
Pattern Recognition 36 (2003) 475–482
www.elsevier.com/locate/patcog

Growing snakes: active contours for complex topologies
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Abstract

Snakes are active contours that minimize an energy function. In this paper we introduce a new kind of snakes, called growing
snakes. These snakes are modeled as a set of particles connected by thin rods. Unlike the traditional snakes, growing snakes
are automatically initialized. They start at the position where the gradient magnitude of an image is largest, and start to grow
looking for zones of high gradient magnitude; simultaneously the associated energy function is minimized. Growing snakes
can 9nd contours with complex topology, describing holes, occlusions, separate objects and bifurcations. In a post-process the
T-junctions are re9ned looking for the con9guration with minimal energy. We also describe a technique that permits one to
regularize the 9eld of external forces that act on the Growing Snakes, which allow them to have good performance, even in the
case of images with high levels of noise. Finally, we present results in synthetic and real images. ? 2002 Pattern Recognition
Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

The recognition of shapes and contours in a digital image
is a big challenge in computational vision. There are many
9elds of science where the detection of contours and the
segmentation of objects in images is an important task, such
as in the case of pattern recognition, medical image
analysis, visual techniques in strain analysis, etc. Active
contours have been an important tool in the solution of the
contour detection problem, but their automatic initializa-
tion is still an open problem, particularly in the cases of
occlusions (T-junctions), bifurcations in the contour and
in general in cases when the topology of the contour is
not simple. In the current literature one can 9nd two kinds
of solutions: the parametric active contours called snakes,
and the level set approach (e.g., geodesic curves). In 1987,
Kass et al. [1] described the snake as a spline guided by
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external constraint forces and inDuenced by image forces.
Thus, the curve is associated with an energy function, and
the minimization of this energy permits one to 9nd the best
position of the parametric curve, which usually corresponds
to places where the lines and edges in the image are. Snakes
are thus parametric curves: c(q) : [0; 1] → R2, on an im-
age I : [0; a][0; b] → R. The energy of the snake is de9ned
as

E(c) = �
∫ 1

0
|c′(q)|2 dq + 	

∫ 1

0
|c′′(q)|2 dq

− 

∫ 1

0
|∇I(c(q))| dq: (1)

The 9rst and second terms of Eq. (1) correspond to the in-
ternal energy and penalize the length and curvature of the
snake, respectively. The third term, where ∇ is the gradient
operator, corresponds to the external energy and attracts the
curve towards the intensity edges that are present in the im-
age. For the implementation of parametric snakes the curve
is viewed as a particle system, and the energy function takes
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the form

E(p) = �
∑

i

|pi − pi−1|2 + 	
∑

i

| − pi−1 + 2pi

−pi+1|2 − 

∑

i

|∇I(pi)|; (2)

wherepi is a 2-vector whose components are the coordinates
of the position of the ith particle. Here, the 9rst term penal-
izes the distance between two contiguous particles, and cor-
responds to the energy of a spring (with equilibrium length
equal to zero) that connects them. The second term penal-
izes the curvature and corresponds to the energy of a thin
rod that connects three contiguous particles. The last term
is the gradient magnitude of the image evaluated at the po-
sition of the ith particle. The balloon model introduced by
Cohen [2,3], uses an additional inDating force, which per-
mits the user to give only an approximate initial position in
the interior of the closed contour one is looking for. The in-
Dating force then drives the snake to the desired place, and
helps to escape of local minima in case of noise. Although
this works well in many cases, it still has limitations: the
parameter that controls the inDating force is not easy to set,
particularly for high levels of noise; besides, this method
can 9nd only simple closed curves. In an attempt to han-
dle more complex situations, McInerney et al. [4] proposed
the topologically adaptable snakes, which provide for auto-
matic initialization of the snakes, and permit, in principle,
to 9nd contours with complicated topologies. This method,
however, often fails in the presence of T-junctions (occlu-
sions) and when the image presents high levels of noise.
Other proposals for improving the performance of paramet-
ric snakes involve the use of several coupled snakes [5–
7], or the regularization of the external force 9eld [8], but
they do not address the problem of automatic initialization
for complex curve topologies. A diJerent approach, which
can deal with automatic topology changes in the contours,
is the level set approach, where the active contour is speci-
9ed as the set of points where a suitably de9ned surface has
a given value (usually zero) [9–11]. This method permits
one to 9nd an unspeci9ed number of objects, which might
contain holes, in an automatic way; however, these methods
may fail when the high gradient zone that attracts the con-
tour has gaps. Also, they cannot automatically 9nd complex
contour con9gurations that include T-junctions. These are
partially considered in the work of Tek et al. [12], but these
junctions are smoothed out by the method, so that the 9nal
con9gurations are usually not satisfactory (see Section 3).
Our work presents a new parametric active contour model
called growing snakes. These snakes solve many of the open
problems described above. Speci9cally, they permit an au-
tomatic initialization of a set of snakes that may correspond
to contours with complex topology (e.g., multiple objects,
holes and T-junctions generated by occlusions). They are
described in the next section.

2. Growing snakes

Growing snakes are parametric active contours that permit
the description of complex topologies such as non-connected
contours or bifurcations with a completely automatic initial-
ization. They are based on the following idea: to start the
process, “snake seeds” are generated at places of high gra-
dient magnitude. Then, growth and shape smoothing steps
are alternated until a 9nal stable con9guration is reached. At
this point, new seeds are generated, with the constraint that
no seed may appear close to the existing snake. At the end
of the complete process, the T-junctions are revised to 9nd
the minimal energy con9guration for the complete snake.
We now describe each step in detail.

2.1. Growth step

The algorithm for the growth step is based on the follow-
ing considerations:

(1) The seeds of the snake are generated automatically in
those places where the gradient magnitude of the image
is largest. Each seed has two particles and its orientation
is perpendicular to the image gradient direction in the
corresponding point.

(2) The initial (free) particles move in opposite directions
following the high-gradient zones.

(3) When the free particles are advanced, the system auto-
matically includes intermediate particles.

(4) When a free particle meets another particle, they both
connect, forming either a larger curve or a T-junction.

We now describe the procedure in more detail.

2.1.1. Seed generation
To generate the seeds, 9rst the M image is obtained as

the gradient magnitude of the original image I0; since image
diJerentiation is known to be ill-posed [13], we regularize it
by convolving I0 with the gradient of a Gaussian kernel G�

with a 9xed standard deviation � (i.e., M is obtained from
the Gaussian derivatives of I0):

M = |∇G� ∗ I0|:

The system now looks for the points where the highest value
of the M image is attained, excluding those points that are
closer than a 9xed distance from an existing snake particle
(at the beginning there are no existing snake particles) and
places a seed for the growing snake at each one of these
points (i.e., at the set of points where M is maximal, exclud-
ing the inhibitory neighborhood of existing snakes). Each
seed consists of two particles, placed at a distance d0, so
that the direction of the line that joins them is perpendicular
to the direction of the gradient of M , and the midpoint coin-
cides with the seed point (we use a value of d0=0:4 pixels).
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Fig. 1. Candidate new positions for an F particle (see text).

2.1.2. The growth process
The two particles at each seed point are called free (F)

particles. The growth system works as follows: For each F
particle:

(1) Compute the direction of the line that joins this F parti-
cle with its neighboring particle in the snake (note that
an F particle has only one neighboring particle); we
call this line the u line.

(2) Find a 9xed number N of candidate new positions for
the F particle. These positions are equispaced along a
circular sector of radius hp and angular width �, centered
at the F particle and oriented along the u line (see Fig.
1).

(3) The new position for the F particle is selected as the
candidate position with highest M value. If more than
one candidate position has the same value, the system
selects the position that is closer to the u line.

(4) The F particle is advanced to the new position, and a
new intermediate (I) particle is placed in its previous
position.

During the growth process it is possible that two F par-
ticles meet (i.e., that their distance becomes smaller than a
threshold �1). If this happens, the F particles connect and
change their status to I particles, so that a longer snake is
obtained. If the F particle meets an I particle (i.e., if the dis-
tance between the F and I particles is smaller than a thresh-
old �2), the system generates a T-junction and the F particle
changes its status to a T particle; this new kind of particle
does not advance even if it is the extreme particle of a snake.
An F particle also changes to T if it meets a border of the
image. Note that more than one T particle may be joined to a
single I particle, so that junctions of order higher than 3 (e.g.,
“X” junctions) are appropriately handled (see Section 3).

If an F particle meets a T particle, both particles connect
and change their status to I , as in the 9rst case.

2.2. Shape smoothing step

In this step, the snake changes its shape under the inDu-
ence of internal and external forces, as in the case of tra-
ditional snakes. These forces are derived from a potential
energy of the form

E(p) = 	
∑

i

| − pi−1 + 2pi − pi+1|2 − 

∑

i

M (pi): (3)

The 9rst term of Eq. (3) is the internal energy and includes
only the thin rod term that controls the curvature of the
snake. Note that T particles are connected by thin rods only
to previous particles of the snake. The second term repre-
sents the external energy and M is computed as explained
above. When the position pi has non-integer values, bilinear
interpolation is used to evaluate this term. For the minimiza-
tion of the energy function, we use the following method
[14]: the dynamics of the system is obtained from Newton’s
second law, considering that the force exerted over each par-
ticle is equal to minus the partial derivative of the potential
energy with respect to its position. Considering that each
particle has unit mass, the equation of motion is

92pi

9t2 =−9E(p)9pi

:= �i(p);

where t denotes time and E(p) is given by Eq. (3). To avoid
oscillations, one may add a linear friction term with positive
coePcient 2k to obtain

92pi

9t2 − �i(p) + 2k
9pi

9t = 0: (4)

The local minima of Eq. (3) are 9xed points of this system.
Its practical implementation requires the time discretization:
for a given time increment h and for every site i one obtains
the Taylor expansions

pi(t + h) = pi(t) + h
9pi(t)
9t +

h2

2
92pi(t)
9t2 + O(h3); (5)

pi(t − h) = pi(t)− h
9pi(t)
9t +

h2

2
92pi(t)
9t2 − O(h3): (6)

Subtracting these equations one gets

9pi(t)
9t ≈ 1

2h
(pi(t + h)− pi(t − h)): (7)

Adding Eqs. (5) and (6) one obtains

92pi(t)
9t2 ≈ 1

h2
(pi(t + h) + pi(t − h)− 2pi(t)): (8)

Substituting Eqs. (7) and (8) in Eq. (4) we 9nd

pi(t + h) = Api(t) + Bpi(t − h) + C�i(p(t)) (9)

with A=2=(kh+1); B=(kh−1)=(kh+1);C=h2=(kh+1).
For k = 1=h the discrete dynamical system (9) corresponds
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Fig. 2. The 3 possible con9gurations for a T -junction.

to the gradient descent method with 9xed step size. For
k ¡ 1=h the system has inertia and moves at higher speed.
In our case we use k = 0:5=h and h = 0:001.
The shape smoothing step thus consists in applying a 9xed

number of iterations of system (9) before a new growth step
takes place.

2.2.1. The eras and the inhibitory system
When all the F particles are changed either to I or to T

particles we say that an “era” has 9nished; at this point, the
system automatically starts looking for new seed positions.
All the particles that are already active have an inhibitory
neighborhood, which consists of a circular area around each
particle where a seed cannot be born. The size of this in-
hibitory area is 9xed and given by the user. The union of
these inhibitory neighborhoods is called the inhibitory area
of the snake; so, at the start of a new era, the system has
to 9nd at least one position out of the inhibitory area of
the active snakes where a growing snake can appear. In this
way, one prevents the appearance of new snakes parallel and
close to the existing ones. User intervention in this method
is limited to indicating at the end of which era should the
system be stopped, or alternatively, setting a threshold on
the maximum value of M (outside the inhibitory area) be-
low which no new seeds may appear. For a particular class
of images, this threshold may be set in advance, making the
full procedure completely automatic.

2.2.2. Re>ning the T-junctions
Once the system has 9nished the last era, it automatically

examines all the T-junctions (i.e., places where a T particle
is connected to an I particle) and veri9es that they adopt the
best of their three possible con9gurations (see Fig. 2). To
do this, for each T-junction and each possible con9guration,
the system is iterated 50 times and the 9nal total energy is
computed using Eq. (3). In practice, it is not necessary to
update the position of all particles, but only of those that are
“close” to the examined T-junction (we update 10 particles
along each branch of the T, so that this procedure takes about
0:03 s per T-junction on a 1:2 GHz Pentium 4 machine).
Then the con9guration associated with the minimal energy
is selected for that T-junction. With the 9nal con9guration
in all the T-junctions, the system is iterated again, to 9nd
the 9nal position of the snakes.

2.3. Regularization of the external forces

The external forces that act on each particle in the shape
smoothing step are given by the gradient of M evaluated at
the particle position. In the ideal case, these forces should be
pointing in the direction of the closest edge in the image; in
practical cases, due to noise in the image, these forces will
not point in the appropriate direction, and must, therefore,
be regularized. Note that M itself corresponds to the gradi-
ent magnitude of the original image, which was computed
using Gaussian derivatives; the � parameter of the deriva-
tive kernels, however, should be kept small, so that the edge
locations remain precise; if the noise level is high, this im-
plicit pre9ltering is not suPcient to regularize the gradient
ofM , which de9nes the force 9eld. Xu et al. [8] proposed the
use of a classical regularization scheme to smooth out the
external force 9eld. In their implementation, the smoothed
gradient 9eld f is the minimizer of the cost function:

U (f) =
∑

r

|∇M |2 · |f(r)−∇M (r)|2

+ 

∑
〈r; s〉

|f(r)− f(s)|2;

where the 9rst sum is taken over all pixels r, and the sec-
ond one is taken over all nearest neighbor pixel pairs (r; s).
If the amount of noise in the image is small, one may se-
lect a small value for the 
 parameter, and obtain a good
regularized 9eld. In noisy situations, however, one must se-
lect a relatively large value for 
, which causes the f 9eld
to be averaged across the ridges of M (i.e., the edges of
the image). This, however is not appropriate, because in the
vicinity of a ridge, f points in opposite directions, and aver-
aging these will result in a 9eld which is tangential, instead
of perpendicular to the ridge. To avoid this undesired eJect,
we propose here a diJerent regularization method, based on
Bayesian estimation with a prior discrete Markov random
9eld (MRF) model [15].

2.3.1. MRF-based regularization of the external forces
Our goal is to compute a regularized 9eld of directions

d for the external forces. To do this, we 9rst discretize the
interval [0; 2&), where each element may take values, into
an appropriate number of intervals (we use 16), so that
d(r)∈{0; 2&=16; : : : ; 15·2&=16}. We take as observations g,
the gradient direction of M , i.e., g(r)=tan−1(My(r)=Mx(r)),
where Mx(r) and My(r) denote the partial derivatives of M
with respect to x and y, respectively, at pixel r. Since the
data also takes values in [0; 2&), an appropriate noise model
is given by the Von Mises distribution [16], so that the like-
lihood of the data, given that d(r) = qk is

Pr (g(r)|d(r) = qk) = p̂k(r)

=
1
Z
exp[+ cos(g(r)− qk)]; (10)
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where + is a positive variance parameter and Z is a normal-
izing constant, chosen so that each p̂(r) is a valid discrete
probability distribution, i.e., so that

∑
k p̂k(r) = 1 for every

r (note that in our case each p̂(r) is a 16-vector).
The prior distribution should reDect the constraint that the

9eld d should be piecewise constant. To this end, we use
a 9rst-order MRF model with Ising potentials [15], so that
the prior distribution is Gibbsian:

Pd(d) =
1
Z
exp


−	

∑
〈r; s〉

V (d(r); d(s))


; (11)

where 	 is a positive parameter and the Ising potentials V
are given by

V (d(r); d(s)) =

{−1 if d(r) = d(s);

1 if d(r) �=d(s):

Applying Bayes rule, one gets the posterior distribution

Pd|g(d) =
1
Z
exp[− U (d)]; (12)

where the “energy” U is given by

U (d) =−+
∑

r

cos(g(r)− d(r)) + 	
∑
〈r; s〉

V (d(r); d(s)):

Since the d 9eld is discrete-valued, the optimal estimator
may be found by minimizing the expected number of errors,
where the expectation is taken with respect to the posterior
distribution. It is possible to show that this estimator may
be found by 9nding the modes of the posterior marginal
distributions: this is the maximizer of the posterior marginals
or MPM estimator (see Refs. [15,17,18] for details). These
marginal distributions are de9ned as:

&k(r) =
∑

d:d(r)=qk

Pd|g|(d);

where the sum is taken over all possible discrete direc-
tion 9elds d that have direction qk at site r. Note that
the marginals cannot be directly computed, because the
sum in the above equation has too many terms. It is possi-
ble to show, however, that a good approximation for these
marginals is obtained by a spatial smoothing of the likeli-
hoods, i.e., by the minimization, with respect to a 9eld p of
discrete probability distributions, of the function:

Up(p) =
∑

r

|p(r)− p̂(r)|2 + 

∑
〈r; s〉

|p(r)− p(s)|2; (13)

where each p(r) is a 16-vector, p̂ is given by Eq. (10) and

 is a positive parameter (see Ref. [18] for details). Once
the p 9eld that minimizes Eq. (13) is found, the optimal
estimator for the d 9eld at pixel r is found as the mode of
the distribution p(r), i.e., by setting: d(r) = kmax(r), where
kmax(r) is such that pkmax(r)(r)¿ pk(r) for all k �= kmax(r).

The resulting 9eld d has now the desired properties. This
is because, as one moves across a ridge of M , one does not
average the gradient directions, but rather, 9nd the mode of
their (marginal) distributions. As one approaches the ridge,

Fig. 3. Mean absolute angular error vs. regularization parameter
for Xu’s and GMMF methods (see text).

these distributions become bimodal (with a distance of &
radians between the 2 peaks), and as one passes over the
ridge, the location of the largest peak shifts from one posi-
tion to the other, producing a jump in the regularized d 9eld
as desired.To compare this procedure with the one proposed
by Xu [8], we performed a series of experiments with a syn-
thetic image of a vertical step edge of height 255, corrupted
with additive, white, 0-mean Gaussian noise (with �=150).
As a measure of performance, we took the average absolute
angular error (AAE) of the regularized gradient direction,
with respect to the “ideal” 9eld, in which the gradient vector
is normal to the edge and points towards it. This error was
averaged over a tubular neighborhood of the edge, 4 pix-
els wide. The M (gradient magnitude) image was obtained
from the Gaussian derivatives of the image, using a Gaus-
sian kernel with �=1. Fig. 3 shows a plot of the AAE vs. the
regularization parameter 
 for both Xu’s and our method.
In both cases there is an optimal value for 
 (
 = 0:5 for
Xu’s, and 
 = 5 for ours). As one can see, however, the er-
ror curve is Datter in our case, indicating that the method is
less sensitive to the precise setting of this parameter. Also,
the error corresponding to the optimal 
 is about 20% less
in our case. A detail of the regularized 9eld, for diJerent
values of 
 is shown in Fig. 4.

We have found that making the external forces equal to
the d 9eld (with unit magnitude everywhere) improves sig-
ni9cantly the performance of the growing snakes (and also
of the classical ones). This is the procedure we use in the
experiments reported below (we used +=1 in Eq. (10) and

 = 10 in Eq. (13) in all cases). As shown in Ref. [18], the
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Fig. 4. Detail of the regularized force 9eld obtained by Xu’s and
GMMF methods for diJerent values of 
: (a) GMMF, 
 = 5.
(b) Xu’s, 
 = 0:5. (c) GMMF, 
 = 10. (d) Xu’s, 
 = 2.

minimization of Eq. (13) may be very ePciently accom-
plished by solving 16 decoupled linear systems using a fast
implementation of the cosine transform. This computation,
for a 256 × 256 image, takes about 2:3 s on a Pentium IV
PC running at 1:2 MHz. The complete procedure, including
the computation of the regularized force 9eld, the growth
and shape smoothing iterations and the re9nement of the
T-junctions takes about 7 s on the same machine (the pre-
cise time depends on the particular image).

The procedure has a number of parameters that must be
adjusted. In most cases, however, the method’s performance
is quite insensitive to their precise value, so that once a
good value is found, it may be used in most cases. In all
the experiments reported here, we have used the following
values:

Size of the inhibitory area for new seeds to appear: 7
pixels.

Threshold that de9nes the meeting of 2 F particles: �1=3.
Threshold that de9nes the meeting of F and I particles:

�2 = 1:2.
Growth step size hp = 0:5.
Angular width for searching candidate growth positions:

� = 0:66&.
Number of candidate positions: N = 5.
Number of shape-smoothing iterations between growth

steps: 5.
Weighting factor for the external force (Eq. (3)): 
 = 1.
Width of the Gaussian kernel for pre9ltering the image:

� = 1:0.

Fig. 5. (a) Synthetic image portraying an occlusion: (b) Solution
found by the method of McInerney et al. (c) Solution found by
our method.

Fig. 6. (a) Synthetic image of a sphere. (b) Contours found by the
method of Tek et al. (c) Contours found by our method. (d) Detail
of (b) near the right T -junction. (e) Corresponding detail for (c).

Parameter that controls the rigidity of the snake (Eq. (3))
	 = 50.

3. Experiments

In this section, we present some examples that illustrate
the performance of the growing snakes (GS) method. Fig. 5
compares the performance of GS with the topologically
adaptable snakes (TAS) proposed by McInerney et al. [4]
on a synthetic image where the contour topology includes
T-junctions (occlusions): panel (b) shows the solution ob-
tained by the TAS’s; as one can see, the internal contour is
not found. Panel (c) shows the solution with GS. Note that
all the signi9cant contours were found and the T-junctions
were correctly solved. Fig. 6 shows a synthetic image of a
sphere with a cast shadow, corrupted by Gaussian noise;
panel (b) shows the solution found by the method of Tek
et al. [12]: note that a spurious internal border is found
inside the sphere and the contour deformation close to the
T-junctions. Panel (c) shows our solution; note the accuracy
with which the T-junctions are solved; panels (d) and
(e) show in detail the contour con9gurations at the
T-junctions found by both methods.

The next 9gures illustrate the performance of GSs in some
real images. Fig. 7a presents one object occluded by another,
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Fig. 7. (a) Real image of 2 apples. (b) Contours found by growing
snakes (4 eras) superimposed as white pixels over the original
image. (c) Gradient magnitude (coded by gray level) of the image
of panel (a).

and Fig. 7b, the contours found by GSs in a completely
automatic way. Fig. 7c shows the gradient magnitude of
the image of panel (a). Note how the snake grows even
across low-gradient zones (lower right of the foreground
apple). Note also that there is a single closed contour for
the silhouette of the forefront object, whereas the contour
of the background object ends up with two T-junctions, as
it should.

Fig. 8 presents an example of an image of occluding ob-
jects with a high noise level. Note how in this case too the
gradient magnitude (panel (b)) presents signi9cant gaps,
which does not preclude the GS from 9nding the correct
topology. Once this con9guration (shown in panel (c)) is
found, if smoother contours are desired, one may iterate the
system with a higher value for the parameter 	 to obtain the
9nal con9guration of panel (d).

Fig. 9 presents the contour found by the system in the
case of an image with non-Gaussian noise, in this case, the
speckle pattern interferogram produced when a mechani-
cal part is illumined by coherent (laser) light. Finally, we
present in Fig. 10, the contours found by the system in the
case of a complex scene. Note that in this case there are junc-
tions of order higher than 3 (e.g., an X-junction to the left
of the center of the image), which are appropriately handled
by the system.

4. Conclusions

We have presented a new kind of active contours called
“growing snakes”. They allow one to 9nd contours with
complex topology, so that contours of: occluded and mul-
tiple objects; objects with holes, and cases where there are
gaps (low gradient zones) in the contour information, are

Fig. 8. (a) Noisy image of two objects. (b) Gradient magnitude
(coded by gray level) of the image of panel (a). (c) Contours found
by the growing snakes (with 	=50), superimposed as white pixels
over the original image. (d) Final con9guration, after the system
is allowed to iterate with 	 = 70.

Fig. 9. (a) Laser speckle interferogram of a mechanical part.
(b) Contour found by the growing snakes.

Fig. 10. (a) Wooden blocks scene. (b) Contours found by the
growing snakes superimposed to the image (a).

found in a completely automatic way. The pre-processing
step that regularizes the external forces that act on the snakes,
based on Bayesian estimation with MRF models, is very fast
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and robust, and permits the snakes to have a good behavior
even in images with high levels of noise. We have tried our
method in real images with diJerent kinds of noise (Gaus-
sian, shot and speckle), and found a good performance in
all cases. The image M that drives the snakes corresponds
to the gradient magnitude of the original image convolved
with a Gaussian kernel. This convolution may smooth out
some 9ne detail; to recover it one may take the 9nal con-
9guration found by the GSs as the initial con9guration of a
classical snake system, and allow this system to reach equi-
librium, using to generate the external forces a new image
M obtained as the gradient magnitude of the original im-
age convolved with a 9ner kernel (i.e., a Gaussian kernel
with smaller �). Note that this new system is not allowed
to grow, since one only wants to re9ne the 9nal snake posi-
tions without altering their topology.
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