

file. Ideally, it should utilise any relevant information contained within the DICOM file’s header

to improve the images produced.

105

2. Fully Automated: In its current form the algorithm is totally automated, requiring only the

directory where the DICOM file is located to process the X-ray image.

3. Consumer Hardware: The SISD and MIMD algorithms can be executed on any consumer PC

employing Microsoft Windows XP or later. Hardware restrictions limit the SIMD algorithm to

relatively recent systems featuring a DirectX 11 complaint GPU.

4. Single Instruction Single Data Implementation: A SISD version of the algorithm was

implemented and used to provide baseline performance timings.

5. Multiple Instruction Multiple Data Algorithm: The MIMD algorithm can be considered efficient

and scalable, with 96% efficiency and a maximum potential speedup of 25x.

6. Single Instruction Multiple Data Algorithm: A GPU accelerated version of the algorithm was

implemented, however it was not practical to employ the GPU for all the processing required.

The SIMD algorithms offers significantly reduced execution times compared to both CPU

implementations.

7. Native Resolution: All versions of the algorithm operate on the image at its native resolution

and the data formats used for processing ensure that accuracy is not lost during conversion.

6.2. Parallel Processing

The implementation of all three versions of the algorithm has allowed a comprehensive analysis of

their relative performance to be conducted, which has shown that the SIMD and MIMD parallel

algorithms offer enhanced performance over the SISD implementation. Whilst the SIMD algorithm

offers improved performance over both of its CPU counterparts, it should be noted that a number of

methods exist that would considerably reduce the execution time of the CPU algorithms and

consequently diminish the performance advantage that GPGPU implementation enjoys.

6.2.1. Multi-core CPU

The MIMD implementation of the algorithm which uses a multi-core CPU can be considered

efficient, with an average speedup of 3.84x equating to 96% of the algorithm being executed in

parallel and a maximum potential speedup of 25x35. This would indicate that the MIMD algorithm is

scalable well in excess of current and planned consumer CPUs. It may be advisable to sacrifice some

of this scalability in order to enhance performance, incorporating some of the techniques

implemented in the Constant Time Median Filter (Perreault and Hebert, 2007). This would reduce

the execution time and reduce the disparity between the processing times achieved by the CPU and

those attained by the GPU. However this should not result in an increase in the performance gap

between the MIMD and SISD implementation because these improvements would be applied to

35

 Assuming sufficient processing cores are available to achieve this.

106

both. When considering reducing scalability it must be acknowledged that consumers CPUs have an

order of magnitude less processing cores than available in GPUs and so would be less likely to be

affected.

In the author’s opinion OpenMP yields excellent returns when processing data parallel problems,

considering that CPUs have significantly fewer processing cores. The OpenMP API is comparatively

straightforward to implement and has a mature development environment, with numerous software

packages featuring exhaustive debugging and profiling capabilities for parallel processing.

6.2.2. GPGPU

The GPGPU version of the algorithm offers increased performance over both the parallel and serial

CPU implementations. In particular, the median filter as the most computationally intensive process

used by the algorithm benefited considerably, with a tenfold increase in performance over the serial

CPU implementations. This is consistent with the suggested amount of speedup typically achieved by

DirectCompute compared to CPU implementations (Boyd, 2010, p.37). Two strategies were

proposed to compute a median filter using GPGPU and have proven to be effective, offering much

reduced execution times in comparison to the CPU implementations. There are nevertheless a

number of restrictions in their use. The GPU histogram method is only suitable for large-radius

filters. Furthermore due to its high memory requirements it may not be possible to make optimal

use of all available processing cores in a SIMD engine. Whilst the caching algorithm provides

improved performance over the fast, small-radius algorithm it cannot be used for large-radius filters

due to hardware limitations. Both of the techniques are further constrained by the fact that they

require access to the cache memory in a manner that is only achievable with Shader Model 5

devices, reducing where they can be utilised.

The caching algorithm can potentially be adapted to other areas of the algorithm such as the Sobel

filter. The improved performance from caching data substantiates the claim that global memory

access on the GPU has a higher latency than the cache memory (NVIDIA, 2010c, p.30).

The results would also appear to indicate that the optimum number of threads to allocate is relative

not only to the number of processors provided by the specific GPU architecture used for processing,

but also the computational intensity of the calculations being performed. Furthermore the results

suggest that measures should be taken to ensure that SIMD engines are not starved of data and

therefore idle, especially when performing computationally intensive operations. For this problem it

can be more significant than it first appears, GPU architectures are typically designed with SIMD

engines being allocated processors in groups corresponding to power of two values. Consequently

107

images with dimensions that are power of two values allow optimal allocation of work, however the

test X-ray images have dimensions which are not a power of two value.

The algorithm can be considered scalable based on the recommendation made by Fung (2010, p.6)

about maximising scalability in DirectCompute programs. The recommendation is that each dispatch

call should issue processing so that it is spread across thousands of thread groups, which in turn

allows a GPGPU program to scale across multiple future generations of GPU. However the

performance of GPGPU algorithms can be limited by the CPU as it is required to transfer data to and

from the GPU and process those areas which cannot be effectively parallelised.

GPGPU processing does however have a number of disadvantages:

 It is an incredibly inefficient method for processing non-parallelisable problems.

 Data may need to be converted to an appropriate format for GPGPU processing, thus

incurring additional overheads.

 Attaining optimal performance requires various optimisations to be implemented. This is a

particular problem for AMD GPUs as it requires the explicit vectorization of arithmetic

operations.

Based on the results and subsequent analysis the following recommendations can be made:

 GPGPU is an excellent method for processing data parallel problems, offering substantial

performance improvements.

 For large-radius median filter masks the GPU histogram method should be considered as it

offers superior performance to its CPU counterparts.36

 The strategy of using the cache memory to reduce memory access times resulting from

redundant global memory access appears sound and should be transferred to other

applicable areas of GPGPU processing.

 Determining the optimum number of threads to allocate per SIMD engine is complex but

may have considerable impact on performance.

 The use of floating point data to enhance the performance of GPU processing is only

worthwhile if the overhead incurred converting the data is less than the time gained by

processing using floating point rather than integer format. Additionally the performance

benefit only occurs for arithmetic instructions, not for memory accesses. Therefore it is only

advisable for arithmetically intensive operations.

36

 Provided the target system has an appropriate GPU.

108

In the author’s opinion, whilst DirectCompute is capable of producing substantial speedups

compared to CPU based implementations, it requires specialist knowledge to obtain optimum

performance. The development environment can be considered immature due its lack of

sophisticated software packages for debugging and profiling DirectCompute shaders, compared to

those available for parallel processing on the CPU.

6.3. Algorithm

The algorithm in its current form is not capable of performing all the tasks required to isolate the

bone portions of the X-ray image. Specifically it cannot separate soft tissue and bone. It is however

capable of removing unwanted elements from digital X-ray images in addition to highlighting the

edges of soft tissue and bone. Incorporating Active Contour Model feature extraction into the

algorithm would rectify this issue. It could also prove useful to investigate the feasibility of using

feature extraction in the initial processing pass in place of a large-radius median filter to determine if

this would either produce a more accurate image or result in reduced execution times. The

application of the algorithm to an X-ray is a fully automated procedure, only requiring the directory

containing the DICOM file to be specified to process the image.

The images produced by the CPU and GPU versions of the algorithm do contain some minor

differences, but these can be considered irrelevant for our purposes. However there are

considerable differences between the images produced using different data types which implies that

there are a number of errors in the floating point algorithm which need to be addressed.

6.4. Summary

In summary we can conclude that although the algorithm has some significant functionality missing,

it has proved capable of isolating the soft tissue and bone portions of the X-ray image whilst

reducing noise and removing the unwanted elements from the image. From the performance

timings collected during the experimentation we can also state that GPGPU processing in particular

and parallel processing in general can considerably reduce the execution times of algorithms that

operate on data parallel problems.

109

7. Future Work

There are a number of avenues that could potentially be explored as part of further development of

the algorithm. The decision to not implement the feature extraction component [Section 4.4.4]

requires that any future development of the algorithm should initially be concentrated on rectifying

this. Furthermore there are a number of areas in which improvements to the algorithm could be

made, especially in regards to improving its functionality.

7.1. Active Contour Model Feature Extraction

The bone detection will be performed using Active Contour Models to process the image. It is hoped

that the GPGPU algorithm suggested by Tatarchuk (2008) can be adapted to a DirectCompute

implementation and if possible modified to make use of cache memory now available on the GPU.

The suggested algorithm samples a region of pixels for each control point; therefore the caching

algorithm used for median filtering [Section 4.5.1.2] could potentially be used.

7.2. GPU Median Filter

There are a number of approaches which could be used to improve the performance of the GPU

histogram median filter [Section 4.5.1.3]. On the development GPU, approximately 10KB of cache

memory remains unused, which is due to the X-ray image’s dimensions restricting the number of

threads per thread group that can be allocated without starvation of some SIMD engines occurring.

An additional sub-histogram which corresponds to the main histogram could be created to reduce

the number of loop iterations used to calculate the median value. For example if an additional four

bin histogram was created it would reduce the amount of bins that need searching from 256

possible locations to 64 [Code Listing 18, Line 27].

An alternative technique would be to use the remaining cache memory to store as much of the

shared image data in the cache memory as possible, similar to the caching algorithm. However

depending on the radius size of the median filter mask, it may not be practical to load all the

required image data into cache memory. Therefore steps must be taken to allow the shader to

determine if a particular pixel is stored in cache memory or global memory. Obviously, the

performance impact of using cache memory is dependent how much of the image data can be

loaded into cache memory.

The performance of the GPU cached median filter can also be improved [Section 4.5.1.2]. Currently

each group of pixels is sampled as a row. If this was altered to a block then additional redundant

memory accesses could be prevented.

110

Figure 34 : Improved Caching Median Filter

Allocating thread groups in a block rather than a strip [Figure 18] increases the number of redundant

memory access that are transferred from global memory to cache. In this example the small fast

algorithm requires 36 accesses to global memory, the original caching algorithm 18 and the

improved caching 16. The effect is relative to the block size, increasing for large block sizes.

7.3. X-Ray Header Information

DICOM based X-ray images contain a wealth of additional information about the patient and how

the image was captured. This information is stored within the DICOM file’s header and could

potentially be used to improve the generated mesh. The most significant of the stored information

for the algorithm’s purposes is the Photometric Interpretation flag. Typically for an X-ray it is either

set to MONOCHROME1 or MONOCHROME2. MONOCHROME1 format means that black37 represents

dense materials such as bone whereas MONOCHROME2 is the opposite, with white signifying dense

materials. For the algorithm this is a considerable problem as in its current form the threshold

function will not operate correctly with MONOCRHOME2 images, removing bone information

instead of the image background. To fix this is a trivial process, requiring the relevant tag within the

DICOM header to be found and its value ascertained and the appropriate threshold function to be

selected.

37

 Low bit values

111

7.4. Integration

The X-ray processing algorithm and the mesh generation code need to be transferred from their

current standalone implementations into a unified implementation. This would allow them to be

fully integrated into VirtuOrtho which will produce a more streamlined process for mesh generation

than is currently implemented, benefiting the end user.

7.5. Generating Skin Mesh

Although the simulation is focused primarily on simulating the cutting of bone, it may in fact be

desirable to generate an additional mesh representing the soft tissue. This would serve to further

increase the realism of the virtual operation within VirtuOrtho. The mesh generation process could

be adapted so that rather than discarding any soft tissue information found within the X-ray image,

it could instead be used to generate an outer mesh depicting the layers of skin and soft tissue

surrounding the bone. This process would be broadly similar to how the bone mesh is currently

being generated. The cutting algorithm would however require alterations to reflect the increased

elasticity of skin and soft tissue compared to bone, which is currently being modelled.

7.6. Parallel Mesh Generation Pipeline.

Currently the mesh generation pipeline implemented for VirtuOrtho is a serial process, with the X-

ray image processing algorithm being the only part of the process to take advantage of parallel

processors. Clearly this is a series performance bottleneck and should ideally be rectified by re-

designing the code so that is capable of taking advantage of parallel processors. The knowledge

about parallel algorithm design gained during the development of the image processing algorithm

should be used to improve the performance of the mesh generator.

DirectCompute would appear to be a suitable candidate for providing parallel processing capabilities

for the mesh generator. This is due to the process being arithmetically intensive with comparatively

minimal memory bandwidth requirements, which compliment a GPU’s parallel processing

architecture. DirectCompute is also capable of operating on data in the same format as used by the

DirectX graphics API, thus reducing the amount of data format conversions required.

7.7. Benchmarking

Achieving optimal performance has been a significant issue throughout the development of the

DirectCompute implementation of the image processing algorithm. This has been further

compounded by the fact that minor alterations to the number of threads, thread groups and other

settings can significantly impair performance depending on the architecture of the GPU the

algorithm is being processed on. GPU architectures additionally can potentially be substantially

112

different, not only between different manufacturers but also between different generations from

the same manufacturer!

Currently the DirectCompute API does not provide facilities to apply the optimum settings

automatically during the compilation of the compute shader. The simplest solution to this would be

to include GPU specific settings, however determining the appropriate values manually would be a

time consuming and laborious process. A potential solution (Fung, 2010, p.5) would be to adopt a

similar process to that used by Windows Vista/7 and some PC games whereby a benchmark is run

during the software’s installation to determine the settings which achieve optimal performance.

7.8. Alternative GPGPU Implementations

In order to perform a complete analysis of the GPGPU algorithm’s effectiveness it should be

implemented in either CUDA or OpenCL in addition to its current DirectCompute form. Doing this

would also allow a critical review of the different GPGPU APIs to be conducted and their relative

benefits and drawbacks to be established. A traditional pixel shader approach can be ruled out

because of the algorithm’s requirement for a large-radius median filter, which without the cache

memory made available by DirectCompute and the other GPGPU APIs is impractical to implement.

113

8. References

Adobe (2010) Photoshop Elements Help [Internet], Available from: <http://help.adobe.com>

[Accessed 11 Nov 2010].

Akhter, S. and Roberts, J. (2006) Multi-Core Programming. Intel Press.

Amdahl, G. (1967) Capabilities, Validity of the Single Processor Approach to Achieving Large-Scale

Computing. In: AFIPS Conference Proceedings., p.483–485.

Ansorge, R. (2008) AIRWC : Accelerated Image Registration With CUDA. Cambridge, University of

Cambridge.

Banik, S., Rangayyan, R. M. and Boag, G. S. (2008) Landmarking and Segmentation of 3DCT Images.

SYNTHESIS LECTURES ON BIOMEDICAL ENGINEERING #30.

Bilodeau, B. (2009) Your Game Needs Direct3D 11, So Get Started Now! In: Game Developer

Conference. San Francisco.

Bit-tech.net (2009) ATI Radeon HD5870 Architecture Analysis [Internet], Available from:

<http://www.bit-tech.net/hardware/graphics/2009/09/30/ati-radeon-hd-5870-architecture-

analysis/1> [Accessed 11 Aug 2010].

Bit-tech.net (2010) GeForce GTX 580 [Internet], Available from: <http://www.bit-

tech.net/hardware/graphics/2010/11/09/nvidia-geforce-gtx-580-review/2> [Accessed 15 Nov 2010].

Bleiweiss, A. (2008) GPU Accelerated Pathfinding. In: Proceedings of the 23rd ACM

SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware. Aire-la-Ville, Eurographics

Association, pp.65-74.

Bordawekar, R., Bondhugula, U. and Rao, R. (2010a) Believe it or not!: mult-core CPUs can match

GPU performance for a FLOP-intensive application! In: Proceedings of the 19th international

conference on Parallel architectures and compilation techniques. Vienna, ACM, pp.537-538.

Bordawekar, R., Bondhugula, U. and Rao, R. (2010b) Can CPUs Match GPUs on Performance with

Productivity?: Experiences with Optimizing a FLOP-intensive Application on CPUs and GPU. IBM.

Bovik, A. C., Huang, T. S. and Munson, D. C. (1987) The Effect of Median Filtering on Edge Estimation

and Detection. IEEE Transactions on Pattern Analysis and Machine Intelligenc, 9 (2), pp.181-194.

http://help.adobe.com/
http://www.bit-tech.net/hardware/graphics/2009/09/30/ati-radeon-hd-5870-architecture-analysis/1
http://www.bit-tech.net/hardware/graphics/2009/09/30/ati-radeon-hd-5870-architecture-analysis/1
http://www.bit-tech.net/hardware/graphics/2010/11/09/nvidia-geforce-gtx-580-review/2
http://www.bit-tech.net/hardware/graphics/2010/11/09/nvidia-geforce-gtx-580-review/2

114

Boyd, C. (2010) DirectCompute Lecture Series 101: Introduction to DirectCompute. [Internet],

Available from: <http://channel9.msdn.com/Blogs/gclassy/DirectCompute-Lecture-Series-101-

Introduction-to-DirectCompute> [Accessed 10 Oct 2010].

Boyd, C. (2008) DirectX 11 Compute Shader. In: SIGGRAPH.

Brookwood, N. (2010) AMD Fusion™ Family of APUs: Enabling a Superior, Immersive PC

Experience. Insight64.

Cardoso, A. D.S. (2010) Generation of planar radiographs from 3D anatomical models using the

GPU. University of Porto.

Castaño-Díeza, D., Mosera, D., Schoeneggera, A., Pruggnallera, S. and Frangakis, A. S. (2008)

Performance evaluation of image processing algorithms on the GPU. Journal of Structural Biology,

164 (1), pp.153-160.

Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J. and Menon, R. (2000) Parallel

Programming in OpenMP. Morgan Kaufmann.

Chan, R. H., Ho, C.W. and Nikolova, M. (2005) Salt-and-Pepper Noise Removal by Median-type Noise

Detectors and Edge-preserving Regularization. IEEE Transactions on Image Processing, 14 , pp.1479-

1485.

Chen, J., Paris, S. and Durand, F. (2007) Real-Time Edge-Aware Image Processing with the Bilateral

Grid. ACM Trans. Graph, 26 (3).

Christadler, I. (2010) Performance and Productivity of new Programming Languages “PRACE

OpenDialog with European Tier-0 Users". Hamburg, PRACE.

Chu, M. M. (2010) GPU Computing: Past, Present and Futurewith ATI Stream Technology.

Cootes, T. F., Edwards, G. J. and Taylor, C. (1999) Comparing Active Shape Models with Active

Appearance Models. In: T. Pridmore, D. E. ed. British Machine Vision Conference., pp.173-182.

Cootes, T. F., Taylor, C. J., Cooper, D. H. and Graham, J. (1995) Active Shape Models-Their Training

and Application. Computer Vision and Image Understanding, 61 (1), pp.38-59.

Danielsson, P. E. (1984) Vices and Virtues of image parallel machines. In: Levialdi, S. ed. Digital Image

Analysis.

http://channel9.msdn.com/Blogs/gclassy/DirectCompute-Lecture-Series-101-Introduction-to-DirectCompute
http://channel9.msdn.com/Blogs/gclassy/DirectCompute-Lecture-Series-101-Introduction-to-DirectCompute

115

Davidson, A. (2006) Using a Graphics Processor Unit (GPU) for Feature Extraction from Turbulent

Flow datasets. In: The National Conference On Undergraduate Research. Asheville.

Davis, J. E., Ozsoy, A., Patel, S. and Taufer, M. (2009) Towards Large-Scale Molecular Dynamics

Simulations on Graphics Processors. Newark, University of Delaware.

Dawson, B. (2010) Coding For Multiple Cores on Xbox 360 and Microsoft Windows. Advanced

Technology Group.

Evans, K., Sych, T. and Dunsavage, K. (2010) Improving Medical Imaging Performance on the Intel®

Xeon® Processer 5500 series. Intel Corporation.

FAKULTI KEJURUTERAAN ELEKTRIK. (n.d.) X-Ray Image Processing. UNIVERSITI TEKNOLOGI

MALAYSIA.

Flynn, M. J. (1966) Very High-Speed Computing Systems. Proceeding of IEEE, 54 (12), pp.1901-1909.

Foster, I. (1995) Designing and Building Parallel Programs. Addison-Wesley Publishing Company.

Fried, M. (2010) GPGPU Architecture Comparision of AMD and Nvidia GPUs. Microway.

Fung, J. (2010) DirectCompute Lecture Series 210: DirectCompute GPU Optimizations and

Performance. [Internet], Available from: <http://channel9.msdn.com/Blogs/gclassy/DirectCompute-

Lecture-Series-210-GPU-Optimizations-and-Performance> [Accessed 10 Oct 2010].

Gelsinger, P. P. (2008) Intel Architecture Press Briefing. [Internet], Available from:

<http://download.intel.com/pressroom/archive/reference/Gelsinger_briefing_0308.pdf> [Accessed

15 Sep 2010].

Grama, A. and Kumar, V. (2008) Scalability of Parallel Programs. In: Sanguthevar Rajasekaran, J. R.

ed. Handbook of Parallel Computing: Models, Algorithms and Applications. Chapman & Hall, pp.43-

45.

Green, S. (2009) DirectX 10/11Visual Effects. In: GDC.

Gustafson, J. L. (1988) Reevaluating Amdahl's Law. Communications of the ACM, 31, pp.532-533.

Howes, L. (2010) DirectCompute Lecture Series 230: GPU Accelerated Physics. [Internet], Available

from: <http://channel9.msdn.com/Blogs/gclassy/DirectCompute-Lecture-Series-230-GPU-

Accelerated-Physics> [Accessed 10 Oct 2010].

http://channel9.msdn.com/Blogs/gclassy/DirectCompute-Lecture-Series-210-GPU-Optimizations-and-Performance
http://channel9.msdn.com/Blogs/gclassy/DirectCompute-Lecture-Series-210-GPU-Optimizations-and-Performance
http://download.intel.com/pressroom/archive/reference/Gelsinger_briefing_0308.pdf
http://channel9.msdn.com/Blogs/gclassy/DirectCompute-Lecture-Series-230-GPU-Accelerated-Physics
http://channel9.msdn.com/Blogs/gclassy/DirectCompute-Lecture-Series-230-GPU-Accelerated-Physics

116

Huang, T., Yang, G. and Tang, G. (1979) A fast two-dimensional median filtering algorithm. IEEE

Transactions on Acoustics, Speech and Signal Processing, 27 (1), pp.13-18.

Isensee, P. (2006) Utilizing Multicore Processors with OpenMP. In: Dickheiser, M. ed. Game

Programming Gems 6. Charles River Media.

Jähne, B. (2005) Digital Image Processing: Concepts, Algorithms and Scientific Applications.

Springer.

JaJa, J., Varshney, A. and Shi, Q. (2008) Parallel Algorithms for Volumetric Surface Construction. In:

Rajasekaran, S. and Reif, J. eds. Handbook of Parallel Computing: Models, Algorithms and

Applications. Chapman & Hall.

Jang, B., Do, S., Pien, H. and Kaeli, D. (2009) Architecture-Aware Optimization Targeting

Multithreaded Stream Computing. In: Second Workshop on General-Purpose Computation on

Graphics Processing Units (GPGPU 2009). Washington DC, ACM.

Jeong, W.K., Fletcher, P. T., Tao, R. and Whitaker, R. T. (2007) Interactive Visualization of Volumetric

White Matter Connectivity in DT-MRI Using a Parallel-Hardware Hamilton-Jacobi Solver. In: IEEE

Conference on Visualization.

Kachelriess, M. (2009) Branchless vectorized median filtering. Nuclear Science Symposium

Conference Record (NSS/MIC), pp.4099 - 4105.

Kass, M., Witkin, A. P. and Terzopoulos, D. (1988) Snakes: Active contour models. International

Journal of Computer Vision, 4 (1), pp.321-331.

Kazhdan, M. and Hoppe, H. (2008) Streaming Multigrid for Gradient-Domain Operations on Large

Images. ACM Transactions on Graphics, 27 (3).

Khronos Group (2010) OpenCL [Internet], Available from: <http://www.khronos.org/opencl/>

[Accessed 05 Jul 2010].

Kindelan, M. and Lezo, J. S.D. (1984) Atery Dectection and Tracking in Coronary Angiography. In:

Levialdi, S. ed. Digital Image Analysis., pp.283-294.

Langs, A. and Biedermann, M. (2007) Filtering Video Volumes Using the Graphics Hardware. In:

Pedersen, B. E.A.K. ed. SCIA 2007. Springer-Verlag, p.878–887.

Larsson, P. and Palmer, E. (2009) Image Processing Acceleration Techniques using Intel® Streaming

SIMD Extensions and Intel® Advanced Vector Extensions.

http://www.khronos.org/opencl/

117

Lee, V. W., Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen, A. D., Satish, N., Smelyanskiy, M.,

Chennupaty, S., Hammarlund, P., Singhal, R. and Dubey, P. (2010) Debunking the 100X GPU vs. CPU

Myth: An Evaluation of Throughput Computing on CPU and GPU. In: Proceedings of the 37th annual

international symposium on Computer architecture. New York, ACM, pp.451-460.

Lindberg, P. (2009) Basic OpenMP Threading Overhead. Intel Corporation.

Lönroth, M. U. (2009) Advanced Real-time Post-Processing using GPGPU techniques. DICE.

Magro, W., Petersen, P. and Shah, S. (2002) Hyper-Threading Technology. Intel Technology Journal,

4 (1).

Mattson, T. and Strandberg, K. (2008) Parallelization and Floating Point Numbers. Intel Corporation.

McGuire, M. (2008) A Fast, Small-Radius GPU Median Filter. In: Engel, W. ed. ShaderX6. Charles

River Media, pp.165-173.

McInerney, T. and Terzopolous, D. (1996) Deformable Models in Medical Image Analysis, a Survey.

Medical Image Analysis, 1 (2), pp.91-108.

Mitchell, J. L., Ansari, M. Y. and Hart, E. (2003) Advanced Image Processing with DirectX 9 Pixel

Shaders. In: Engel, W. ed. ShaderX2: Shader Programming Tips and Tricks with DirectX 9.

Wordware, pp.439-464.

Moore, G. E. (1965) Cramming more components onto integrated circuits. Electronics, 38 (8).

MSDN (2010a) Common-Shader Core (DirectX HLSL) [Internet], Available from:

<http://msdn.microsoft.com/en-us/library/bb509580(v=VS.85).aspx> [Accessed 10 Oct 2010].

MSDN (2010b) Compute Shader Overview [Internet], Available from:

<http://msdn.microsoft.com/en-us/library/ff476331(v=VS.85).aspx> [Accessed 15 Jul 2010].

MSDN (2010c) for Statement (DirectX HLSL) [Internet], Available from:

<http://msdn.microsoft.com/en-us/library/bb509602(v=VS.85).aspx> [Accessed 09 13 2010].

MSDN (2010d) numthreads [Internet], Available from: <http://msdn.microsoft.com/en-

us/library/ff471442(VS.85).aspx> [Accessed 03 May 2010].

Myler, H. R. and Weeks, A. R. (1993) The Pocket Handbook of Image Processing Algorithms in C.

Prentice Hall.

http://msdn.microsoft.com/en-us/library/bb509580(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ff476331(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb509602(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ff471442(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ff471442(VS.85).aspx

118

NVIDIA (2010a) CUDA [Internet], Available from:

<http://www.nvidia.co.uk/object/what_is_cuda_new_uk.html> [Accessed 03 Jun 2010].

NVIDIA (2010b) CUDA Supporting GPUs [Internet], Available from:

<http://www.nvidia.co.uk/object/cuda_gpus_uk.html> [Accessed May 2010].

NVIDIA. (2010c) OpenCL Programming Guide for the CUDA Architecture. [Internet], Available from:

<http://developer.nvidia.com/object/opencl.html> [Accessed 06 Dec 2010].

NVIDIA (2010d) OpenCL SDK [Internet], Available from:

<http://developer.download.nvidia.com/compute/opencl/sdk/website/samples.html> [Accessed 08

Dec 2010].

NVIDIA. (2009) Optimization : NVIDIA OpenCL Best Practices Guide. [Internet], Available from:

<http://developer.nvidia.com/object/opencl.html> [Accessed 09 Jun 2010].

NVIDIA. (1999) Transform and Lighting. [Internet], Available from:

<http://www.nvidia.com/object/transform_lighting.html> [Accessed 04 Jul 2010].

Paeth, A. W. (1990) Median finding on a 3x3 Grid. In: Glassner, A. ed. Graphic Gems. Boston,

Academic Press, pp.171-175.

Park, M., Jin, J. S. and Wilsoni, L. S. (2004) Detection of Abnormal Texture in Chest X-rays with

Reduction of Ribs. In: Piccardi, M., Hintz, T., He, X., Huang, M. L., Feng, D. F. and Jin, J. eds.

Information Processing VIP2003. Sydney, Australian Computer Society.

Perreault, S. and Hebert, P. (2007) Median Filtering in Constant Time. IEEE Transactions on Image

Processing, 16 (9), pp. 2389-2394.

Petrou, M. and Bosogianni, P. (1999) Image Processing Fundamentals. WILEY.

Pfister, H. (n.d.) General Purpose Computing using Graphics Hardware. Harvard University.

Podlozhnyuk, V. (2009) Histogram calculation in OpenCL. nVidia.

Preis, T., Virnau, P., Paul, W. and Schneider, J. J. (2009) Accelerated fluctuation analysis by graphic

cards and complex pattern formation in financial markets. New Journal of Physics, 11 (9).

Roberts, M., Sousa, M. C. and Mitchell, J. R. (2010) A Work-Efficient GPU Algorithm for Level Set

Segmentation. In: Annual Conference on Computer Graphics - SIGGRAPH. Los Angeles, ACM.

http://www.nvidia.co.uk/object/what_is_cuda_new_uk.html
http://www.nvidia.co.uk/object/cuda_gpus_uk.html
http://developer.nvidia.com/object/opencl.html
http://developer.download.nvidia.com/compute/opencl/sdk/website/samples.html
http://developer.nvidia.com/object/opencl.html
http://www.nvidia.com/object/transform_lighting.html

119

Roosta, S. H. (1999) Parallel Processing and Parallel Algorithms – Theory and Computation.

Springer.

Saccone, R. (2007) Improve Scalability With New Thread Pool APIs. MSDN Magazine, 08 Oct.

Sander, P. (2005) DirectX9 High Level Shading Language. In: SIGGRAPH.

Sandy, M. (2010) DirectCompute Lecture Series 110: Memory Patterns. [Internet], Available from:

<http://channel9.msdn.com/Blogs/gclassy/DirectCompute-Lecture-Series-110-Memory-Patterns>

[Accessed 10 Oct 2010].

Schellmann, M., Vörding, J., Gorlatch, S. and Meiländer, D. (2008) Cost-Effective Medical Image

Reconstruction: From Clusters to Graphics Processing Units. In: Conference On Computing Frontiers.

Ischia, ACM, pp.283-292.

Scheuermann, T. and Hensley, J. (2007) Efficient Histogram Generation Using Scattering on GPUs. In:

I3D 2007. Association for Computing Machinery, Inc.

Seiler, L., Carmean, D., Sprangle, E., Forsyth, T. and Abrash, M. (2008) Larrabee: A Many-Core x86

Architecture for Visual Computing. Intel Corporation.

SensAble Technologies (2010) PHANTOM Omni® Haptic Device [Internet], Available from:

<http://www.sensable.com/haptic-phantom-omni.htm> [Accessed 19 May 2010].

Shamir, L., Ling, S., Scott, W., Bos, A., Orlov, N., Macura, T., Eckley, D. and Goldberg, I. (2008) Knee X-

ray image analysis method for automated detection of Osteoarthritis. IEEE Transactions on

Biomedical Engineering.

Shams, R. and Kennedy, R. A. (2007) Efficient Histogram Algorithms for NVIDIA CUDA Compatible

Devices. In: International Conference on Signal Processing and Telecommunication Systems.

Canberra.

Sizintsev, M., Derpanis, K. G. and Hogue, A. (2008) Histogram-based search: A comparative study. In:

Computer Vision and Pattern Recognition.

Strzodka, R., Droske, M. and Rumpf, M. (2004) Image Registration by a Regularized Gradient Flow. A

Streaming Implementation in DX9 Graphics Hardware. Computing 73, 73, p.373–389.

Tatarchuk, N. (2008) GPU-Based Active Contours for Real-Time Object Tracking. In: Engel, W. ed.

ShaderX6: Advanced Rendering Techniques. Charles River Media, pp.145-160.

http://channel9.msdn.com/Blogs/gclassy/DirectCompute-Lecture-Series-110-Memory-Patterns
http://www.sensable.com/haptic-phantom-omni.htm

120

Thibieroz, N. (2009) Shader Model 5.0 and Compute Shader. In: Game Developer Conference. San

Francisco.

Thibieroz, N. and Cebenoyan, C. (2009) DirectCompute Performance on DX11 Hardware. In: GDC09.

Tibshirani, R. J. (2008) Fast Computation of the Median by Successive Binning. Stanford, Stanford

University.

Valve (2010) Hardware Survey [Internet], Available from:

<http://store.steampowered.com/hwsurvey> [Accessed 08 Nov 2010].

Voila, I., Kanistar, A. and Groller, M. E. (2003) Hardware-Based Nonlinear Filtering and Segmenation

using High Level Shading Languages. In: 14th IEEE Visualization Conference. Seattle, pp.309-316.

Walbourn, C. (2005) Game Timing and Multicore Processors. Advanced Technology Group.

Wang, C. W. (2006) Real Time Sobel Square Edge Detector for Night Vision Analysis. In: Campilho, A.

and Kamel, M. eds. ICIAR 2006. Springer-Verlag Berlin Heidelberg, p.404 – 413.

Wei, J., Hagihara, Y., Shimizu, A. and Kobatake, H. (2002) Optimal image feature set for detecting

lung nodules on chest. Tokyo, Tokyo University of Agriculture and Technology.

Yang, J. (2010) Basics of DirectCompute Application Development. [Internet], Available from:

<http://channel9.msdn.com/Blogs/gclassy/DirectCompute-Lecture-Series-120-Basics-of-

DirectCompute-Application-Development> [Accessed 10 Oct 2010].

Yin, Y. and Tian, G. Y. (2008) Feature Extraction and Optimisation for X-ray Weld Image Classification.

In: 17th World Conference on Nondestructive Testing.

Zink, J. (2010) Ambient Occlusion Using DirectX Compute Shader. In: Lake, A. ed. Game

Programming Gems 8. Course Technology PTR, pp.50-73.

http://store.steampowered.com/hwsurvey
http://channel9.msdn.com/Blogs/gclassy/DirectCompute-Lecture-Series-120-Basics-of-DirectCompute-Application-Development
http://channel9.msdn.com/Blogs/gclassy/DirectCompute-Lecture-Series-120-Basics-of-DirectCompute-Application-Development

121

9. Appendices

9.1. Appendix A: Hardware Statistics

This appendix contains information regarding the hardware configurations of PC gamers that use the

popular Steam software. The data is obtained automatically as part of the Steam Hardware Survey

(Valve, 2010). Whilst this data does not relate directly to the target audience of the VirtuOrtho, it

does give a general indication of the current trends that consumer hardware will follow. This can be

attributed to the fact that PC gamers tend to be early adopters of computer technology and PC

gamers are currently the main driving force behind GPU development.

Table 7 : Steam Hardware Survey, Number of CPU cores

Number of CPU cores Steam Users (%)

1 11.22

2 53.81

3 1.20

4 33.13

6 0.57

8 0.06

The survey of CPUs shows that single core CPUs are in the minority with dual and quad core

processors currently being the most popular derivatives of multi-core processors.

Table 8 : Steam Hardware Survey, Advanced CPU Feature Support

Advanced CPU Features Steam Users (%)

SSE2 99.13

SSE3 97.29

SSE4.1 39.81

HyperThreading 16.05

SSE4.2 14.65

SSE4a 12.46

The survey of advanced CPU features38 demonstrates that SSE2 and SSE3 instructions are almost

universally supported in current CPUs, whereas HyperThreading and later versions of SSE

instructions have far more limited support.

38

 i.e. Features which are not part of the x86 or x64 instruction sets.

122

Table 9 : Steam Hardware Survey, DirectX 11 Graphics Cards

DirectX 11 Graphics Card Steam Users (%)

AMD Radeon HD 5450 0.54

AMD Radeon HD 5500 Series 0.30

AMD Radeon HD 5600 Series 0.70

AMD Radeon HD 5700 Series 7.30

AMD Radeon HD 5800 Series 7.60

AMD Radeon HD 5900 Series 0.64

NVIDIA GeForce GTX 460 1.74

NVIDIA GeForce GTX 465 0.28

NVIDIA GeForce GTX 470 1.24

NVIDIA GeForce GTX 480 1.08

Total DirectX 11 GPUs 21.42%

The survey of Steam users with DirectX 11 capable graphics cards indicates that they have been

widely adopted, with over 20% of PCs featuring a DirectX 11 graphics card. They appear to have

achieved good market penetration between their initial retail launch (September 2009) and the time

the survey was conducted (November 2010).

123

9.2. Appendix B: Test Hardware

This appendix details the configuration of both test hardware and the C++ compiler of Visual Studio

2010.

Table 10 : Test Hardware Configuration

Hardware Model Specifications Notes

CPU Intel Core i5 750 Quad Core @ 2.66GHz No HyperThreading

RAM DDR3 4GB @ 1333MHz

GPU AMD HD 5770 800 Stream Processors, GDDR5 1024MB Catalyst 10.8 Drivers

OS Windows 7 x64 Version

 Note: The Core i5 750 is a derivative of the Core i7 processor. It however lacks the HyperThreaded

cores of an i7 processor; therefore it has four physical processing cores and no logical cores. It also

has a Dual Channel memory controller instead of the Triple Channel controller found in Core i7 CPUs.

Table 11 : Visual Studio 2010 C++ Compiler Settings

Compiler Setting Value

Target Platform x64

Optimisation Maximize Speed (/O2)

Whole Program Optimisation Yes (/GL)

Enhanced Instruction Set Streaming SIMD Extensions 2 (/arch:SSE2) (/arch:SSE2)

Floating Point Model Precise (/fp:precise)

Open MP Support Yes (/openmp)

124

9.3. Appendix C: YEF Proposal

This appendix contains the initial project proposal for VirtuOrtho.

Table 12 : YEF Funding Application Form

Project Title

Serious Games for Medical Training

A novel approach to pre-med virtual environments / operations

Layman’s Summary

When planning surgical procedures medical professionals desire as much information as possible. In

the lead application – podiatric surgery – current practice is to take X-ray images of the foot from

the top and side and then use these to plan the surgical procedure. Current research aims to

produce a computer software system (serious game) capable of taking these single plane X-ray

images of a patient’s foot and construct a virtual 3D representation of it. A functional application of

this system will then be developed, suitable of everyday use by medical professionals, allowing

different orthopaedic surgical techniques to be practiced and experimental procedures to be

assessed.

In addition to pre-operative planning, the application could be used to:

Instruct students with human physiology and anatomy using realistic 3D representations.

Familiarise trainee and pre-reg medical professionals in generic surgical procedures

Aid the explanation of complex surgical techniques to patients

Purpose of the project and benefits

The purpose of the software is to develop a 3D representation and manipulation system using an

existing mass-produced, inexpensive hardware platform. This will facilitate its broad uptake in

teaching (of both students and pre-registration healthcare professionals), and pre-operative

planning and simulation.

The need for improved systems for teaching and learning is well established, especially for the

development of knowledge and familiarity of human anatomy. Such knowledge has traditionally

been gained from planar pictures, models and ultimately dissection. Potentially the proposed system

will allow the 3D representation, manipulation and “digital dissection” of human using an

125

inexpensive hardware platform, which makes it suitable for large scale use within the academic and

vocational training of all healthcare professionals.

Surgical pre-planning requires imaging of the patient anatomy; this subsequently viewed in two

dimensions which quite naturally limits accurate visualisation. This limitation, combined with the

increasing move to minimally invasive laparoscopic surgery requires new approaches to visualisation

and pre-operative planning. The proposed development will allow the 3D representation, planning

and “digital practice” of surgery.

The product will initially be focused on Podiatry surgical trainees. With the ever growing need for

better, cheaper and faster medical and surgical training and assistance systems, software that

delivers these criteria will have real value.

Intellectual Property (IP)

The software will generate IP for the training software.

IP will be generated from the techniques implemented from the 2D X-Ray to 3D model / mesh

algorithms.

Describe the novel aspects of your proposed project/venture

The use of 3D representations in the teaching and development of a range of students (from

undergraduate to post-reg medical professionals) is novel. There are currently available simulation

and representation products; however these are all single plane representations so the anatomical

architecture is poorly represented.

This project will deliver a low cost system suitable for applications ranging from “mass teaching”

through to high-end surgical procedure planning.

The novelty and advantages of using a currently available platform for the delivery of the application

cannot be overestimated.

We are particularly keen to link this project to the regional academic, industry and NHS strength in

Healthcare technologies.

Target markets

As this project is a collaboration between ourselves and the School of Podiatry, the initial

126

development will be aimed at the podiatric surgery market. We realise this represents only a small

fraction of the potential market, however it does represent a significant initial market. There are

currently 17 Podiatric degree programmes throughout the UK, which represents a market of over

750 units. In the following phases of development the largest opportunity lies within “mass

teaching” of undergraduate medical, dental and allied healthcare professionals the target market is

c. 25,000 units.

Sales values are of course difficult to predict, however a unit value of £2,500 for the mass teaching

model is estimated (based on a 50% discount vs. Anatomical models). Using this estimate of unit

price, the value of the market is over £60M within the UK alone.

Our exploitation route would be via collaborative development and licensing with appropriate

partners; we have confirmed interest from educational software providers for the “mass teaching”

model.

127

9.4. Appendix D: Performance Results Data

This appendix contains the averaged results for the various experiments [Section 3.3.1] conducted as

part of this project. All timings were gathered using the high performance timer and the values

obtained rounded to four decimal places. All speedup values are calculated to two decimal places.

9.4.1. Overall Execution Time

The overall execution time experiment measures how long it takes a particular version of the

algorithm to process an X-ray image. The total time for each algorithm is broken down into how long

the CPU, GPU and data conversion take.

Table 13 : Overall Execution Time

Algorithm

Execution Time (s)

GPU CPU Data Conversion Total

SISD (Int) N/A 29.6541 N/A 29.6541

MIMD (Int) N/A 7.4839 N/A 7.4839

SIMD (Int) 3.1818 0.0363 N/A 3.2181

SISD (Float) N/A 43.0914 0.9989 44.0909

MIMD (Float) N/A 10.8444 0.9989 11.8433

SIMD (Float) 3.3498 0.0250 0.9989 4.3737

Note: N/A signifies that the use of a particular processor or data conversion was unnecessary for the

specific implementation of algorithm.

9.4.2. Individual Component Execution Time

The individual component execution time experiment measures how long it each component of the

algorithm takes to execute on a particular parallel processor architecture.

Table 14 : Individual Component Execution Time

Image Processing Technique SISD MIMD SIMD

Median Filter 29.448 7.3948 2.9442

Histogram 0.0246 0.0246 0.0321

Thresholding 0.0089 0.0058 0.0041

Sobel 0.1717 0.0502 0.0923

Note: All tests of individual components were performed using the data in its native format (Integer)

128

9.4.3. Data Format Performance

The data format experiment gauges the performance penalty incurred by certain data types on

different processor architectures.

Table 15 : Data Format Performance

 Serial (CPU) Parallel

(CPU)

Fast, Small-

Radius (GPU)

Caching (GPU)

Integer Execution Time (s) 2.4986 0.6549 0.1184 0.1019

Floating Point Execution Time (s) 3.0081 0.8055 0.1107 0.0939

Speedup (%) 16.937 18.701 -6.9220 -8.4758

9.4.4. Median Filter Performance

The median filter experiment assesses the performance of the two proposed GPU median filters

against a histogram implementation for serial and parallel CPUs, in addition to the fast, small-radius

GPU algorithm. The algorithms were tested with a small-radius () mask and a large-radius

() mask.

Table 16 : Median Filter (3 x 3) Performance

Data Type

Execution Time (s)

Serial (CPU) Parallel (CPU) Fast, Small-

Radius (GPU)

Caching (GPU) Histogram (GPU)

Integer 2.4986 0.6549 0.1184 0.1019 0.7731

Float 3.0081 0.8055 0.1107 0.0939 0.9201

Table 17 : Median Filter (19 x 19) Performance

Data Type

Execution Time (s)

Serial (CPU) Parallel (CPU) Fast, Small-

Radius (GPU)

Caching (GPU) Histogram (GPU)

Integer 29.4488 7.3948 N/A N/A 2.9442

Float 42.8207 10.7648 N/A N/A 3.0836

Note: N/A denotes that the Fast, Small-radius and Caching algorithms are unable to calculate median

filter with large masks.

129

9.4.5. Optimum Number of Threads

The optimum number of threads experiment analyses the performance the fast, small-radius median

filter and a Sobel filter when process on the development GPU using various numbers of threads per

thread group.

Table 18 : Optimum Number of Threads (Median)

Number of Threads Execution Time (s) Speedup

1 0.7235 1.00x

2 0.4115 1.75x

4 0.2516 2.87x

8 0.1734 4.17x

10 0.1556 4.64x

20 0.1223 5.91x

40 0.1045 6.92x

100 0.0986 7.33x

200 0.0995 7.26x

400 0.1000 7.23x

Table 19 : Optimum Number of Threads (Sobel)

Number of Threads Execution Time (s) Speedup

1 0.2403 1.00x

2 0.1646 1.46x

4 0.1258 1.91x

8 0.1078 2.22x

10 0.1041 2.30x

20 0.0961 2.49x

40 0.0919 2.61x

100 0.0891 2.69x

200 0.0889 2.70x

400 0.0895 2.68x

130

9.5. Appendix E: Source Code

This appendix contains the source code for the GPU implementations of various components of the

algorithm.

9.5.1. DirectCompute Fast, Small-Radius Median Filter

Code Listing 17 : GPU Fast, Small-Radius Median Filter

This is a direct port of the Fast, Small-Radius Median Filter (McGuire, 2008) from a Pixel Shader to a

Compute Shader implementation.

1: #define s2(a, b) temp = a; a = min(a,b); b = max(temp, b);

2: #define mn3(a, b, c) s2(a, b); s2(a, c);

3: #define mx3(a, b, c) s2(b, c); s2(a, c);

4:

5: #define mnmx3(a, b, c) mx3(a, b, c); s2(a, b);

6: #define mnmx4(a, b, c, d) s2(a, b); s2(c, d); s2(a, c); s2(b, d);

7: #define mnmx5(a, b, c, d, e) s2(a, b); s2(c, d); mn3(a, c, e); mx3(b, d, e);

8: #define mnmx6(a, b, c, d, e, f) s2(a, d); s2(b, e); s2(c, f); mn3(a, b, c);

mx3(d, e, f);

9:

10: [numthreads(40,1,1)]

11: void CSMain(uint3 g : SV_GroupID, uint3 gt : SV_GroupThreadID)

12: {

13: uint v[9];

14:

15: int i = ((xNumThreads * yNumThreads) * g.x) + ((xNumThreads *

yNumThreads) * g.y * (width/xNumThreads)) + ((gt.x * yNumThreads) + gt.y);

16:

17: int count = 0;

18: int offset;

19: for(int x = 0; x < 3; x++)

20: {

21: for(int y = 0; y < 3; y++)

22: {

23: offset = i + ((x - 1) * width) + (y - 1);

24: v[count] = Buffer0[offset].i;

25: count++;

26: }

27: }

28: uint temp;

29: mnmx6(v[0], v[1], v[2], v[3], v[4], v[5]); // 7 exchanges

30: mnmx5(v[1], v[2], v[3], v[4], v[6]); // 6 exchanges

31: mnmx4(v[2], v[3], v[4], v[7]); // 4 exchanges

32: mnmx3(v[3], v[4], v[8]); // 3 exchanges

33: BufferOut[i].i = v[4];

34: }

131

9.5.2. GPU Histogram Median Filter

Code Listing 18 : GPU Histogram Median Filter

The GPU Histogram Median Filter is effectively the algorithm proposed by Huang et al. (1979) [Code

Listing 4] implemented in a manner which is suitable for processing using a GPU via the

DirectCompute API. The main difference between the two is the actual median calculation, which

lacks an early escape from the “for” loop [Lines 27 - 35].

1: groupshared uint cache[256 * 20 * 1];

2:

3: [numthreads(20,1,1)]

4: void CSMain(uint3 g : SV_GroupID, uint3 gt : SV_GroupThreadID)

5: {

6: int i = ((xNumThreads * yNumThreads) * g.x) + ((xNumThreads *

yNumThreads) * g.y * (width/xNumThreads)) + ((gt.x * yNumThreads) + gt.y);

7:

8: for(int p = 0; p < 256; p++)

9: {

10: cache[(gt.x * 256) + p] = 0;

11: }

12:

13: uint count = 0;

14: int offset;

15: for(int x = 0; x < 19; x++)

16: {

17: for(int y = 0; y < 19; y++)

18: {

19: offset = i + ((x - 1) * width) + (y - 1);

20: count = (uint)(gt.x * 256) + (Buffer0[offset].i /

16.0);

21: cache[count]++; //PUT INTO HISTOGRAM

22: }

23: }

24:

25: count = 0;

26: uint value = 0;

27: for(int z = 0; z < 256; z++)

28: {

29: if(count <= ((radius * radius) / 2))

30: {

31: value = z;

33 }

34 }

35 BufferOut[i].i = value * 16;

36: }

132

9.5.3. GPU Sobel Filter

Code Listing 19 : GPU Sobel Filter

The GPU Sobel Filter is essentially the same as CPU implementation [Code Listing 12], with minor

alterations to conform to the DirectCompute specification [Lines 1 – 6, 35].

1: [numthreads(40,1,1)]

2: void CSMain(uint3 g : SV_GroupID, uint3 gt : SV_GroupThreadID)

3: {

4: int i = ((xNumThreads * yNumThreads) * g.x) + ((xNumThreads *

yNumThreads) * g.y * (width/xNumThreads)) + ((gt.x * yNumThreads) + gt.y);

5: uint value;

6: value = Buffer0[i].i;

7:

8: if((uint)i >= width && (uint)i < numPixels - width)

9: {

10: int id = (gt.x * yNumThreads) + gt.y;

11:

12: int3 p1, p2 ,p3;

13:

14: p1 = int3(Buffer0[i - width - 1].i, 0, Buffer0[i - width +

1].i * -1);

15: p2 = int3(Buffer0[i - 1].i * 2, 0, Buffer0[i + 1].i * -2);

16: p3 = int3(Buffer0[i + width - 1].i, 0, Buffer0[i + width +

1].i * -1);

17:

18: p1 = p1 + p2 + p3;

19:

20: int vert = p1.x + p1.y + p1.z;

21:

22: p1 = int3(Buffer0[i - width - 1].i, Buffer0[i - width].i * 2,

Buffer0[i - width + 1].i);

23: p2 = int3(Buffer0[i - 1].i * -1, 0, Buffer0[i + 1].i);

24: p3 = int3(Buffer0[i + width - 1].i * -1, Buffer0[i + width].i

* -2, Buffer0[i + width + 1].i * -1);

25:

26: p1 = p1 + p2 + p3;

27:

28: int horiz = p1.x + p1.y + p1.z;

29:

30: float sqrtVal = (vert*vert) + (horiz * horiz);

31: int temp= (int)sqrt(sqrtVal);

32:

33: value = clamp(temp,0,4095);

34: }

35: BufferOut[i].i = value;

36: }

133

9.6. Appendix F: Compute Shader Functionality

The appendix details the differences between the two main versions of the Compute Shader, version

4.0 and 5.0. The data is based on the specification of the Compute Shader (MSDN, 2010b) listed in

the DirectCompute documentation.

Table 20 : Compute Shader Functionaility

Functionality Compute Shader 5.0 Compute Shader 4.0

Atomic Instructions Yes No

Double Precision Floating Point

Values

Yes No

Cache Memory 32KB 16KB

Limited Cache Region No Yes, threads are limited to 256 byte region

of cache memory for writing.

Threads must access cache

memory via SV_GroupIndex

No Yes, when writing to cache memory.

Threads access any location in

cache memory

Yes No, threads can only write to their specific

256 byte region in cache memory.

Number of unordered access

view resources that can be

bound to a single Compute

Shader

>1 1

Max. Number of Threads per

Thread Group

1024 768

Max. Number of Threads in Z

Dimension

64 1

Max. Number of Thread

Groups per Dispatch call

65,535 65,535

Dispatch Indirect Yes No

