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Fig. 6. ID plot of ship 10001 after the second round of operator-imposed assign-
ment constraints.

LONGITUDE
Fig. 7. Actual ship movements.

of the two last sighted locations. The true trajectories are shown in
Fig. 7 where it can be seen that ship 10001 did, in fact, turn toward
the coast.

IV. CONCLUDING REMARKS

The procedure of ship identification from DF sightings has
been oversimplified in this discussion. Often DF sightings are not
completely identified but, instead, contain only ship class informa-
tion. The interactive technique still applies, but additional
identification and display flexibility must be provided.
Any additional information contained in the sightings can be

used to discriminate among radar and DF sightings. Factors such
as measured heading and visual ID will permit further automatic
reduction of the P and Q matrices.

It is also possible to automate some of the more routine manual
functions. However, experience has shown that better results are
obtained by having a human operator resolve ambiguous situa-
tions arising from sparse data.
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A Tlreshold Selection Method
from Gray-Level Histograms

NOBUYUKI OTSU

Abstract-A nonparametric and unsupervised method ofautoma-
tic threshold selection for picture segmentation is presented. An
optimal threshold is selected by the discriminant criterion, namely,
so as to maximize the separability of the resultant classes in gray
levels. The procedure is very simple, utilizing only the zeroth- and the
first-order cumulative moments of the gray-level histogram. It is
straightforward to extend the method to multithreshold problems.
Several experimental results are also presented to support the
validity of the method.

I. INTRODUCTION

It is important in picture processing to select an adequate thre-
shold of gray level for extracting objects from their background. A
variety of techniques have been proposed in this regard. In an
ideal case, the histogram has a deep and sharp valley between two
peaks representing objects and background, respectively, so that
the threshold can be chosen at the bottom of this valley [1].
However, for most real pictures, it is often difficult to detect the
valley bottom precisely, especially in such cases as when the valley
is flat and broad, imbued with noise, or when the two peaks are
extremely unequal in height, often producing no traceable valley.
There have been some techniques proposed in order to overcome
these difficulties. They are, for example, the valley sharpening
technique [2], which restricts the histogram to the pixels with
large absolute values of derivative (Laplacian or gradient), and
the difference histogram method [3], which selects the threshold at
the gray level with the maximal amount of difference. These utilize
information concerning neighboring pixels (or edges) in the ori-
ginal picture to modify the histogram so as to make it useful for
thresholding. Another class of methods deals directly with the
gray-level histogram by parametric techniques. For example, the
histogram is approximated in the least square sense by a sum of
Gaussian distributions, and statistical decision procedures are
applied [4]. However, such a method requires considerably ted-
ious and sometimes unstable calculations. Moreover, in many
cases, the Gaussian distributions turn out to be a meager approxi-
mation of the real modes.

In any event, no "goodness" of threshold has been evaluated in
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CORRESPONDENCE

most of the methods so far proposed. This would imply that it
could be the right way of deriving an optimal thresholding method
to establish an appropriate criterion for evaluating the "goodness"
of threshold from a more general standpoint.

In this correspondence, our discussion will be confined to the
elementary case of threshold selection where only the gray-level
histogram suffices without other a priori knowledge. It is not only
important as a standard technique in picture processing, but also
essential for unsupervised decision problems in pattern recogni-
tion. A new method is proposed from the viewpoint of discrimin-
ant analysis; it directly approaches the feasibility of evaluating the
"goodness" of threshold and automatically selecting an optimal
threshold.

II. FORMULATION
Let the pixels of a given picture be represented in L gray levels

[1, 2, ,L]. The number of pixels at level i is denoted by ni and
the total number of pixels by N = n1 + n2 + + nL* In order to
simplify the discussion, the gray-level histogram is normalized
and regarded as a probability distribution:

L

pi = nilN, pi >0, Z Pi-1 (1)

Now suppose that we dichotomize the pixels into two classes
CO and C 1 (background and objects, or vice versa) by a threshold
at level k; CO denotes pixels with levels [1, , k], and C1 denotes
pixels with levels [k + 1, , L]. Then the probabilities of class
occurrence and the class mean levels, respectively, are given by

k

wo = Pr (Co)= E Pi= (k) (2)
i=1

L

w01 = Pr (Ci)= E pi = 1-@(k)
i =k+ I

and
k k

Po = i Pr (i Co)- E ipiIo = p(k)/w(k)

L L ItT P(k)
i=k+lk=k+I co(k)

where
k

o(k) = pi

and

p(k)= I ipi
i=1

i-,

These require second-order cumulative moments (statistics).
In order to evaluate the "goodness" of the threshold (at level k),

we shall introduce the following discriminant criterion measures
(or measures of class separability) used in the discriminant
analysis [5]:

A = a22 K = (T2/a2WK ==/2/a2

where
2 2 2UW = 6oJoU + 0J1ff1

2 = o(po PT) + 1G(i1 PT)

= iOO(Y1-PTo)T

(due to (9)) and
L

2 )pJT = E (i -p2p
i=1

(12)

(13)

(14)

(15)

are the within-class variance, the between-class variance, and the
total variance of levels, respectively. Then our problem is reduced
to an optimization problem to search for a threshold k that maxi-
mizes one of the object functions (the criterion measures) in (12).

This standpoint is motivated by a conjecture that well-
thresholded classes would be separated in gray levels, and con-
versely, a threshold giving the best separation of classes in gray
levels would be the best threshold.
The discriminant criteria maximizing A, K, and q, respectively,

for k are, however, equivalent to one another; e.g., K = i + 1 and
= )/(2 + 1) in terms of 2, because the following basic relation

always holds:

a2 + a2 = 521w + TB (16)

t9" It is noticed that U2 and U2 are functions of threshold level k, but
CT is independent of k. It is also noted that cr2 is based on the
second-order statistics (class variances), while (T2 is based on the

(4) first-order statistics (class means). Therefore, q is the simplest
measure with respect to k. Thus we adopt q as the criterion meas-
ure to evaluate the "goodness" (or separability) of the threshold at

(5) level k.
The optimal threshold k* that maximizes t, or equivalently

maximizes a2 is selected in the following sequential search by
6 using the simple cumulative quantities (6) and (7), or explicitly
(6) using (2)-(5):

l(k) = us(k)l/T

a2k =[p7(k) -(k)]2cB(k = (k)[1 - w)(k)]-(7)

(17)

(18)

are the zeroth- and the first-order cumulative moments of the
histogram up to the kth level, respectively, and

L

PT P- (L) = Z ipi
i =1

and the optimal threshold k* is

(8)

is the total mean level of the original picture. We can easily verify
the following relation for any choice of k:

OP00 +O+IU1=P T, (Oo+Ui=I (9)

The class variances are given by
k k

2 E (i - P0)2 Pr (i C0)= Z (i - po)2pi/o (10)
ii= i=

L L

I2= E (i _ pl)2 Pr (i IC,) = (i - p)2p Wi, (11)
i=k+ I i k+ I

2(k* ) = max o2(k).
1 <k<L

(19)

From the problem, the range of k over which the maximum is
sought can be restricted to

SF = {k; (loow = w(k)[I- ((k)] > 0, or 0 < o(k) < 1}.

We shall call it the effective range of the gray-level histogram.
From the definition in (14), the criterion measure i' (or q) takes a
minimum value of zero for such k as k e S - S* = {k; (o(k) = 0 or
1} (i.e., making all pixels either Cl or CO, which is, of course, not
our concern) and takes a positive and bounded value for k e S*. It
is, therefore, obvious that the maximum always exists.
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Ill. DISCUSSiON AND REMARKS

A. Analysis offurther important aspects

The method proposed in the foregoing affords further means to
analyze important aspects other than selecting optimal
thresholds.
For the selected threshold k*, the class probabilities (2) and (3),

respectively, indicate the portions of the areas occupied by the
classes in the picture so thresholded. The class means (4) and (5)
serve as estimates of the mean levels of the classes in the original
gray-level picture.
The maximum value ti(k*), denoted simply by 1*, can be used as

a measure to evaluate the separability of classes (or ease of thre-
sholding) for the original picture or the bimodality of the histo-
gram. This is a significant measure, for it is invariant under affine
transformations of the gray-level scale (i.e., for any shift and dila-
tation, g' = agj + b) It is uniquely determined within the range

0 < q < 1.

The lower bound (zero) is attainable by, and only by, pictures
having a single constant gray level, and the upper bound (unity) is
attainable by, and only by, two-valued pictures.

B. Extension to Multithresholding
The extension of the method to multihresholding problems is

straightforward by virtue of the discriminant criterion. For exam-
ple, in the case of three-thresholding, we assume two thresholds:
1 < k1 < k2 < for separating three classes, CO for [1, * * *, kl], C,
for [k1 + 1, , k2], and C2 for [k2 + 1, --, L]. The criterion
measure or (also q) is then a function of two variables k, and k2,
and an optimal set of thresholds kt and kt is selected by maximiz-
ing r7:

a2(ki,, kt) = max o2(kI, k2)-
1!kl<k2<L

It should be noticed that the selected thresholds generally
become less credible as the number of classes to be separated
increases. This is because the criterion measure (e2), defined in
one-dimensional (gray-level) scale, may gradually lose its meaning
as the number of classes increases. The expression of U2 and the
maximization procedure also become more and more com-
plicated. However, they are very simple for M = 2 and 3, which
cover almost all practical applications, so that a special method to
reduce the search processes is hardly needed. It should be
remarked that the parameters required in the present method for
M-thresholding are M - 1 discrete thresholds themselves, while
the parametric method, where the gray-level histogram is approx-
imated by the sum of Gaussian distributions, requires 3M - 1
continuous parameters.

C. Experimental Results
Several examples of experimental results are shown in Figs. 1-3.

Throughout these figures, (a) (as also (e)) is an original gray-level
picture; (b) (and (f)) is the result of thresholding; (c) (and (g)) is a
set of the gray-level histogram (marked at the selected threshold)
and the criterion measure q1(k) related thereto; and (d) (and (h)) is
the result obtained by the analysis. The original gray-level pic-
tures are all 64 x 64 in size, and the numbers of gray levels are 16
in Fig. 1, 64 in Fig. 2, 32 in Fig. 3(a), and 256 in Fig. 3(e). (They all
had equal outputs in 16 gray levels by superposition of symbols by
reason of representation, so that they may be slightly lacking in
precise detail in the gray levels.)

Fig. 1 shows the results of the application to an identical char-
acter "A" typewritten in different ways, one with a new ribbon (a)

(a)

5 1 (
(c)

(b)

PT, 4.2

K = 6

W" = 0.818

w, = 0.182
(d)

(e) (f

PT 4.3

K = 6

w =0.858

w,=0. 142

t ('

(g)

(h)

Fig. 1. Application to characters.
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7 =0.894

pO= 2.8
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n'= 0.853
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Fig. 2. Application to textures.

a2= 143982

7 = 0.767

0e 20.8

P,=44.6
(h)

PT 80.7 CT 3043.561

K:=61 K2=136 7=0.893

w0=0.395 PJO=.24.1
w, z 0.456 Pi= 99.2

W2=0.1t49 PZ=174.0

(g) (h)

Fig. 3. Application to cells. Critenon measures f(kt, k2) are omitted in (c) and (g)
by reason of illustration.
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and another with an old one (e), respectively. In Fig. 2, the results
are shown for textures, where the histograms typically show the
difficult cases of a broad and flat valley (c) and a unimodal peak
(g). In order to appropriately illustrate the case of three-
thresholding, the method has also been applied to cell images with
successful results, shown in Fig. 3, where CO stands for the back-
ground, C1 for the cytoplasm, and C2 for the nucleus. They are
indicated in (b) and (f) by ( ), (=), and (*), respectively.
A number of experimental results so far obtained for various

examples indicate that the present method derived theoretically is
of satisfactory practical use.

D. Unimodality of the object function
The object function 52(k), or equivalently, the criterion measure

1(k), is always smooth and unimodal, as can be seen in the exper-
imental results in Figs. 1-2. It may attest to an advantage of the
suggested criterion and may also imply the stability of the
method. The rigorous proof of the unimodality has not yet been
obtained. However, it can be dispensed with from our standpoint
concerning only the maximum.

IV. CONCLUSION
A method to select a threshold automatically from a gray level

histogram has been derived from the viewpoint of discriminant
analysis. This directly deals with the problem of evaluating the
goodness of thresholds. An optimal threshold (or set of thre-
sholds) is selected by the discriminant criterion; namely, by maxi-
mizing the discriminant measure q (or the measure of separability
of the resultant classes in gray levels).
The proposed method is characterized by its nonparametric

and unsupervised nature of threshold selection and has the follow-
ing desirable advantages.

1) The procedure is very simple; only the zeroth and the first
order cumulative moments of the gray-level histogram are
utilized.

2) A straightforward extension to multithresholding problems

is feasible by virtue of the criterion on which the method is based.
3) An optimal threshold (or set of thresholds) is selected auto-

matically and stably, not based on the differentiation (i.e.. a local
property such as valley), but on the integration (i.e., a global
property) of the histogram.

4) Further important aspects can also be analyzed (e.g., estima-
tion of class mean levels, evaluation of class separability, etc.).

5) The method is quite general: it covers a wide scope of un-
supervised decision procedure.
The range of its applications is not restricted only to the thre-

sholding of the gray-level picture, such as specifically described in
the foregoing, but it may also cover other cases of unsupervised
classification in which a histogram of some characteristic (or feat-
ure) discriminative for classifying the objects is available.
Taking into account these points, the method suggested in this

correspondence may be recommended as the most simple anid
standard one for automatic threshold selection that can be
applied to various practical problenms,
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Book Reviews

Orthogonal Transforms for Digital Signal Processing---N. Ahmed and K.

R. Rao (New York: Springer-Verlag, 1975, 263 pp.). Reviewed by Lokenatlh
Debnath, Departments of Mathematics and Physics, East Carolina Unit er-

sity, Greenville, NC 27834.

With the advent of high-speed digital computers and the rapid advances

in digital technology, orthogonal transforms have received considerable
attention in recent years, especially in the area of digital signal processing.
This book presents the theory and applications of discrete orthogonal
transforms. With some elementary knowledge of Fourier series trans-

forms, differential equations, and matrix algebra as prerequisites, this

book is written as a graduate level text for electrical and computer engi-
neering students.
The first two chapters are essentially tutorial and cover signal represen-

tation using orthogonal functions. Fourier methods of representating sig-
nals. relation between the Fourier series and the Fourier transform, and
some aspects of cross correlation. autocorrelation. and consolution. Thlese
chapters provide a systematic transition from the Fourier represenitation
of analog signals to that of digital sigials.
The third chapter is concerned with the F'ourier representation of

discrete and digital signals througlh the discrete Fourier tranisfornm (D)[ I).
Some important properties of the DFT including thc conv olution anld
correlation theorems are discussed in some detail, The concept of ampli-
tude, power. and phase spectra is introduced. It is shown that the 1)1F is
directly related to the Fourier transform series representation ol data sc-
quences tX(rn)). The two-dimensional DlFT anid its possible extensioni to
higher dimensions are insestigated. and the chapter closes "it}h ;omc
discussion on time-varying power andt phase spectra.
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