
Journal of real time image processing manuscript No.
(will be inserted by the editor)

Fernanda Palhano Xavier de Fontes ·
Guillermo Andrade Barroso ·
Pierre Hellier

Real time ultrasound image denoising

the date of receipt and acceptance should be inserted later

Abstract Image denoising is the process of removing the noise that per-
turbs image analysis methods. In some applications like segmentation or
registration, denoising is intended to smooth homogeneous areas while pre-
serving the contours. In many applications like video analysis, visual servo-
ing or image-guided surgical interventions, real-time denoising is required.
This paper presents a method for real-time denoising of ultrasound images: a
modified version of the NL-means method is presented that incorporates an
ultrasound dedicated noise model, as well as a GPU implementation of the
algorithm. Results demonstrate that the proposed method is very efficient in
terms of denoising quality and is real-time.

1 Introduction

Image denoising is a key component of image processing workflows. Denoising
aims at reducing the noise in homogeneous areas while preserving the image
contours. Denoising is important for postprocessing methods like segmenta-
tion, classification, object recognition, pattern analysis, registration, etc. In
this context the denoising of ultrasound images is particularly challenging
due to the particular texture of the ultrasound images. The noise, often re-
ferred to as ”speckle”, is a multiplicative signal-dependent noise. Ultrasound
is a medical imaging modality suited for many applications, since the image
acquisition is real-time. Therefore, ultrasound can be used for surgical guid-
ance and robotic assisted interventions. For surgical applications, ultrasound

Fernanda Palhano Xavier de Fontes, Guillermo Andrade Barroso · Pierre Hellier
INRIA Centre de Recherche Rennes Bretagne Atlantique
35 042 Rennes Cedex
Tel.: +33.2.99.84.71.00
Fax: +33.2.99.84.71.71
E-mail: Pierre.Hellier@inria.fr

in
ria

-0
04

76
12

2,
 v

er
si

on
 1

 -
23

 A
pr

 2
01

0
Author manuscript, published in "Journal of Real-Time Image Processing (2010)"

http://hal.inria.fr/inria-00476122/fr/
http://hal.archives-ouvertes.fr

2

offers a light, real-time, inexpensive, non-ionizing capability to image the
surgical field and update the pre-operative planning. To fully benefit from
this real-time capability, image processing methods also need to be real-time,
which is also crucial for surgical applications. In this paper, a Bayesian ver-
sion of the NL-means methods [3] is presented that allows to incorporate an
ultrasound dedicated noise model. This denoising method was implemented
using GPU technology and leads to a real-time denoising method. The paper
is organized as follows: section 2 presents an overview of denoising methods,
section 3 presents the modified NL-means method, section 4 describes the
GPU implementation of the algorithm and section 5 presents results in terms
of denoising quality and computation time.

2 Related work

In this paper, an efficient denoising method, dedicated to ultrasound images,
is implemented using GPU capabilities. In this section, we briefly introduce
related methods concerning image denoising, and GPU computation.

2.1 Image denoising

Many filters have been proposed for general image denoising. Ultrasound
images are corrupted by speckle, a specific noise which is associated with
coherent imaging systems. Many studies have been conducted to develop
specific methods dedicated to ultrasound images. Denoising is a broad area
and it would be out of the paper’s scope to give an exhaustive survey. We
refer the reader to [21,9,6,5] for survey. Here, a short selection of denoising
techniques is presented.

Adaptive filters Adaptive filters are based on the assumption that speckle
is essentially a multiplicative noise. The most common adaptive filters are
Lee’s filter [19], Frost’s filter [10], Kuan’s filter [17]. The principle adopted by
Lee and Kuan is very similar. Both seek to minimize the mean square error
(MSE) between the true value of a pixel and its estimated value. The only
difference between the two methods is that Lee utilizes a linear approximation
for speckle while Kuan uses a nonlinear approximation. The Frost’s filter is
also a MSE filter, but assumes that the image is stationary. The median
filter is a spatial filter that replaces the central pixel in a window with the
median of all the pixel values in that window. Loupas [20] introduced a new
approach to the adaptive median filter called adaptive weighted median filter
(AWM). In this case, different weights are assigned for each pixel from the
local content of the image. The filters mentioned above are easy to implement
and present a good compromise between complexity and denoising quality.

Partial Differential Equations filters Some methods adapted the thermody-
namic equation of heat to filter ultrasound images. Perona and Malik pro-
posed an anisotropic filter with borders detection [23]. Alvarez et al.[1] also

in
ria

-0
04

76
12

2,
 v

er
si

on
 1

 -
23

 A
pr

 2
01

0

3

developed a filter based on the thermodynamic equation of heat which is
called curvature motion. Total variation minimization scheme (TV) was in-
troduced by Rudin, Osher and Fatemi [24]. The denoising problem is consid-
ered as a minimization problem with constraints, where the constraints are
determined by statistical noise. In the original method, the removed noise is
treated as an error. In practice, some structures and textures can be present
in this error. Several groups have tried to avoid this effect [25,22]. Unlike
the adaptive filters aforementioned, these methods are iterative and keep the
location and accuracy of contours while smoothing the rest of the image.

2.2 GPGPU

Modern graphic cards have high computation and programmable capabili-
ties for a reasonable monetary cost. The last generation of NVIDIA graphics
card processors (GPU) have up to 240 processing units that can work in par-
allel with wide band memory. CUDA tools from NVIDIA allow to program
graphics cards to solve intensive computation problems with a high-level lan-
gage. These facts push scientists to adopt the general purpose programing
on graphic processor unit (GPGPU) in aim to attempt real-time level on
intensive computation problems. This is the case for image and signal pro-
cessing problems. [GPUCV] is a port of well-know OpenCV run-time libraries
in GPU devices to accelerate filters execution and image processing basics
tools.

Non-local means filters computation has good characteristics to be ported
on GPU: every pixel computation needs a regular analyse of same type of
zones over the image input. ImageDenoise SDK CUDA [15] implements a
real-time generic non local means filter for 2D images which exploits CUDA
2D caches capabilities in textures memories into a GPU. [12] implements
a non local means filter for deep data matrix of 3D points using CUDA.
Recently, GPU has been used for medical image registration [18] and seg-
mentation [4].

3 Bayesian NL-means

In this section, the original NL-means method [3] is briefly recalled, and the
adaptation of the NL-means [7] to a dedicated ultrasound noise model [20].

3.1 NL-means

Here, the basic principles of the NL-means technique is presented. This
method is based on a non-local paradigm, i.e., the restored intensity of a
pixel is a weighted average of all pixels in the image (classically, a neigh-
borhood around the considered pixel), weighted by the distance between the
patches:

NL(u)(xi) =
∑

xj∈Ωdim

w(xi, xj)u(xj) (1)

in
ria

-0
04

76
12

2,
 v

er
si

on
 1

 -
23

 A
pr

 2
01

0

4

Vi
Nj

Niw (xi,xj)

xi

xj

Fig. 1 Pixelwise NL-means filter (d = 1 and M = 8). The restored value at pixel
xi (in red) is the weighted average of all intensity values of pixels xj in the search
volume ∆i. The weights are based on the similarity of the intensity neighborhoods
(patches) u(Ni) and u(Nj).

where w(xi, xj) is the weight assigned to value u(xj) for restoring the pixel
xi. More precisely, the weight evaluates the similarity between the intensities
of the local neighborhoods (patches) Ni and Nj centered on pixels xi and
xj , such that w(xi, xj) ∈ [0, 1] and

∑
xj∈Ωdim w(xi, xj) = 1 (see Fig. 1). The

size of the local neighborhood Ni and Nj is (2d + 1)dim. The traditional
definition of the NL-means filter considers that the intensity of each pixel
can be linked to pixel intensities of the whole image. For practical and com-
putational reasons, the number of pixels taken into account in the weighted
average is restricted to a neighborhood, that is a “search volume” ∆i of size
(2M+1)dim, centered at the current pixel xi.

For each pixel xj in ∆i, the Gaussian-weighted Euclidean distance ‖.‖22,a
is computed between the two image patches u(Nj) and u(Ni) as explained
in [3]. This distance is the traditional L2-norm convolved with a Gaussian
kernel of standard deviation a. The weights w(xi, xj) are then computed as
follows:

w(xi, xj) =
1
Zi

exp−
‖u(Ni)− u(Nj)‖22,a

h2
(2)

where Zi is a normalization constant ensuring that
∑
xj∈Ωdim w(xi, xj) = 1

and h acts as a filtering parameter controlling the decay of the exponential
function.

3.2 Bayesian NL-means

The initial formulation of the NL-means filter relies on a L2-norm between
two patches, which relies on the assumption of an additive white Gaussian

in
ria

-0
04

76
12

2,
 v

er
si

on
 1

 -
23

 A
pr

 2
01

0

5

noise model. Unfortunately, the noise of ultrasound images cannot be con-
sidered as an additive white Gaussian noise. Here, a Bayesian formulation
of the NL-means filter is used to incorporate an ultrasound dedicated noise
model. We refer the reader to [7] for more details about this method.

The distribution of noise in ultrasound images has been largely studied in
the literature so far and many models have been proposed, up to the utmost
complexity. Among them, the Loupas noise model [20] has been successfully
used in many studies. It reads as:

u(x) = v(x) + vγ(x)η(x) (3)

where v(x) is the original image, u(x) is the observed image, η(x) v N (0, σ2)
is a zero-mean Gaussian noise. This model is more flexible and less restrictive
than the usual RF model and is able to capture reliably image statistics since
the factor γ depends on ultrasound devices and additional processing related
to image formation. Contrary to additive white Gaussian noise model, the
noise component in (3) is image-dependent. In [20], based on the experimental
estimation of the mean versus the standard deviation in Log-compressed
images, Loupas et al. have shown that γ = 0.5 model fits better to data than
the multiplicative model or the Rayleigh model. Since, this model has been
used successfully in many studies [16,2,29,11]. Clearly, this model is relevant
since it is confirmed that the speckle is higher in regions of high intensities
versus regions of low intensities [26,16].

In [14], a Bayesian formulation of the NL-means filter was proposed.
Equivalent to the conditional mean estimator, it has been shown that an
empirical estimator v̂(Bik) of a block Bik can be defined as (see the ap-
pendix):

v̂(Bik) =

1
|∆ik |

|∆ik
|∑

j=1

v(Bj)p(u(Bik)|v(Bj))

1
|∆ik |

|∆ik
|∑

j=1

p(u(Bik)|v(Bj))

(4)

where p(u(Bik)|v(Bj)) denotes the probability density function (pdf) of
u(Bik) given the noise free and unknown patches v(Bj).

Considering the Bayesian formulation and the Loupas noise model, a new
formulation of the NL-means is proposed [7]. Assuming that

u(x)|v(x) v N (v(x), v(x)2γσ2) (5)

leads to:

p(u(x)|v(x)) ∝ exp− (u(x)− v(x))2

2v(x)2γσ2
. (6)

Finally, this amount to substituting the traditional L2-norm by the Pearson
distance. We refer the reader to [7] for extensive details about this approach.

in
ria

-0
04

76
12

2,
 v

er
si

on
 1

 -
23

 A
pr

 2
01

0

6

4 GPU Implementation

Due to the high complexity of the NL-Means algorithm and the recent use
of GPUs for massively parallel computation, we decided to use the GPU
GeForce GTX 280 hardware version 1.3 to run our NL-Means filter adapted
to ultrasound images. The large computational burden is mainly due to the
computation of distances between each patch, which is used to later calculate
the weight of a pixel. Since these distances are independent of each other,
the algorithm is intrinsically parallel and particularly suited for such imple-
mentation. To develop the software, the NVIDIA CUDA was used. CUDA
is a general purpose parallel computing architecture that uses a high level
language compatible with C/C++.

Through CUDA, we can define functions, called kernels, that, when called,
are executed N times in parallel by N different CUDA threads. These threads
can be grouped into blocks. As the filtered images are 2D images, we chose
2D blocks for our implementation. The size of the blocks is an important pa-
rameter to computational time. Empirically, the fastest results were achieved
partitioning each block into a 16× 16 set of threads.

CUDA architecture has fast local memory called shared memory. This
memory is faster than the GPU global memory, but is limited. For the GTX
280 there are 16384 bytes/block which are simultaneously used by shared
memory and registers. Because of this limitation, we should select the most
important data to copy into shared memory.

First, an image patch and its neighborhood are copied into shared mem-
ory. Second, the search area of each pixel are also copied into memory. This
measure increases the performance, reducing runtime because of the reduc-
tion of global memory access. In ultrasound images, the area of interest con-
taining image information is smaller than the size of the entire image. Thus,
in order to further reduce the computational time, only points belonging to
a given input mask were denoised, as illustrated in figure 2.

Fig. 2 Ultrasound image and corresponding mask. To reduce the computation
time, only points belonging to the mask are denoised.

The program is composed of 8 kernels, 4 main kernels for NL-Means com-
putation and another 4 auxiliary kernels to compute the mean and variance
of the image. Also, a function implemented in C++ is used to compute the
smoothing parameter (h). Even though the program has 8 kernels, only 3 of
them will be executed to filter an image. Two input parameters, determined
by the user, specify how the kernels are called. There are two different imple-
mentations of the NL-means filter, a generic one [3] and a filter specifically

in
ria

-0
04

76
12

2,
 v

er
si

on
 1

 -
23

 A
pr

 2
01

0

7

adapted for ultrasound images [7]. Another input parameter which deter-
mines which kernels will be executed is the neighborhood size Ni. Because
of limitations on shared memory size only two options were implemented: a
neighborhood of 3× 3 pixels or a neighborhood of 5× 5 pixels.

The pseudocode in table 1 shows the main instructions that are executed
when the programs runs. First of all, a preprocessing computation is per-
formed. Two images are created: a map of local means and a map of local
variances. These images will be used to select the relevant pixels on the in-
put image. Once the preprocessing is done, the main kernel that implements
the NL-means filter, will be executed. As mentioned above, an area of the
image will be copied into shared memory. It is very important to synchronize
after the copy to ensure that all threads are completed before proceeding
to the next step which is computing the new value for each pixel using the
NL-means algorithm.

Algorithm 1 NL-means Algorithm
for all pixel xi in the image do

compute mean(xi)
compute variance(xi)

end for
for each block do

copy patch of the input image into shared memory
syncthreads();
for each pixel xi in the block do

copy search area ∆i into shared memory
syncthreads();
for all pixel xj ∈ ∆i do
Ni −Nj // compute distances
w(xi, xj)

end for
NL(u)(xi) =

P
w(xi, xj)u(xj)

copy pixel xi into global memory
end for

end for

5 Experiments

In this section, results are presented, both in terms of denoising quality and
computation time. Three methods are compared in what follows:

– A C++ implementation of the NL-means method
– The CUDA SDK NL-means filter called imageDenoising [15]
– Our CUDA implementation of the Bayesian NL-means, called FUID (Fast

Ultrasound Image Denoising).

in
ria

-0
04

76
12

2,
 v

er
si

on
 1

 -
23

 A
pr

 2
01

0

8

5.1 Denoising quality

5.1.1 Qualitative evaluation

The denoising methods were first tested on real intraoperative ultrasound
images acquired during a neurosurgical procedure. The value of parameter h
was computed using an analysis of variance described in [8]. In this context,
ultrasound images are acquired to be registered toward pre-operative MR
images to update the surgical planning. Results are presented in figure 3 and
show that the C++ implementation and FUID lead to comparable results,
exhibiting the desired properties of the NL-mens technique: homogeneous
areas are smoothed and edges are preserved. The CUDA SDK implementa-
tion is visually less satisfactory. In a previously published paper [7], it has
been shown objectively that the adapted NL-means performs better than the
classical NL-means to denoise ultrasound images.

5.1.2 Quantitative validation

In order to evaluate the denoising filters with a relevant simulation of speckle
noise, the validation framework proposed in [27], [28] was chosen for objective
comparisons. This framework is based on Field II simulation [13]. Field II
enables to generate realistic ultrasound images out of a echogeneicity map. As
a result, the input geometry of the images is perfectly known and can be used
for quantitative validation. The image test Cyst is composed of 3 constant
classes Cr presented in 4. The result of the Field II simulation is converted to
an 8 bit image of size 420× 315 pixels. The geometry of the image is known
but not the true value of the image without speckle. Therefore the authors
introduced the ultrasound despeckling assessment index (Q̃) defined as:

Q =

∑
r 6=l(µCr

− µCl
)2∑

r σ
2
Cr

(7)

Let us denote µCr
as the mean and σ2

Cr
as the variance of class Cr after

denoising. To avoid the sensivity to image resolution, Q is normalized by
Qid. The new index Q̃ = Q/Qid is high if the applied filter is able to produce
an image with well separated classes and small variances for each class. For
these experiments we compared the FUID filter, the C++ implementation
of NL-means filter and the CUDA implementation of NL-means presented in
the CUDA SDK (project named imageDenoising).

According to [27], [28], in this evaluation framework, the denoising quality
is better when the Q̃ is high. FUID and C++ implementation present similar
Q̃. This result was expected and validates the FUID which is based on C++
implementation.

In this experiment, the objects to be removed are composed of several
pixels, thus the patch size is increased to evaluate the restoration performance
of each object. The threshold (µ1) was also modified in order to evaluate its
influence. The parameters used for the test are given table 1:

in
ria

-0
04

76
12

2,
 v

er
si

on
 1

 -
23

 A
pr

 2
01

0

9

Initial US image NL-Means C++

NL-means CUDA SDK FUID

Fig. 3 Qualitative denoising results. A real intraoperative ultrasound was denoised
with the three methods. Results show that the C++ implementation and FUID
lead to comparable results, exhibiting the desired properties of the NL-mens tech-
nique: homogeneous areas are smoothed and edges are preserved. The CUDA SDK
implementation is visually less satisfactory.

Filter
Smoothing
parameter

threshold
µ1

Neighborhood
size

Search
area

FUID 9.13 0.6 5x5 11x11
NL-means C++ 9.13 0.6 5x5 11x11

NL-means CUDA - - 5x5 11x11

Table 1 Set of parameters used for computational time tests.

The denoised images and the quantitative results are given in Fig. 4.
Compared to the NLMmeans CUDA SDK implementation, the proposed
adaptations for ultrasound images improved the Q̃ of the denoised image.

in
ria

-0
04

76
12

2,
 v

er
si

on
 1

 -
23

 A
pr

 2
01

0

10

Cyst Field II simulation

NL-means CUDA SDK NL-Means C++ FUID
Q̃ = 1.38 Q̃ = 2.10 Q̃ = 1.82

Fig. 4 Results obtained with optimal set of parameters for Q̃.

5.2 Computation time

5.2.1 Initial NL-means

For the experiments, 5 ultrasound images were used. The size of the images
ranged from 360×288 to 1080×864 pixels. We compared the computational
time of FUID, C++ implementation of NL-means and CUDA SDK imple-
mentation of NL-means. Both FUID and imageDenoising were run using a
240 cores NVIDIA GTX 280 GPU. The C++ implementation was performed
on single core of a DualCore Intel Pentium CPU. The set of parameters of
the 3 filters were the same. For a direct comparison with the NL-means im-
plemented by imageDenoising, we used a classical version of FUID and C++
implementation (not adapted to ultrasound images).

The filters parameters included a neighborhood of 5×5 pixels and a search
area of 11×11 pixels. The smoothing parameter was automatically computed
for both the FUID and C++ implementation. The results are given below
(see figure 5 and table 3).

5.2.2 Bayesian NL-means adapted to ultrasound images

We also compared the FUID with C++ implementation of NL-means both
adapted for ultrasound images. Results are presented Fig. 6. We observe that
FUID leads to the lowest computational time in both versions. Concerning
the speedup of FUID, we observe in figure 7 a minimum speedup of 104.5
and a maximum speedup of 154.6 comparing with the C++ implementation.

in
ria

-0
04

76
12

2,
 v

er
si

on
 1

 -
23

 A
pr

 2
01

0

11

Filter
Smoothing
parameter

threshold
µ1

Neighborhood
size

Search
area

FUID 9.13 0.95 5x5 11x11
NL-means C++ 9.13 0.95 5x5 11x11

NL-means CUDA 9.13 - 5x5 11x11

Table 2 Set of parameters used for computational time tests. The threshold does
not apply to the NL-means CUDA implementation since the adaptive dictionary
technique described in [8] was not used.

1 2 3 4 5 6 7 8 9 10
x 105

100

101

102

103

104

Image size (pixels)

Ru
nt

im
e

FUID
Cplusplus
Cuda imageDenoising

Fig. 5 Comparison: runtimes of FUID, C++ implementation of NL-means and
CUDA SDK implementation of NL-means. To draw the three methods on the
same plot, a logarithmic scale was used for the computation time. Results indi-
cate that the computation time increases in a similar way for all methods. Our
implementation is faster in all cases.

Table 3 Computational time (ms) for different images size and improvement
in percentage compared to the C++ implementation. Results indicate that the
speedup of CUDA implementations is approximately 100 compared to the C++
implementation. In addition, our implementation is faster compared to the CUDA
SDK one, with speedup factors ranging from 34% to 66% depending on the image
size.

Computation time (ms)
Image size

(pixels)
NL-means’s C++
implementation

NL-means’s CUDA
SDK implementation

FUID

360x288 790 10.17 (77%)
7.56

(103%)

540x432 2010 24.14 (82%)
17.31

(118%)

720x576 3670 42.17 (86%)
26.19

(140%)

900x720 6010 68.34 (86%)
38.88

(153%)

1080x864 8240 98.06 (83%)
58.94

(141%)

in
ria

-0
04

76
12

2,
 v

er
si

on
 1

 -
23

 A
pr

 2
01

0

12

1 2 3 4 5 6 7 8 9 10

x 10
5

10
1

10
2

10
3

10
4

Image size (pixels)

R
u

n
ti

m
e

FUID
Cplusplus

Fig. 6 Comparison: runtimes of FUID, C++ implementation of NL-means. The
y-axis is in logarithmic scale.

1 2 3 4 5 6 7 8 9 10
x 105

100

110

120

130

140

150

160

Image size (pixels)

Sp
ee

du
p

FUID/Cplusplus

Fig. 7 Speedup of FUID/C++ implementation of NL-means

6 Discussion and conclusion

In this paper, a modified version of the NL-means algorithm, adapted to a
dedicated ultrasound noise model, was presented. The proposed algorithm
was implemented using GPU technology and was compared to the C++
implementation, as well as to the NL-means approach implemented in the
CUDA SDK. Results demonstrated that the proposed filter is very efficient
in terms of denoising quality compared to state-of-the-art approaches.

In terms of computation time, the proposed method is real-time : for
medium sized images, denoising was performed in less than 20ms, which is

in
ria

-0
04

76
12

2,
 v

er
si

on
 1

 -
23

 A
pr

 2
01

0

13

compatible with the vast majority of image processing workflows. In addition,
our CUDA implementation was faster than the CUDA SDK implementation,
with decrease varying between 34% to 66% depending on the image size.

Further work will investigate the use of the NL-means framework for ad-
ditional image processing tasks. The patch-based framework is very general
and can be declined for image super-resolution, image classification and reg-
istration. These NL-means based algorithms will also be particularly suited
for GPU implementation.

References

1. L. Alvarez, P.L. Lions, and J.M. Morel. Image selective smoothing and edge
detection by nonlinear diffusion. II, SIAM J. Numer. Anal., 29:845–866, 1992.

2. F. Argenti and G. Torricelli. Speckle suppression in ultrasonic images based on
undecimated wavelets. EURASIP Journal on Advances in Signal Processing,
2003(5):470–478, 2003.

3. A. Buades, B. Coll, and JM. Morel. A review of image denoising algorithms,
with a new one. Multiscale Modeling & Simulation, 4(2):490–530, 2005.

4. Joshua E. Cates, Aaron E. Lefohn, and Ross T. Whitaker. Gist: an interactive,
gpu-based level set segmentation tool for 3d medical images. Medical Image
Analysis, 8(3):217–231, 2004.

5. T.F. Chan, S. Osher, and J. Shen. The digital TV filter and nonlinear denoising.
IEEE Transactions on Image Processing, 10(2):231–241, 2001.

6. Y. Chen, B.C. Vemuri, and L. Wang. Image denoising and segmentation
via nonlinear diffusion. Computers and Mathematics with applications, 39(5-
6):131–150, 2000.

7. P. Coupé, P. Hellier, C. Kervrann, and C. Barillot. Nonlocal means-based
speckle filtering for ultrasound images. IEEE Transactions on Image Process-
ing, 18(10):2221–2229, 2009.

8. P. Coupé, P. Yger, S. Prima, P. Hellier, C. Kervrann, and C. Barillot. An Opti-
mized Blockwise Non Local Means Denoising Filter for 3D Magnetic Resonance
Images. IEEE Transactions on Medical Imaging, 27(4):425–441, 2008.

9. M. Elad and M. Aharon. Image denoising via sparse and redundant repre-
sentations over learned dictionaries. IEEE Transactions on Image Processing,
15(12):3736–3745, 2006.

10. V.S. Frost, J.A Stiles, K.S Shanmugan, and J.C. Holtzman. A model for radar
images and its application to adaptive digital filtering of multiplicative noise.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2:157–65,
1982.

11. X. Hao, S. Gao, and X. Gao. A novel multiscale nonlinear thresholding method
for ultrasonic speckle suppressing. IEEE Transactions on Medical Imaging,
18(9):787–794, 1999.

12. B. Huhle, T. Schairer, P. Jenke, and W. Straßer. Robust non-local denoising of
colored depth data. In IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Workshops, 2008. CVPR Workshops 2008, pages 1–7,
2008.

13. J. A. Jensen. Field: A program for simulating ultrasound systems. Medical &
Biological Engineering & Computing, 34:351–353, 1996.

14. C. Kervrann, J. Boulanger, and P. Coup̈ı¿ 1
2
. Bayesian non-local means filter,

image redundancy and adaptive dictionaries for noise removal. In Proc. Conf.
Scale-Space and Variational Meth. (SSVM’ 07), pages 520–532, Ischia, Italy,
June 2007.

15. A. Kharlamov and V. Podlozhnyuk. Image Denoising.
16. K. Krissian, K. Vosburgh, R. Kikinis, and C-F. Westin. Speckle-constrained

anisotropic diffusion for ultrasound images. In IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, June 2005.

in
ria

-0
04

76
12

2,
 v

er
si

on
 1

 -
23

 A
pr

 2
01

0

14

17. D.T Kuan, A.A. Sawchuck, T.C Strand, and P.Chavel. Adaptive noise smooth-
ing filter for images with signal-dependent noise. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 7(2):165–177, 1985.

18. A. Kubias, F. Deinzer, T. Feldmann, D. Paulus, B. Schreiber, and Th. Brunner.
2d/3d image registration on the gpu. Pattern Recognition and Image Analysis,
18(3):381–389, 2008.

19. J. S. Lee. Digital image enhancement and noise filtering by use of local statis-
tics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2:165–
168, 1980.

20. T. Loupas, W.N. McDicken, and P.L. Allan. An adaptive weighted median
filter for speckle suppression in medical ultrasound image. IEEE T. Circ. Syst.,
36:129–135, 1989.

21. M.C. Motwani, M.C. Gadiya, R.C. Motwani, and F.C. Harris Jr. Survey of
image denoising techniques. In Proceedings of GSPx, pages 27–30. Citeseer,
2004.

22. S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin. An iterative regular-
ization method for total variation-based image restoration. Multiscale Model.
Simul., 4(2):460–489, 2005.

23. P. Perona and J. Malik. Scale-space and edge detection using anisotropic
diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence,
12(7):629–639, 1990.

24. L.I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise
removal algorithms. Physica D, 60:259–268, 1992.

25. E. Tadmor, S. Nezzar, and L. Vese. A multiscale image representation using
hierarchical (BV, L2) decompositions. Multiscale Model. Simul., 2(4):554–579,
2004.

26. Z. Tao, H. D. Tagare, and J. D. Beaty. Evaluation of four probability distri-
bution models for speckle in clinical cardiac ultrasound images. IEEE Trans-
actions on Medical Imaging, 25(11):1483–1491, 2006.

27. P. C. Tay, S. T. Acton, and J. A. Hossack. A stochastic approach to ultra-
sound despeckling. In Biomedical Imaging: Nano to Macro, 2006. 3rd IEEE
International Symposium on, pages 221–224, 2006.

28. P. C. Tay, S. T. Acton, and J. A. Hossack. Ultrasound despeckling using an
adaptive window stochastic approach. In IEEE International Conference on
Image Processing, pages 2549–2552, 2006.

29. M. P. Wachowiak, A. S. Elmaghraby, R. Smoĺıkova, and J. M. Zurada. Clas-
sification and estimation of ultrasound speckle noise with neural networks. In
IEEE International Symposium on Bio-Informatics and Biomedical Engineer-
ing (BIBE’00), pages 245–252, 2000.

in
ria

-0
04

76
12

2,
 v

er
si

on
 1

 -
23

 A
pr

 2
01

0

