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Speckle removal using a maximum-likelihood
technique with isoline

gray-level regularization
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13397 Marseille, France

Yann Frauel
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We propose a method based on the maximum-likelihood technique for removing speckle patterns that plague
coherent images. The proposed method is designed for images whose gray levels vary continuously in space.
The image model is based on a lattice of nodes corresponding to vertices of triangles in which the gray level of
each pixel is produced by linear interpolation. A constraint on isoline gray levels is introduced to regularize
the solution. © 2004 Optical Society of America
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1. INTRODUCTION
Many imaging systems use coherent light for illuminating
the objects under study. This is the case for systems in-
volving lasers and holography1 as well as for synthetic ap-
erture radar images.2 Since they use coherent light, im-
ages obtained with these imaging systems are corrupted
by speckle noise3 that results from interference due to
wave-front deformations. This speckle rapidly becomes
an important drawback for further image processing.
For example, a correlation between two identical images
with different speckle patterns may provide a useless re-
sult, and speckle degrades most commonly used methods
of detection or estimation.

Most of existing speckle-removing approaches are
based on an image model with constant reflectivity in a
patchwork of regions also known as a mosaic model.
This image model is adapted for synthetic aperture radar
images. For coherent optical images in general, the re-
flectivity of the objects in the scene can be continuously
variable. This modification of the reflectivity can result,
for example, from the three-dimensional structure of the
objects.

In this paper we propose a new algorithm for speckle
removal that is useful for image models that are more
general than the mosaic one. The proposed method is
based on the maximum-likelihood (ML) technique and
1084-7529/2004/122283-09$15.00 ©
uses a general model for image reflectivity. Moreover, to
improve the quality of the result, a constraint on isoline
gray level is imposed that allows one to obtain smooth re-
sults without blurring the edges of the objects in the im-
age.

The structure of the paper is as follows. In Section 2
we describe the ML estimator according to speckle mod-
elization. In Section 3 we introduce an image model de-
fined as a continuous lattice based on elementary tri-
angles. The algorithm designed for ML-criterion
optimization is developed in Section 4. In Section 5 we
introduce a regularization term based on the isogray level
of the restored image. Validation and comparison with a
classical method are provided in Section 6 before the con-
clusion in Section 7.

2. MAXIMUM-LIKELIHOOD ESTIMATOR
Active coherent imaging is useful for many applications.
In particular, we consider in this paper the digital holog-
raphy application. In fact, active coherent imaging al-
lows one to implement digital holographic techniques in
order to get three-dimensional information on the illumi-
nated objects. In this case, a hologram is digitally re-
corded by a camera and then numerically processed to re-
construct arbitrary two-dimensional views of the three-
dimensional object.4,5
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The main difficulty with coherent imaging is the ran-
dom high-spatial-frequency interference pattern
(speckle), which in general cannot be perfectly predicted.

The complexity of radar or hologram scenes generally
implies that the intensity level of the image must be re-
garded as a random field. The reflectivity of the scene,
which is the parameter of interest, has then to be recov-
ered from local parameters such as the local mean, the
standard deviation, and the whole probability density
function (pdf) of the random field.

Usually, intensity images with speckle correspond to
the square modulus of Gaussian circular complex fields.
Complex-field modelization could be obtained, for in-
stance, from a wave front near the object calculated with
digital holographic data.4,5 For synthetic aperture radar
images, one can get intensity images by averaging several
independent intensity acquisitions. In that case, a
simple but generally accurate speckle model for intensity
images consists in considering that the gray levels are re-
alizations of independent randoms fields with gamma pdf
and that mean value is proportional to the local reflectiv-
ity in the image.

The pdf of the observed gray level xn of pixel n is thus

p~xnuin! 5 S L

in
LD xn

L21

G~L !
expS 2L

xn

in
D , (1)

where in is the mathematical expectation value of the
gray level at pixel n and L is the order of the gamma law.
In this case, in corresponds to the gray level of the object

Fig. 1. Net example and its two base polygons.
that one would measure without speckle, and it is the in-
formation wanted. In the following, we will assume that
L is known. Indeed, the pdf obtained with a complex
Gaussian circular assumption on the amplitudes (which
is the case of holography, for example) provides a gamma
pdf for the intensity gray levels of order one (L 5 1).
Furthermore, averaging L images leads to gamma pdf of
order L.

In the following, we will assume that the gray-level pix-
els of the image are distributed with gamma pdf [Eq. (1)]
and that they are statistically independent. With this
hypothesis, the log likelihood of the N pixel image X
5 $xn%nP@1,N# can be written as

,~XuI! 5 log )
n51

N

p~xnuin!, (2)

where I 5 $in%nP@1,N# and which with Eq. (1) leads to

,~XuI! 5 C~L, $xn%! 2 L(
n51

N F log~in! 1
xn

in
G , (3)

where C(L, $xn%) is a term independent of I.
The ML estimation of the intensity image I 5 $in% is

obtained by maximizing the log likelihood6 expression of
Eq. (3):

Î 5 argmax
I

,~XuI!. (4)

One can remark that the ML estimation is independent
of the L order of the gamma pdf. Indeed, the parameter
L in Eq. (3) is present only in the additive constant
C(L, $xn%) and appears as the multiplicative factor of the
second term that includes the parameter of interest I.

3. IMAGE MODEL
Equation (3) shows that without further hypothesis, the
ML estimator of the image I is the trivial result Î 5 X.
Indeed, the first derivative of the log likelihood [Eq. (3)]
with respect to in is
Fig. 2. An advantage of a lattice of triangles is adaptive complexity. (a) Reference image (513 3 513 pixels). (b) Example lattice with
11,369 nodes. (c) Modeled image using the lattice in (b).
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and this equation provides the solution:

Fig. 3. Polygon-based elementary pyramid example used to
compute the derivatives.
],

]in
5 0⇒in 5 xn . (6)

To remove speckle, one can limit the set of solutions of
interest to images with slow spatial variations. An ini-
tial possibility consists in introducing an image model for
I.

The choice of the image model is fundamental and must
satisfy various contradictory constraints. The solution
must remove the speckle by providing a smooth image.
Furthermore, this solution should keep the edges between
different objects. The last constraint that we consider is
the computational time needed to find the solution. Let
Fig. 4. Part of an image of a toy car calculated from an experimental digital hologram. Results are from different triangle sizes of the
lattice. (a) Reference image 513 3 513, drawn with gamma correction 5 2 only for visualization. (b) 5-pixel base triangle (1.5 s CPU
time, 33,025 nodes). (c) 9-pixel base triangle (0.9 s CPU time, 8321 nodes). (d) 17-pixel base triangle (0.85 s CPU time, 2113 nodes).
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fine the image I(K). P is the number of nodes in the lat-
tice and thus is equal to the number of parameters of this
model. The image model I(K) must be simple enough to
lead to a low computational charge and must be depen-
dent only locally on the parameters K. In other words,
when only one parameter kp is modified, the image I(K)
has to be modified on only a limited size area.

Fig. 5. Estimation of isoline level: description.

Fig. 6. Estimation of isoline level: determination.
We thus propose to consider a piecewise linear image
model based on elementary triangles. Figure 1(a) shows
an example of a lattice with two base polygons drawn
separately in Figs. 1(b) and 1(c). The gray level of each
pixel of the modeled image is defined as being a linear in-
terpolation between the gray levels of three vertices of the
triangle to which it belongs. This linear variation be-
tween nodes is a constraint that imposes a slow spatial
variation of the intensity. Let each node kp of the lattice
be described by three coordinates (kxp

, kyp
, kzp

), where
kxp

, kyp
correspond to the coordinates of the node’s loca-

tion in the image and kzp
is the unknown corresponding

gray level. The parametric intensity image model can be
written as

I 5 $in% 5 I~kz1
,..., kzp

,..., kzP
!. (7)

The first advantage of using a simple lattice based on
triangles is to lead to a low computational time. Indeed,
determining the gray level for each pixel of the image
from the triangle lattice information (kz1

,..., kzP
) re-

quires only 3N additions and 3N multiplications. This
property is due mainly to the fact that local adjustments
of the lattice result in local modifications of the gray level
of the nearest pixels. Indeed, a modification of the gray
level of one node implies computations only on the poly-
gon area that surrounds this node. For example, the
nodes k16 and k22 of the lattice shown in Fig. 1(a) are as-
sociated with polygons displayed, respectively, in Figs.
1(c) and 1(b).

The second advantage is the continuity of the gray level
of the image model I 5 $in%, which is introduced natu-
rally by the lattice design. This continuity property is
important for smoothing the image result.

The last advantage of the model is the ability of the lat-
tice to be modified locally. Indeed, it is possible to add
and remove nodes of the lattice without modifying the tri-
angles that do not contain these nodes. The size of the
Fig. 7. Reference synthetic image and tenth-order gamma noisy image (512 3 512).
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Fig. 8. Results for a synthetic image without noise (512 3 512). (a) m 5 0.15 and b 5 0.14 with 3-pixel base. (b) Square error image,
mse 5 100. (c) Median filter (5 3 5). (d) Square error image, mse 5 44.
different triangles can therefore be adjusted to the image
complexity: large triangles can be used for smooth sur-
faces and small triangles for details of the objects. A
simple example is provided in Fig. 2, where Figs. 2(b) and
2(c) are examples of how the lattice can model the refer-
ence image Fig. 2(a). In this example, the lattice has
11,369 nodes for an image of size 513 3 513 pixels. In
the following, a regular lattice will be used, but one can
note that the proposed technique can be generalized to
any lattice that is based on triangles.

4. OPTIMIZATION OF THE LOG-
LIKELIHOOD CRITERION
To optimize the criterion at Eq. (3) with a low CPU load, a
method with a small number of iterations has to be imple-
mented. To determine the criterion for one 106-pixel im-
age, close to 107 elementary computations are needed.
We thus propose to implement an iterative second-order
algorithm. Moreover, one can show that the triangular
lattice with linear interpolation is very helpful for quick
determination of the criterion derivatives. Indeed, the
first derivative of the log-likelihood criterion with respect
to the gray level kzp

of the node kp , is given by
; kp P lattice

],

]kzp

5 (
n51

N
]in

]kzp

],

]in
5 2L(

n51

N
ap,n

in
S 1 2

xn

in
D , (8)

where ap,n 5 ]in /]kzp
. Actually, changes of kzp

affect
only the pixels contained in the polygons surrounding the
node kp , which will be denoted $ p1 ; pq% (see Fig. 3).
The value of ap,n is zero for pixels outside this polygon.
Equation (8) can thus be written as

; kp P lattice:

],

]kzp

5 2L (
nP$ p1;pq%

ap,n

in
S 1 2

xn

in
D . (9)

Since the image model is defined by a linear interpolation
between each two nodes of the lattice, then the set ap
5 $ap,n /pixel n P $ p1 ; pq%% forms a pyramid with a po-
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lygonal base $ p1 ; pq%—where the value is zero—and a
top at node kp—where the value is 1 (Fig. 3). This set of
coefficients ap depends on the node kp of the lattice. For
the case of a regular lattice (presented in this paper),
there are two different sets of coefficients according to the
polygons Figs. 1(b) and 1(c).

With similar notation, the second derivative of the ML
criterion can be written as

; kp P lattice:

]2,

]kzp

2
5 2L (

nP$ p1;pq%

ap,n
2

in
2 S 2

xn

in
2 1 D . (10)

The second-order iterative algorithm that we propose
to use to determine the kzp

variation at each iteration can
be written as

; kp P lattice: Dkzp
5 2S ]2,

]kzp

2 D 21
],

]kzp

. (11)
Equation (11) provides z-axis correction for each node
kp . For a pixel n near a node kp , the correction is Din
5 Dkzp

ap,n . The iterative process of the correction of
the image model can thus be written as

It 5 It21 1 (
p51

P

Dkzp
• ap . (12)

Owing to Eq. (12), It at iteration t is determined with-
out extra computations, such as, for example, to recon-
struct It from the set of values $kzp

%pP@1,P# known at itera-
tion t. It is necessary only to determine at each iteration
Dkzp

with Eq. (11) and to modify the image model with
Eq. (12).

5. REGULARIZATION WITH ISOLINE
LEVEL
An initial regularization of the image $in% is introduced
naturally by the image model since it is based on a para-
metric model with fewer degrees of freedom than N, the
Fig. 9. Results for a synthetic image with tenth-order gamma noise (512 3 512). (a) m 5 0.15 and b 5 0.14 with 3-pixel base (46 s,
PIII–1.1 GHz). (b) Square error image, mse 5 219. (c) Median filter (5 3 5). (d) Square error image, mse 5 362.
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Fig. 10. Results on an optical CCD noisy image with 5th-order gamma noise (512 3 512 pixels). (a) Reference image (8 bits). (b)
Noisy image perturbed by fifth-order speckle. (c) Mean filter (3 3 3) before the median filter (5 3 5), mse 5 127. (d) Proposed tech-
nique with m 5 0.75 and b 5 0.14, mse 5 73, 27 s.
pixel’s image number. However, when small triangles
are used, speckle noise removal is unsatisfactory, as
shown in Fig. 4. This figure, a part of a toy car, is a re-
constructed two-dimensional view next to an experimen-
tal digital hologram with 12-bit dynamic range. Figure
4(a) shows the initial image without speckle removal.
Figures 4(b), 4(c), and 4(d) show the results obtained for
different sizes of the elementary triangle. One can see
that noise removal is very poor with triangles that have a
base of 5 pixels. In Fig. 4(c) the base of the triangle was
9 pixels, and noise removal is still quite poor. On the
other hand, with triangles that have a 17-pixel base, the
speckle noise has been more efficiently removed, but a
blurring effect becomes noticeable and prohibits the use
of larger-triangle modelization.

To improve speckle removal, we propose to introduce,
with small triangles, a second constraint. This con-
straint brings minimal a priori information on the
smoothness of the result.

Since most common images are continuous images with
a small number of edges, images can be decomposed into
regular lines with constant gray levels (Fig. 5). Further-
more, these iso-gray-level lines (which will be simply de-
noted isolines in the following) are in general regular in
the sense that their shape does not oscillate much. The
principle of the proposed isoline regularization thus con-
sists in penalizing irregular sets of constant gray levels.
More precisely, starting from one node kp of coordinates
(kxp

, kyp
) of the triangle lattice, one looks for pixel l1 in a

circle of radius equal to the size of the base of the tri-
angles centered on the node kp that has a gray level near-
est to kzp

. Let us assume that an isoline has been deter-
mined with q 2 1 pixels. To merge a new pixel lq to this
isoline, a half-circle of radius equal to the size of the base
of the triangles is first defined in the direction lq22lq21

W as
shown in Fig. 6. Let il1

,..., ilq21
denote the gray-level

values of the pixel l1 ,..., lq21 of the isoline with q 2 1
pixels. One can thus define the mean gray-level value of
this isoline mq21 5

1
q 2 1 ( j50

q21ilj
, where l0 corresponds to

kp . One thus has to determine in the half-circle defined
above the pixel lq that has a gray level value ilq

the near-
est to mq21 . If uilq

2 mq21u/mq21 is smaller than a
threshold b (denoted ‘‘constrast threshold’’), the pixel lq is
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merged with the isoline and the process is iterated. The
merging process is stopped when this condition can no
longer be fulfilled or when the maximum length of the iso-
line level, fixed at the beginning, has been reached. A
new merging process is then initiated with another node
of the lattice.

Since this process is applied on the restored image ob-
tained at iteration t, the proposed technique thus consists
in minimizing,

J(I~K!) 5 C 1 L • (
n51

N H log@in~K!# 1
xn

in~K!
J

1 m • L • (
p51

P

Np

@kzp
2 mp~b!#2

mp~b!
, (13)

where m is a parameter that balances the likelihood term
(first part of the criterion) and the regularization one, Np
is the number of pixels that belong to the polygon $ p1
; pq% that includes the node kp , b is the parameter of
the regularization method, and P is the number of nodes
in the lattice. As shown in Eq. (13) the proposed tech-
nique consists in determining the isoline mp to which
each node belongs in order to penalize the square differ-
ence between the gray level of nodes and their corre-
sponding isolines. In addition, the square difference in
node p is weighted by the isoline gray-level value L/mp in
order to take into account the characteristics of speckle
noise, which is a multiplicative noise.

6. VALIDATION AND COMPARISON OF
SYNTHETIC AND REAL IMAGES
Many methods have been proposed to remove speckle, but
few lead to a fast algorithm. Furthermore, it is not pos-
sible to compare the proposed technique with all of them,
and we will restrict our analysis to the most common and
rapid technique. We will thus compare in this section
the proposed method with a classical median filtering
technique.

The synthetic image used for the tests is shown in Fig.
7. This image presents borders with strong slopes of one
pixel and continuous variations of gray levels. Some
gray-level values are presented in Fig. 7(a) (horizontal
text), and the contrasts for some borders are also reported
(vertical text). Figure 7(b) shows the noisy image gener-
ated with a tenth-order speckle noise with a gamma pdf
defined by Eq. (1).

To analyze the efficiency of the considered speckle-
removing techniques, we propose to analyze the effect of
the techniques on an image without noise. Figures 8(a)
and 8(b) show these results: One can observe in Fig. 8(b)
the square error that is due to the triangular lattice mod-
elization. The mean square error (mse) on the image is
100. Figures 8(c) and 8(d) show the result for a 5 3 5
median filter. Figure 8(d) shows the error introduced by
the sliding window processing. It is important to note
that the mse (44) of the median filter is lower than that
for the one of the proposed techniques (100).

Figure 9 shows the results for the gamma noisy syn-
thetic images. The results of the proposed technique are
shown in Figs. 9(a) and 9(b) and were obtained by use of a
triangle lattice with a 3-pixel base and with regulariza-
tion by isoline level. Figures 9(c) and 9(d) show the re-
sults of median filtering technique (with a sliding window
of 5 3 5 pixels).

Results shown in Fig. 9(a) demonstrate that the pro-
posed method is able to remove speckle efficiently while
keeping sharp edges between the different zones. Of
course, estimation of the edges is not perfect for low con-
trasts; however, we can conclude from Fig. 9(a) that the

Fig. 11. Top, reference image of a toy car reconstructed from an
experimental digital hologram of 1123 3 1585 pixels with first-
order speckle (or one look), drawn with modification of gray lev-
els for visualization. Middle, result with 3-pixel base triangle,
m 5 5.0 and b 5 0.3 (260 s, 889,978 nodes, PIII–1.1 GHz). Bot-
tom, result with 5-pixel base triangle, m 5 5.0 and b 5 0.3 (61 s,
222,437 nodes, PIII–1.1 GHz).
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contrast limit for obtaining good results is between 1.1
and 1.2 for tenth-order speckle. For high-contrast edges,
one can observe from Fig. 9(b) that the quality of the res-
toration is limited by the size of the lattice. More pre-
cisely, the resolution of the restored image is roughly de-
termined by the size of the triangles of the lattice. In
addition, and in contrast to the results of the median fil-
ter shown in Figs. 9(c) and 9(d), the restoration of the
gray levels of the surfaces is very smooth, and its quality
is visually the same for any mean value of the gray level.
The mse is 219 for the restoration provided by the pro-
posed technique and 362 for the median filter.

The next validation is based on a real image of the cam-
era (8-bit dynamic) shown by Fig. 10(a), which is per-
turbed by fifth-order speckle noise as shown in Fig. 10(b).
Figure 10(d) shows the restored image produced with the
proposed technique with a 3-pixel base triangle. The re-
stored image produced by a median filter is shown in Fig.
10(c). For this low-order speckle, the image of Fig. 10(c)
was obtained by first applying a low-pass filter of size 3
3 3 pixels with all filter coefficients equal to 1/9 and then
a 5 3 5 median filter. The mse is 73 for the proposed
technique [Fig. 10(d)] and 127 for the median filter [Fig.
10(c)]. One can also see that with the proposed tech-
nique the visual aspect is improved in comparison with
the result obtained with a median filter.

The last validation is based on the reconstructed two-
dimensional view of an experimental digital hologram
where the speckle corresponds to first-order speckle.
Figure 11 presents the result for a lattice with 3 and 5
pixels for the base of the triangles and a constraint on the
isoline level.
7. CONCLUSIONS AND PERSPECTIVES
Using the hypothesis of a gamma pdf of the speckle, we
provided a maximum-likelihood estimator of the reflectiv-
ity of the object. An initial regularization was introduced
in the form of a lattice modelization. This model allows
one to obtain an efficient algorithm from a computation
point of view. We proposed a further improvement of the
technique by introducing an efficient regularization by
isoline level. The latter technique keeps the edges of the
objects while providing smooth surfaces.

The principal perspective of this work is to generalize it
to an autoadaptive lattice, where it will not be necessary
to use a constraint on the isoline level.

Corresponding author Nicolas Bertaux can be reached
at the address on the title page or by e-mail:
nicolas.bertaux@fresnel.fr.
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