
Journal of Computational Information Systems 8: 2 (2012) 493–505
Available at http://www.Jofcis.com

A Qualitative and Quantitative Comparison of Real-time

Background Subtraction Algorithms for Video

Surveillance Applications ?

M. Hedayati, Wan Mimi Diyana Wan Zaki∗, Aini Hussain

Department of Electric, Electronics and Systems Engineering, Faculty of Engineering and Built
Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia

Abstract

Background subtraction is a widely used technique for segmenting a foreground object from its background.
The aim of this paper is to review and compare the performance of the most common statistical
background subtraction methods, including median-based, Gaussian-based and Kernel density-based
approaches. To obtain a fair evaluation, four challenging scenarios were selected based on Wallflower
datasets. All review methods are based on processing speed, memory usage and segmentation accuracy.
The overall evaluation shows that the Gaussian-based method gives the best performance in accuracy,
speed and memory consumption. In addition, this paper provides a better understanding of algorithm
behaviours applied to different situations for real-time video surveillance applications.

Keywords: Background Subtraction; Real-time Video Surveillance; Gaussian Mixture Modal; Median;
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1 Introduction

Today, video surveillance systems that are used as remote eye security systems play an important
role in maintaining security and safety in our society. Today, these tools can be seen every-
where, including in residential areas, junctions, malls and airports. Real time human detection
and behaviour analysis of people in enclosed areas are the main challenges for any smart Video
Surveillance system. Accurate segmentation of moving objects from their background is the
principle operation in this type of system.

Object detection approaches have been introduced by researchers over the past three decades;
undoubtedly, the Background Subtraction (BGS) method is the most widely used technique for
video security applications because of its simplicity, its acceptable accuracy and its low computa-
tion time. Although most BGS algorithms work well under simple conditions, there are various
challenges that affect the output of the system. These challenges can be categorised into two main
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Fig. 1: General flow diagram of the BGS algorithm

groups: first, the system limitation and second, the environmental challenges. System limitations
are directly related to the characteristics of the platform that is used, such as memory consump-
tion and computational speed. Environmental challenges are imposed by the environment and
are caused by light reflection, shadow, illumination changes, colour similarity or camouflage and
background variation.

This paper comprehensively investigates the most popular background subtraction algorithms
introduced by researchers, namely Median filtering, Approximate Median, Running Gaussian
Average (RGA), Gaussian Mixture Modal (GMM) and Kernel Density Estimation (KDE). The
goal is to achieve the best comparison of all of the algorithms evaluated with respect to accuracy,
speed and memory consumption.

The rest of this paper is organised as follows: Section 2 reviews previous work on background
subtraction and briefly explains thresholding and data validation techniques. Section 3 describes
our evaluation methods and the features of each data set. Section 4 compares the selected methods
and discusses the final results. Finally, Section 5 offers conclusions and provides recommendations
for further work, based on the results presented.

2 Background Subtraction Algorithm Review

Briefly, to perform background subtraction, first the background has to model. The background
is obtained, and modelled. Then, the incoming frame is obtained, and the background model is
subtracted out. With the background model used in this way, a moving object can be detected.
This algorithm is properly named background subtraction. The efficiency of a background sub-
traction technique correlates strongly with three important steps: modelling, thresholding and
data validation (Figure 1).

Background modelling, as the backbone of the BGS algorithm, describes model representation
and model adaption characteristics. Model representation defines the type of model selected
to represent the background, and the representation can simply be a frame at time (t-1) or a
statistics formula such as the median model. Model Adaption is the procedure used for adjusting
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the background changes that may occur in a scene. Thresholding, which is one of the basic image
processing techniques, is a procedure that eliminates an unwanted range of pixels in the scene
with respect to certain threshold values, whereas data validation is involved with the collection
of techniques to reduce the misclassification of pixels.

Among the various methods introduced in the literature, we thoroughly review five distinct
background modelling methods here, namely, Median, Approximate Median, Running Gaus-
sian Average (RGA), Gaussian Mixture Modal (GMM) and Kernel Density Estimation (KDE).
Based on their representation models, these methods can be divided into three categories, name-
ly Median-based [2,3,4,12], Gaussian-based [22,23,24,25] and KDE-based [6,13,26] approaches.
Moreover, brief reviews of thresholding and data validation techniques [1,5,17,20] are also dis-
cussed.

2.1 Background modelling

2.1.1 Median-based method

Median modelling is one of the simplest statistical background modelling methods, and because
of its acceptable performance, it has reliably become a consideration for most researchers and
developers. Median filtering is considered to be a recursive technique, which means that the
algorithm stores the previous L video frames in a buffer and estimates the background based on
variations in pixels in the buffer.

In [2,4], Cucchiara, R. et al. prove that, with a proper selection of the observation time window
(nt), median filtering gives the best overall performance for real time applications as compared
to mean and mod filtering, even with a limited length of sequence. There are two common
approaches in median-based models, namely median filtering and approximate median filtering.

Median Filtering: In this model, the background is defined based on the median value of each
pixel in all previous frames in the buffer. Thus, the background at time t can be defined as

Bt = U(It, It−∆t, ..., It−(n−1)∆t) (1)

U is the updating model, where It is the frame at time t. In median filtering, the correct
selections of the buffer size (n) and the frame time rate (t) are critical issues that affect the
performance of the median filtering.

Cucchiara, R. et al [3] used median filtering on colour space to improve pixel selection. In [11],
median and variance filtering are combined together to reduce false positive rates caused by the
light reflection from trains in a train station. The complexity of the computing in the median
filtering algorithm is equal to O (L log L).

Approximate median: As a complimentary method to median filtering, McFarlane, N. and
Schofield, C. [12] introduce the approximate median method, which is a recursive technique.
This model uses recursive filters to estimate median filtering so that the computational time and
memory consumption of the developed system will be reduced [14,15]. The main drawback of
this model is the adaptive rate, which requires a large amount of time to learn a new background
as the background changes.
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2.1.2 Gaussian-based method

The Gaussian technique is a statistical approach that models pixel intensities based on Gaussian
probability distributions. Gaussian models have recursive patterns and can adaptively update
the background without using a large buffer. There are two common approaches of Gaussian-
based methods. The first approach is the Running Average Gaussian (RGA), which is the fastest
algorithm among adaptive background subtraction methods and adapts the background using
only one or two parameters [15]. The second Gaussian-based method is the Gaussian Mixture
Model (GMM) [23,25].

Running Gaussian Average (RGA): This method uses a single Gaussian probability to model
the colour distribution of the background and to employ basic adaptive filtering Eq. (2) to adopt
changes in the scene (such as illumination changes) [25].

µt+1 = αFt + (1− α)µt (2)

where µt is the mean value at time t.Ft is the current frame and α is the updating rate. The
formula in Eq. (2) was later updated by Koller, D. et al [9] as

µt+1 = µt + (α1(1−Mt) + α2Mt ×Dt) (3)

where t is time, µtis an updating parameter, andα1 and α2 are weights of updating parameters.
The variable Dt is the difference between the current value and a parameter model, and the value
of Mt is 0 for background pixels and 1 for foreground pixels.

As improvement of the RGA model of Tang, Z et al. [24] combines the RGA model with a frame
differing method. Tang and co-authors use frame differing as a post-processing stage to reduce
false positive rates and to significantly decrease the detection error by eliminating small gaps and
holes. Jabri, S. et al [8] mixed RGA and edge information for each channel and improved the
quality and reliability of the results. The edge model built by the applied sable filter on each
colour channel yielded horizontal and vertical edge information of an image.

In [22], a new background modelling formula is derived by importing one more adaptive filter
and two different updating rates, as described in Eq. (4).

BK
x.y =


(1− α1)BK−1

x.y + α1I
K
x.y If K > 0, ADK

x.y < TH

(1− α2)BK−1
x.y + α2I

K
x.y If K > 0, ADK

x.y < TH

I0
x.y If K = 0.

(4)

where B is a background, K is a frame number, AD is an absolute difference and α1 are updating
rates.

Gaussian Mixture model: In many cases, the background may not contain only static objects.
Hence, the non-static motions cause varying pixel intensities. The Gaussian Mixture model is
a method to model this motion and variation. This model is a developed version of a single
Gaussian that clusters each uniform object into several Gaussian distributions [23]. Eq. (5)
mathematically presents this model.

P (Xt) =
K∑
i=1

ωi,t.η(u;µi,t, σi,t) (5)
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where η(u;µi,t, σi,t) is the i-th Gaussian component, σi,t is a standard deviation and ωi,t is the
weight of each distribution. The variable K is the number of distributions and usually varies from
three to five depending on the available storage [16].

As Lee, D.S [10] explains in his work, a common problem for the traditional GMM approach
is the balancing between speeds and stability. Hence, he introduces a new formula to improve
the convergence rate without changing the stability by driving a new adaptive learning rate, as
follows

learning rate = qk.(
1− α
Ck

+ α) (6)

In Eq. (6), α is a constant and qk is a posterior probability of a distribution.

Atsushi Shimada et. al [21] introduced the dynamic control of a Gaussian Mixture model by
using a dynamic Gaussian component instead of a single constant Gaussian component to improve
the accuracy and to reduce the computational time.

2.1.3 Kernel density-based method

The previously mentioned methods use parametric models to estimate the background in the
parameter estimation probability distribution built based on the assumption of the pixel intensity
or color distribution of images. However, in contrast to the parametric model, a non- parametric
model estimates the density function without any prediction about the distribution; hence, it is
called distribution-free, and the probability distribution may change from one image to another.

Kernel density estimation with a Gaussian kernel is one of the popular non-parametric ap-
proaches introduced by Elgammal, Harwood, and Davis [6]. In this method, the intensity of
pixels is modelled by Eq. (7).

Pr(xt) =
1

N

N∑
i=1

1

(2Π)
d
2 |σ| 12

e−
1
2

(xt−xi)T σ−1(xtxi) (7)

where Pr is a probability function, N is the buffer size, and σ presents the bandwidth. Proper
selection of bandwidth is one of the main issues in kernel density estimation methods. A small
bandwidth can cause a varying density estimation and too wide of a bandwidth can cause over-
sampling. However, [6] Elgammal et al introduce formula (8) to calculate the bandwidth, as
follows

σ =
m

0.68
√

2
(8)

Latter, Noriega and Bernier [13] proposed new non-parametric estimation by combining local
kernel histograms and contour features. This approach shows a more stable result in the matter of
illumination changes, as contour-based features help to reduce error rates under varying lighting
conditions.

In the latest non-parametric approaches, Shengping et al [26] introduce a non-parametric mod-
elling technique that uses spatial and temporal variations of pixels to model the background. To
detect a moving object at time t, this method classified each pixel as foreground or background
based on a comparison of the probabilities of its neighbouring pixels using a certain threshold.
The neighbouring location of the pixel at the i-th row and the j-th column can be obtained by

Nij = {Suv|(u− i)2 + (v − j)2 ≤ R2} (9)
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where R is the radius of the neighbouring region.

2.2 Thresholding and data validation

Thresholding is a basic procedure in image processing that is designed to segment an object from
its background. In this process, pixels in the scene are considered as foreground if their value is
greater than a value called the threshold (T), as described in Eq. (10), below

F =

{
F (i, j) > T object

F (i, j) ≤ T background
(10)

Thresholding algorithms can mainly be classified into two broad categories, namely, global
thresholding and local thresholding. In global thresholding, a single threshold value is selected
for all of the pixels in the entire scene, to segment the objects. In this model, the threshold value
can be set empirically [6, 23] to a specific value. In the second case, that of local thresholding,
different threshold values are used for different regions in the frame. This model is also called
adaptive thresholding and achieves more accurate results in places where the pixel intensity of
the background is not uniformly distributed.

In research conducted by Rosin [18], four different thresholding methods are described, based
on a distribution model that includes the normal distribution, the intensity distribution, a Poisson
distribution and spatial distributions. A worthwhile survey directed by Sankur.B and Sezgin.M
[20] contains a review and evaluated most of the common thresholding approaches. This paper
classified thresholding techniques into six groups, as follows:

1. Histogram shape-based methods that analyse peaks, valleys and curvature of the histogram
and that set the threshold according to these morphological characteristics.

2. Clustering-based methods, where the gray-level samples are clustered into two parts, as
background and foreground objects.

3. Entropy-based methods resulting in algorithms that use the entropy of the foreground and
the background regions.

4. Object attribute-based methods that search for a measure of similarity between the gray-level
and the binary images.

5. Spatial methods that use higher-order probability distributions and correlations between
pixels.

6. Local methods that adapt the threshold value on each pixel to local image characteristics.

2.3 Data validation

Designing background subtraction algorithms with increased complexity affects the computational
time and memory consumption of the system. Because of these extra costs, the implementation
of more sophisticated algorithms is almost impossible on ordinary systems.

The data validation or cleanup process is a group of techniques designed to reduce the error
rate that comes about after subtraction. These misclassifications are caused by three critical
difficulties in the background subtraction algorithm itself. First, most of the background sub-
traction algorithms treat pixels independently and ignore any correlations between neighbouring
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pixels [17]. Second, the adaptation rate may not match the speed of the moving object and last,
non-stationary background pixels in the scene can be mistakenly recognised as foreground (such
as the shadow of an object or tree branches) [5].

There are various techniques that can be used for data validation; these methods can be divided
into five groups, namely blob processing, noise removal, object level feedback, saliency test and
optical flow.

Morphological transformations are the main operation in Blob processing; these operations re-
duce the false positive rate by filling in individual holes and connecting different separate blobs of
the same object. Smoothing is the well-known noise removal operation that is used to reduce the
noise and camera variations in a system. Object level feedback is a process that updates the back-
ground model and can be classified into two categories as conditional updating and unconditional
updating. In conditional updating, pixels update after foreground extraction but in uncondi-
tional updating, pixels update after the thresholding and subtraction step. The optical flow test
is mainly used for distinguishing shadow and ghost from the foreground, based on trajectory
analysis of object displacement. The saliency test is based on the assumption that at least some
portion of a foreground object should be poorly explained by the background model [2]. There-
fore, the saliency test deals with detecting misclassified pixels from the background, in addition
fuzzy logic is another approaches to correct foreground and background pixels misclassification
in post processing process.

3 Evaluation Methodology

To make a fair comparison among all of the different algorithms explained in this paper, a software
implementation was built using MATLAB 9, and the Otsu threshold method was implemented
as the thresholding technique based on a built-in MATLAB function. The Intel (R) core (TM)
i7-960 @ 3.2 GHz CPU with 5 GB RAM was chosen as the hardware platform. Each algorithm
was applied to four different challenging image sequences from the Wallflower data set [7].

The wallflower database is one of the standard datasets for evaluating BGS algorithms. Figure
2 first row shows four image sequences selected from this data base. The first scenario (S1),
called ”Camouflage”, representing colour similarity in situations of foreground and background.
In the second scenario (S2), called “waving tree”, small movements in the background scene are
major obstacles of foreground segmentation. The third scenario (S3), “Time of Day”, represents
an illumination change in the environment, and last, the forth sequence (S4), called “Bootstrap”,
displays a crowded area with a complete dynamic scene. These images are in colour format with
a size of 120X160. The ground truths of these data sets are manually using Adobe Photoshop for
20 selected frames for each data set.

Low level pixel-based evaluations were computed for each data set and the measures of False
Positive (FP), False Negative (FN) and Percentage of Correct Classification (PCC), which were
computed for each dataset [19].

The False Positives (FP), or false alarm rate, can be obtained by calculating the number of non-
changed pixels that are incorrectly identified as changed pixels. In contrast, the false negatives
(FN) rate shows the number of changed pixels that are incorrectly identified as non-changed
pixels, and, finally, the percentage of correct classification PCC represents the overall rate of
correct identification, which can be expressed according to Eq. (11).
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PCC =
CD

CD + FP + FN
(11)

In Eq. (11), CD is correct detection (i.e., correct identification), which gives the total number
of pixels that are correctly categorised and that can be calculated, as follows

CD = Total P ixel − (FN + FP ) (12)

4 Experimental Results and Discussion

Table 1: Memory usage and speed efficiency for selected algorithms

Algorithm Speed (frame per second) Memory Usage (KB)

Median Filtering 0.18 fps 10754 KB

Approximation Median 0.17 fps 1670 KB

RGA 0.05 fps 1094 KB

GMM 0.60 fps 2304KB

KDE 2.00 fps 23962KB
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Fig. 2: Comparisons of qualitative results of the selected algorithms. Each column represents a
selected frame from different challenging scenarios and application of the BGS algorithms. The
first and second rows illustrate the test frames and the ground truth image, and the remaining

five rows show the selected algorithms discussed in this paper.

Table 1 contains information about the memory consumption and computational time for the
five chosen algorithms. Theoretically, it is expected that will be a huge difference between the
three recursive models (RGA, Approximate Median and GMM) and the two non recursive models
(KDE, Median Filtering) in the matter of memory usage. This theoretical predication is substan-
tiated because the RGA gives the best performance, with 1094KB of memory consumption, and
the KDE gives the worst result, with 23962KB of memory.
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Table 2: Quantitative results for selected algorithms in different scenarios

Algorithm Scenarios FP FN CD

Median S1 0.005 0.117 0.878

Median S2 0.014 0.136 0.850

Median S3 0.000 0.058 0.942

Median S4 0.018 0.150 0.832

App. Median S1 0.002 0.142 0.856

App. Median S2 0.010 0.127 0.863

App. Median S3 0.000 0.061 0.939

App. Median S4 0.011 0.150 0.839

RGA S1 0.004 0.133 0.863

RGA S2 0.008 0.150 0.842

RGA S3 0.000 0.061 0.939

RGA S4 0.019 0.151 0.830

GMM S1 0.007 0.344 0.649

GMM S2 0.006 0.158 0.836

GMM S3 0.000 0.051 0.949

GMM S4 0.008 0.137 0.855

KDE S1 0.034 0.014 0.952

KDE S2 0.058 0.012 0.930

KDE S3 0.081 0.009 0.910

KDE S4 0.075 0.044 0.881

With regard to computational speed, once more the RGA is the foremost model, with a speed
of 0.05 frames per second, followed by approximate median and median filtering with almost the
same computational speed. Again, here the KDE represents the worst case scenario, with a speed
of 2 frames per second, which is 4 times slower than GMM.

Here, it is necessary to remark that the Matlab implementations of the mentionned algorithms
are not optimised; therefore, the running time is higher than the real time expectation. However,
to obtain a unique view of the performances regardless of the hardware and software characteris-
tics, all values can be normalised based on the RGA. Therefore, if we represent the speed of RGA
by (R), then Median filtering, Approximate Median, GMM and KDE have speeds of 3.6R, 3.6R,
12R and 40R, respectively.

From our visual observation of Figure 2 and the results obtained from Table 2 and Figure 3
and 4, the following remark can be made:

• The data in Table 2 shows the average rate for the false positive and false negative rates.
Moreover, the false positive rate and the false negative graphs are illustrated in Figure 4.1 and
Figure 4.2 over 20 selected frames. As can be seen from these figures, the FN error rate of KDE
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Senario 1 Senario 2 Senario 3 Senario 4

Median 0.87768 0.850052 0.941729 0.832266

Approximate Median 0.856393 0.862221 0.939167 0.838529

RGA 0.863086 0.841677 0.939466 0.830102

GMM 0.648266 0.836534 0.948935 0.855289

KDE 0.951474 0.930544 0.910234 0.880732
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Fig. 3: Percentage of correct classifications in four different scenarios.

is significantly lower compared to other selected models. However, in the FP case, the result of
KDE is totally in contrast to the FN rate and gives the weakest performance, this FN error rate
in KDE model shows an enormous distinction compared with the other methods. This difference
is more significant in the time of day scenario (Figure 4.2 c), where there are gradual changes in
lighting conditions.

• The result from Table 2 also proves that the GMM is the second best model after KDE. As
shown in Figure 4.3), the GMM gives acceptable performance in 3 out of 4 scenarios. In the
third scenario (S3), the GMM obtains the best classification results, with 96% of the PCC value,
which implies that gradual illumination changes are better handled by the GMM as compared
to KDE and the other algorithms. However, in the first scenario, this model gives the worst
performance. The reason for this poor performance can be determined from the attributes of
the Gaussian mixture model, which uses intensity values to build a probability density model for
the background. Therefore, GMM cannot handle the situation where foreground and background
pixels have similar intensities well.

• From the average error rate of median filtering, the approximate median and the RGA in
Table 2, it can be seen that these three models give almost the same result in all four different
scenarios. This similarity became more obvious with tracking the pattern of these models in
Figure 4, where the result is close to identical over a sequence of frames.

5 Conclusions

In this paper, we have evaluated and compared five well-known background modelling algorithms
in four challenging situations. The overall evaluation proves the accuracy and effectiveness of
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Fig. 4: False negative rate vs. frame sequence for different scenarios: (a) Camouflage (b) Waving
tree (c) Time of day (d) Bootstrap
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Fig. 5: False positive rate vs. frame sequence for different scenarios: (a) Camouflage (b) Waving
tree (c) Time of day (d) Bootstrap
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Fig. 6: Percent correct classification vs. frame sequence for different scenarios: (a) Camouflage
(b) Waving tree (c) Time of day (d) Bootstrap
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KDE, because in 3 out of 4 scenarios, a PCC value of more than 80% was obtained. However,
in memory usage and speed efficiency, the KDE is extremely high compared to other methods,
which indicates that the KDE is unsuitable for real-time applications. In addition, the RGA
and approximate median produce acceptable accuracy with extremely simple implementations,
although the accuracy is not as good as KDE.

Finally, as this experimental evaluation shows, in terms of accuracy, no perfect system ex-
ists because a perfect system has to solve many problems, such as bootstrapping, illumination
changes, and small movements in background and camouflage. However, based on our findings,
the Gaussian-based approaches (RGA, GMM) give well-balanced results in speed, accuracy and
memory usage for real-time processing applications.
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