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Concise Papers 

A Fast Computational  Algorithm  for the Discrete Cosine 
Transform 

WEN-HSIUNG CHEN, C. HARRISON  SMITH, AND S. C. FRALICK 

Abstruct-A Fast Discrete  Cosine Transform algorithm has  been 
developed  which  provides a factor of six improvement in computational 
complexity when compared to conventional Discrete  Cosine Transform 
algorithms using the Fast Fourier Transform. The algorithm is derived 
in the form  of matrices and illustrated by a signal-flow graph, which 
may be readily translated to hardware or software implementations. 

INTRODUCTION 

The  Discrete  Cosine  Transform  (DCT)  has  been  successfully 
applied to the  coding  of  high  resolution  imagery [ 1-51. The 
conventional  method of implementing  the  DCT  utilized a 
double  size  Fast  Fourier  Transform  (FFT)  algorithm  employing 
complex  arithmetic  throughout  the  computation [ 11.  Use  of 
the  DCT  in a wide  variety  of  applications  has  not  been  as 
extensive  as  its  properties  would  imply  due to the  lack  of  an 
efficient  algorithm.  This  report  describes a more  efficient 
algorithm  involving  only  real  operations  for  computing the 
Fast  Discrete  Cosine  Transform  (FDCT)  of a set  of N points. 
The  algorithm  can  be  extended to any  desired  value  of N = 
2”’, m 2 2. The  generalization  consists of alternating  cosine/ 
sine  butterfly  matrices  with  binary  matrices  to  reorder  the 
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matrix  elements  to a form  which  preserves a recognizable  bit- 
reversed  pattern  at  every  other  node.  The  generalization  is 
not  unique-several  alternate  methods  have  been  discovered- 
but  the  method  described  herein  appears to be  the  simplest 
to interpret.  It is not  necessarily the  most  efficient  FDCT 
which  could  be  constructed  but  represents  one  technique  for 
methodical  extension.  The  method  takes  (3N/2)(log2 N -  1) + 
2 real  additions  and N logz N - 3N/2 -t 4 real  multiplications: 
this is approximately  six  times  as  fast  as  the  conventional 
approach  using a double  size FFT. 

DISCRETE  COSINE  TRANSFORM 

The  discrete  cosine  transform  of a discrete  function fc), j = 
0, 1,  *-, N - 1 is defi.ned  as [ 1 ] 

k = 0, 1, -., N 

and  the  inverse  transform is 

N-1 (2 j  + 1)kn 

k = O  [ 2N 1’ 
j = 0, 1, .-, N 

where 

1 
c ( k )  = 3 for k = 0 

= 1  f o r k  = 1, 2, -., N - 1. 

The  transform  possesses a high  energy  compaction  property 
which is superior  to  any  known  transform  with a fast 
computational  algorithm. [ 1-51 The  transform  also  possesses a 
circular  convolution-multiplication  relationship  which  can 
readily  be  used  in  linear  system  theory. [6] 
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A  FAST  COMPUTATIONAL  ALGORITHM 

The  discrete  cosine  transform  of  an N x 1  data  vector [ f ]  
can  be  expressed in a  matrix  form  as 

where [ A N ]  = [ c ( k )  cos (2j + l ) k n / 2 N ]  ; j ,  k = 0, 1, - * ,  ( N  - 
1) as  defined  in  equation  (1)  and [ F ]  is the N X 1 transformed 
vector.  The  fast  computational  algorithm  to  be  presented 
here  is  based  upon  the  matrix  decomposition of the [ A N ]  
matrix. As shown  below,  this  matrix  can  first  be  written  into 
the  following  recursive  form: 

where [BN 1 is  defined  in  equation (7),  

N 
j ,  k = 0,  1, -., - - 1 

L 

and [ P N ]  is an N x N permutation  matrix  which  permutes  the 
transformed  vector  from  a  bit  reversed  order to a  natural  order. 
As in  all  unitary  transforms  the 2 x 2 DCT  can  be  written  as 

It  can  be  seen  from  the  recursive  nature of equation  (4)  that 
[ A 2 ]  can  be  extended  into  higher  order  matrices as long  as 
there is a  generalized  method of decomposing  the [ R N / 2 ]  
matrix. 

The following  discussion  presents  one  systematic  way of 
decomposing  the [ R N / 2 ]  matrix.  It  is  emphasized  that  this 
method of decomposition is not  unique  and is not  optimum. 
Several methods have  been  found  which  require  fewer 
computational  steps  but  with  no  apparent  generalization  to 
larger  sizes. 

The [ R N / 2 ]  matrix is  decomposed into ( 2  log2 N - 3) 
matrices  in  the  following  manner: 

The  matrices  are of four  distinct  types. 

Type  1 : [Ml ] ,the  first  matrix 
Type 2:   [M(2  log2 N - 3 ) ] ,  the last  matrix 
Type 3:   [Mql  , the  remaining  odd  numbered  matrices 

Type  4:  [ M p l ,  the even  numbered  matrices [M21,  [M4], 
[ M 3 1 ,   [ M S ] ,  etc. 

etc. 

Before  describing  the  four  types of matrices  in  detail,  the 
following  definitions  are  provided  for  notational  efficiency: 

BN =[- 
- ] z N / 2  z N / 2  

IN12 -IN12 

B N * = [ -   - I N / ,  
IN12 - ] IN12 IN12 

where 

N 
[IN/2 1 is an  identity  matrix of order - 

2 

[ j N / 2  1 is the  opposite  diagonal  identity 

kn 
[ S i k ]  = sin - [I,,,,,~] 

2 

matrix 

(8) 

In  equations  (8)  above,  the  identity  matrices [ IN/2 i ]  specify 
the  order of the diagonal  sine  or  cosine  matrices [ S i k ] ,  [gik 1 ,  
[ C i k ] ,  [ F i k ]  with  the  condition  that [ I N / z i ]  E 1  for  i > N / 2 .  

The  four  types of matrices  may  now  be  described  in  detail 
with  reference to the  right  hand  side of equation (9). 

TYPE  1 

The first  matrix [MI] is formed  by  concatenating S2Naj 
matrices  (of  order  1)  along  the  upper  left  to  middle  of  the 
main  diagonal  and C2Naj matrices  along  the  middle  to  lower 
right.  The  opposite  diagonal  is  formed  by C 2 ~ ’ j  matrices 
along  the  upper  right  to  middle  and 3 2 ~ ’ j  matrices  along  the 
middle to lower  left.  For  this  type  matrix  the values of ai are 
the  binary  bit-reversed  representation of N / 2  + j - 1  for j = 
1, 2 ,  *.., NJ2.  

TYPE 2 

The  last  matrix [M(2 log2 N - 3 ) ]  is formed  by  concate- 
nating z N / 8 ,  - c41, c41, z N / 8  matrices  along  the  upper  left to 
lower  right  of  the  main  diagonal  and  concatenating 0 ~ 1 8 ,  
C4l, F4l, O N / 8  matrices  along  the  upper  right  to  lower  left 
of the  opposite  diagonal.* 

TYPE 3 

The  remaining  odd  matrices [ M q ]  are  formed  by  repeated 
concatenation of the  matrix  sequence z N / 2 i ,  - cikj, - si I 

and Z ~ / z i  where i = N / ( 2 ( q - 1 ) / 2 )  for j = 1, 2,  ..*, i/8  along 
the  upper  left to middle of the  main  diagonal  and  the  matrix 
sequence z N / 2 i .  cikj, sikj and z N / 2 i  for j = iJ8 + 1, -*,  i/4 
along  the  middle to lower  right.  The  opposite  diagonal is 
formed  similarly,  using  the  matrix  sequence ON/2i, Sik’, - 
Fi’j, ON/2i along  the  upper  right  to  middle  and  the  matrix 
sequence ON/2i, - Sikj, Ciki, ON/2i along  the  middle to 
lower  left.  Repeated  concatenation of a  matrix  sequence 
along  a  diagonal  is  clearly  illustrated  in  equation (9), where 
for  clarity  the kj’s have  been  replaced  by bj’s and ti's, etc., 
because  the  value of kj depends  on  the  matrix  index q .  For 
this  type  matrix,  the values of the k, are  the  binary  bit-reversed 
variables  (i/4) + j - 1. 

k .  

* Oj is a null matrix of order j .  
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TYPE 4 are  half  occupied on  the  opposite  diagonals  and  log2 N - 
stages  are  fully  occupied on  both diagonals.  Therefore 

The  even  numbered  matrices [ M p ]  are  binary  matrices 
formed  by  alternating Bl and Bl* matrices  along  the  upper  left 
to  lower  right of the  main  diagonal.  The  subscript 1 indicates 
the  order of the B or B* matrix,  and  takes  on  the  value of 

N N 

2 
KRN i2 = 7 (10g2 N - 2 )  + -(log2 N - 1) 

2F.12. 3N 

(1 0). 
A specific  example of [RN/2]   for  N = 16 is shown  in Eq. - log2 N -  N N > 4 .  

- _  
4 (1 2 4  

["3 = 

3n - s i r  32 
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The  computational  steps  required  for [ F ]  of equation (3) As for  the  number of multiplications,  only  the  odd  matrices 
can  be  found  from  equation ( 4 )  with  the  following  recursive consist  of  multiplicative  terms.  In  these  matrices  the  first 
relations: matrix  consists of N multipliers,  the  last  matrix  consists of 

(1 l a )  N / 4  multipliers,  and  the  rest of the log; N - 3 matrices  each 
K A ~  = -k K A N / 2  + K R ~ / 2  

K A ~ ' =  K A ~ ~ ;  ' K R ~ / 2 '  (1  1b) 

consists of N / 2  multipliers.  Thus 

N N  
where  KAi  and  are  the  number of additions  and K R ~ , ~ '  = N + -- -(log2 N - 3) 
multiplications  for [qi] ,  and K R ~  and K R i '  are  the  number 4 2  
of additions  and  multiplications  for [Ri]. The  number  of 
additions  for [RN!2] can  easily  be  determined  from  equation 
(9) by  noting  that  log2 N - 2 stages  of  decomposed  matrices 

N N 
= - l o g z N - - ;  N 2 8 .  

2 4 
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Figure 1. Comparison of Computational Steps for Conventional 

FDCT, FFT and  FDCT. (a) Additions. (b) Multiplications. 

For  purposes  of  comparison  the  conventional  approach  of 
computing  the  DCT  utilizing  an  FFT  takes  2N  log  2N  complex 
additions  and N(1og 2N + 1)  complex  multiplications  (which 
are  equivalent  to 6 N  log 2N -I- 2N  additions  and  4N(log  2N -k 
1)  real  multiplications).  Figure 1 plots  the  number  of 
computational  steps  versus  the  transform  sizes fo r '   t he  
conventional  algorithm  and  the'  algorithm  presented  in  this 
paper.  It  can  easily  be  seen  that  the  algorithm  presented  here 
takes less than  1 /6 as  many  steps  as  the  conventional  algorithm. 
Also  plotted  in  the  figure  are  the  computational  steps  for FFT. 
It  can  be  seen  that  the  new  algorithm  takes  only  1/3  as  many 
steps as the  FFT. 

Figure  2 is a signal-flow  graph  for N = 4,  8, 16,  32  arranged 
in  the  fashion  described. Note that  the  input  samples  are  in 

natural  order  from  top  to  bottom.  For  every N, the  output 
transform  coefficients  are  in  bit-reversed  order. 

Note that as N increases  the  even  coefficients  of  each 
successive  transform  are  obtained  directly  from  the  coefficients 
of the  prior  transform  by  doubling  the  subscript of the  prior 
coefficients. 

It  can  be  seen  that  extension of the  signal-flow  graph  to  the 
next  power of 2  merely  involves  adding  a  set of +1 butterflies 
to  accommodate  the  new  set  of  input  samples  and  a  series  of 
alternating  cosine/sine  butterflies  and +1 butterflies to yield 
the  new  set  of  odd  transform  coefficients. 

In  Figure  2,  the  coefficients  have  not  been  normalized. TO 
obtain  .the  normalized  N-point  DCFT  coefficients,  the 
appropriate  terminal  points of the  flow  graph of Figure  2 
should  each  be  multiplied  by  2/N. This signal-flow  graph 
represents  the  forward  transform  matrix  [AN].  The  inverse 
transform  matrix  [AN]-1 is simply  (N/~)[AN'I T. 

'Thus,  except  for  .normalizatiop  factor  these  FDCT  signal- 
flow  .graphs  are  bidirectional,  i.e.,  the  inverse  transform  may 
be  computed  by  introducing  the  vector w] at  the  output  and 
recovering the  vector [f] at  the  input.  This follows  from  the 
fact  that  every  butterfly  pair  in  the  signal-flow  graph i s  a 
unitary  matrix  except  for  a  normalization  factor.' 

~~ 

SUMMARY 

A Fast  Discrete  Cosine  Transform  (FDCT)  algorithm  has 
been  developed  which  may  be  extended to any  desired  value 
of N = 2m 2 2. The  algorithm  has  been  interpreted  'in  the 
form of matrices  and  illustrated  by  a  signal-flow  graph.  The 
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= 32 

signal-flow graph  may  be  readily  translated to hardware  (or Incoherent Adaptive Reception of Signal with Unknown 
software)  implementation. The number  of  computational Envelope 
steps  has  been  shown to be less than 1/6  of the conventional 
DCT algorithm  employing a 2-sided FFT. SOLOMON M. FLEISHER,  MEMBER,  IEEE 
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Absfracf-This  paper  deals  with the design  of  adaptive  algorithms 
for reception of a  narrowband  signal  with  an  unknown  envelope  in  a 
noisy  channel  (Gaussian  noise). We here  consider  a  system  (with  a  “real 
teacher”)  which  learns from the samples  classified  by  this  self-learning 
system  (decision  directed  adaptive  receiver). By using  those  samples 
which  are  accepted  as  learning  samples, the parameters  of the unknown 
envelope  are  estimated. The envelope’s  parameters  appear  in the form 
of coefficients of the generalized  Fourier  series  expansion of the signal 
(with  respect to eigenfunctions of appropriate  integral  equation). It 
is  possible to utilize any orthonormal set with  respect to the  interval 
(0, T )  under the usual  assumption, that  the complex  autocovariance 
function is R(T)  = N ~ ( T )  (i.e., that  the noise  bandwidth  is  much  greater 
than both l / T  and the signal  bandwidth and N is the unilateral  spectral 
density of the noise  in the neighborhood of the signal  spectrum). We 
present  expressions that enable the upper bound estimates of the  error 
probability to be found for the derived  algorithms. The results  obtained 
for  the binary detection are  readily  generalized to  the case of an  M-ary 
signal. 
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