
Branchless Vectorized Median Filtering
Marc Kachelrieß, Member, IEEE

Abstract—Median filtering is an important tool in signal or
image processing. Based on the vector capabilities of modern
hardware, which allows for vectorized min, max and mask oper-
ations, we provide a median algorithm of complexity O(NM)
that is both branchless and vectorized. In contrast to conventional
fast median filters, whose run–time is data–dependent and that
can operate only on scalar data, its runtime is predictable
and data–independent and it can simultaneously operate on
several one–dimensional signals thereby making use of data–level
parallelism.

Our branchless vectorized median (BVM) filter keeps track of
a sorted array from which values are deleted and to which new
values are inserted. As a spin–off effect we could also use our
work to provide a data sorting algorithm that is branchless and
vectorized. Although it is of O(M 2) computational complexity
while other sort algorithms are of O(M ln M) computational
complexity, at least for typical data, it may outperform other
implementations for small M . This is mainly due to the fact that
we have no unexpected branches which would stall the instruction
pipeline and that we can simultaneously operate on vectors of
data. Here, however, we focus on median filtering.

BVM is compared to a median filter based on doubly linked
lists (DLL) and to the median implementation of the Intel Per-
formance Primitives (IPP) library. The comparison uses constant
data and linear data, which are two unrealistic settings, and
random data, which is more realistic. For constant data IPP is
up to five times faster than BVM whose run–time does not depend
on the data themselves. However, regarding the realistic case of
median filtering noisy data BVM outperforms DLL by about a
factor of 1.5 and IPP by about a factor of 2 in our CPU–based
implementations, which is far more than we did expect initially.

I. INTRODUCTION

MEDIAN filtering is regarded superior to linear filtering
in many cases. Especially outliers can be efficiently

removed using a median filter. However, the median filter is
not linear and cannot be implemented in Fourier domain. It
rather requires to sort the data that lie in the filter range and
to select the central element from this sorted array or at least
to recursively loop over the data until the median is found [1],
[2]. The run–time of performant implementations is therefore
typically data–dependent: they are fast for constant data and
slow for noisy data.

Our interest in median filtering is to remove spurious noise
from CT rawdata by filtering each detector row with a median
filter. We further make use of median filtering during ring
artifact reduction in reconstructed CT images [3]. Especially
the latter may become very time consuming when the median
filter steps are not optimized thoroughly. Nevertheless, the
method provided will certainly be useful for other applications
in the field of medical imaging and in signal processing in
general.

Prof. Dr. Marc Kachelrieß: Institute of Medical Physics (IMP), University
of Erlangen–Nürnberg, Henkestr. 91, 91052 Erlangen, Germany.

Corresponding author: marc.kachelriess@imp.uni–erlangen.de

Listing 1: Reference deletion algorithm.
void DelRef(float * const Array, int const M,

float const Del)
{
float const Inf=Infinity;

float A=Array[0];
for(int m=0; m<M-1; m++)

{
float B, C;

if(A==Del) A=Inf;

B=Array[m+1];
C=min(A, B);
A=max(A, B);
Array[m]=C;
}

}

Listing 2: Reference insertion algorithm.
void InsRef(float * const Array, int const M,

float const Ins)
{
float A=Ins;
for(int m=0; m<M-1; m++)

{
float B, C;

B=Array[m];
C=min(A, B);
A=max(A, B);
Array[m]=C;
}

Array[M-1]=A;
}

In general, we know that the m–th smallest element of a
set of M elements can be determined in O(M) time [4], [5].
Since we want to perform median filtering of an array of N
entries, i.e. a running median, and not just the selection of
one median value, we know that the set of M elements nearly
remains the same when incrementing the position of the filter
from n to n+1. The only thing to do is to delete one element
from the list and to insert another element into the list.

Several book–keeping strategies are available to perform
median filtering on one–dimensional signals [1]. For example,
median filtering can be done by keeping track of a sorted list
of M elements that are arranged linear in memory, combined
with deletion and insertion operations. At any time, the median
is the element at position m = M/2 in the list. The deletion
and insertion process itself requires O(ln M) binary search
comparison operations to find the list position of the element
to delete and the list position of the element to insert plus
O(M/4) copy operations to move list elements lying between
the delete and insert positions by one position to the left or
right. Our branchless vectorized median (BVM) filter is of a
sorted list type.

Another method is to maintain a doubly linked list (DLL)
where the array value is stored together with its predecessor

2009 IEEE Nuclear Science Symposium Conference Record HP3-5

9781-4244-3962-1/09/$25.00 ©2009 IEEE 4099

and its successor. To find the position of a new element to
insert into the list requires traversing parts of the DLL which
may be of O(M) or even of O(ln M) complexity [1]. Insertion
and deletion itself is then only of O(1) complexity since fast
deletion and insertion is the main feature of doubly linked
lists. In total, a run–time of O(N ln M) may be achieved with
such an approach. We will see that the DLL implementation
available to us performs significantly slower than O(N ln M).

Implementations based on heaps have the potential to per-
form in O(N lnM) as well [1]. They keep track of a min and
a max heap whose common root is the median value. Since
the heap is a tree structure, insertion and deletion can be done
in O(ln M) time.

This paper describes a simple median filter whose run–time
is data–independent and which makes use of the vector capa-
bilities of modern hardware. We are well aware of the fact that
its theoretical run–time, measured in algorithmic complexity,
is inferior to the methods based on more sophisticated data
structures, at least for large filter sizes M . Nevertheless, the
complexity of modern hardware which requires to take into
account the main memory bandwidth, the cache structure and
latency, as well as the capabilites of the CPU to run several
execution pipelines in parallel, did motivate us to implement
and evaluate the branchless vectorized median filter.

II. METHOD

The BVM algorithm makes use of the fact that
{min(a, b), max(a, b)} sorts the two–element list {a, b} and
that modern architectures often implement the minimum
and maximum functions in hardware which perform with a
throughput of one clock cycle. Since no if–statements are
involved in the hardware implementation the instruction flow
through the processor is not interrupted and the performance of
an algorithm based on these operations is highly predictable
and data–independent. Further on, the vector units available
perform these minmax operation element–wise on complete
vectors such that {min(a, b), max(a, b)} sorts the vectors
{a, b} with one clock cycle throughput. Given that we are
filtering single precision floating point data (four bytes per
float) such a vector comprises four elements on the Cell
broadband engine (CBE) and on standard central processing
units (CPU) while it is 16 elements on the Larrabee (LRB)
architecture [6].

For convenience, we restrict ourselves to the sorting and
median filtering of floating point values (four bytes per datum).
The algorithm can be easily generalized to double precision,
to integer values and other data types given that the hardware
supports corresponding minmax operations.

Listing 1 shows how we can delete a value from an array
that is already sorted. A holds the current datum of the array
(at position m). Whenever it equals the value to be deleted
it is set to infinity which has the effect that this value moves
to the very end of the array. The minmax statements simply
sort adjacent elements and write them back from the registers
into memory. The if–statement of the reference code will be
replaced by a compare and mask instruction in the optimized
and vectorized listings and therefore is no branch.

Listing 3: Reference deletion and insertion algorithm.
void DelInsRef(float * const Array, int const M,

float const Del,
float const Ins)

{
float const Inf=Infinity;

float A=Array[0];
float B=Ins;
for(int m=0; m<M-1; m++)

{
float C, D;

if(A==Del) A=Inf;

C=Array[m+1];
D=min(A, C);
A=max(A, C);
C=min(B, D);
B=max(B, D);
Array[m]=C;
}

Array[M-1]=B;
}

Listing 4: Reference BVM algorithm.
void BVMRef(float const * const Src, float * const Dst,

int const N, int const M)
{
CArray<float> Array(M, 0); Array=Src[0];

for(int n=0, dM=M/2; n<N; n++)
{
float const Del=Src[n-dM-1];
float const Ins=Src[n+dM];
DelInsRef(Array, M, Del, Ins);
Dst[n]=Array[dM];
}

}

The insertion algorithm of listing 2 is more simple since
we simply add the value to be inserted to the sorting process
and carry it through the array while sorting with the minmax
instructions.

The deletion and insertion process can be combined in one
loop as shown in listing 3. Depending on the architecture it
may be of advantage to use the two separate loops of listings
1 and 2 or to use the combined loop of listing 3. In our
case the latter turned out to be slightly faster and therefore
we will show the vectorized and processor specific listings
corresponding to the combined reference listing.

The median filter itself is of size M and acts on data of
size N (listing 4). It is realized by shifting data values through
the sorted array using the delete and insert process described
above. Note that listing 4 does not correctly handle boundary
conditions or boundary effects because it rather intends to
illustrate the general idea of how to carry out the filtering.

A vectorized version of listing 3 optimized for CPU–based
architectures that makes use of SSE intrinsics is given in
listing 5. L = 4 data arrays are simultaneously median filtered
with this version of the algorithm. The inner loop consists of
nine instructions. Note, how the if–statement was implemented
branchless by using a compare–equivalent instruction followed
by masking the array of infinity values followed by adding the
masked infinities to the vector A. The corresponding median
algorithm that calls the function is very similar to the reference
median algorithm (listing 4) and therefore not shown here.

The LRB instructions are more powerful than the SSE

4100

Listing 5: CPU–based deletion and insertion algorithm.
void DelInsCPU(float * Array, int const M,

float const * const Del,
float const * const Ins)

{
__m128 const Inf=_mm_set1_ps(Infinity);
__m128 const Del=_mm_load_ps(Del);

__m128 A=_mm_load_ps(Array);
__m128 B=_mm_load_ps(Ins);
for(int m=0; m<M-1; m++, Array+=4)

{
__m128 C, D;

C=_mm_cmpeq_ps(A, Del);
C=_mm_and_ps(Inf, C);
A=_mm_add_ps(A, C);

C=_mm_load_ps(Array+4);
D=_mm_min_ps(A, C);
A=_mm_max_ps(A, C);
C=_mm_min_ps(B, D);
B=_mm_max_ps(B, D);
_mm_store_ps(Array, C);
}

_mm_store_ps(Array, B);
}

Listing 6: LRB–based deletion and insertion algorithm.
void DelInsLRB(float * Array, int const M,

float const * const Del,
float const * const Ins)

{
_M512 const Inf=_mm512_set_1to16_ps(Infinity);
_M512 const Del=_mm512_loadd(Del);

_M512 A=_mm512_loadd(Array);
_M512 B=_mm512_loadd(Ins);
for(int m=0; m<M-1; m++, Array+=16)

{
_M512 C, D;

__mmask Mask=_mm512_cmpeq_ps(A, Del);
A=_mm512_mask_add_ps(A, Mask, A, Inf);

C=_mm512_loadd(Array+16);
D=_mm512_min_ps(A, C);
A=_mm512_max_ps(A, C);
C=_mm512_min_ps(B, D);
B=_mm512_max_ps(B, D);
_mm512_vstored(Array, C);
}

_mm512_vstored(Array, B);
}

instructions. LRB has the possibility to use the result of the
comparison operation as a mask that can be directly used as an
additional argument to the vector operations. This simplifies
the comparison statements for the delete value. LRB’s code
uses L = 16 and is shown in listing 6. Only eight instructions
are needed in the inner loop.

III. RESULTS

Performance was evaluated running the median filters on
two platforms, a PC and a server. The PC is a Celsius R670
workstation (Fujitsu Technology Solutions) equipped with two
Xeon W5590 quad core processors running at 3.33 · 109 Hz
with 4·256 kB L2 cache and 8 MB L3 cache per processor and
48 GB RAM. Neither its two NVIDIA Tesla C1060 boards nor
its NVIDIA Quadro NVS 290 GPU were used in this study.
This PC has a total of 8 compute cores.

The server is a Caneland platform (Intel Corporation)
equipped with four Xeon X7460 hexa core processors running

at 2.66 · 109 Hz with 3 · 3 MB L2 cache and 16 MB L3 cache
per processor and 32 GB RAM. This server has a total of 24
compute cores.

Our 64 bit code was compiled using the Microsoft Visual
Studio 2008 and is running on the Windows XP operating
system. To optimize performance we make use of loop un-
rolling to reduce dependencies between adjacent instructions.
For multi–threading we use OpenMP to simultaneously filter
several vector arrays. The number of threads used equals the
number of cores available (8 for the PC, 24 for the server).

BVM is benchmarked against Intel’s IPP median algorithm
and against another proprietary median algorithm based on
doubly linked lists (DLL). The IPP and the DLL contain data–
dependent branches and are therefore not vectorizable. Hence
L = 1 for these two implementations.

To quantify performance we compute the operation count.
The number of updates required to filter one array of size N
with a median filter of size M with our BVM algorithm is
NM . Since we use the data–level parallelism of the data we
do not filter a single array but rather L arrays in a vectorized
manner. As stated above L = 1 for the IPP and DLL, and
L = 4 for BVM running on CPU–based systems. To improve
the accuracy of our timing measurements we actually do not
only filter L arrays but rather KL arrays with K chosen such
that KL is constant and large. The values we use for our
investigations are N = 2048 and KL = 16384 while the
filter size M ranges from 3 to 513 in increments of 2. The
update count is given as NMLK . It is divided by 10243 and
the resulting number is called giga updates (GU). Performance
is measured in how many giga updates can be performed per
second, i.e. in giga updates per second (GUPS).

We choose four different data models: constant, linear,
constant plus noise, linear plus noise. In the constant case
all data values were set to zero, in the linear case entry n was
set to n in 50% of the KL data arrays processed and it was
set to −n in the remaining 50% of the arrays. For the noise
case we realized a normal random number of expectation 0
and variance 1 for each datum (i.e. NLK = 225 realizations
in total). The linear plus noise model is given by the sum of
the linear and of the noise model. The reason why we chose
two different slopes for the linear model is that we observed
that IPP performs up to 30% better for the positive slope than
for the negative slope. Our choice therefore yields an average
performance value.

A. Comparison with other Implementations

Results for BVM in comparison to the IPP median and
in comparison to the DLL median are shown in table I
using a filter size of M = 257. For the unrealistic case of
constant data IPP shows an enormous performance. Whenever
we simulate realistic data by using data linear in n or by
filling the array with Gaussian noise the IPP performance is
significantly impaired. Comparing with BVM, whose run–time
is independent of the data, shows a performance benefit by
roughly 100% when switching to the BVM code.

The DLL median performs similar like IPP and its perfor-
mance is also data–dependent. In the realistic case of noisy
data it is outperformed by BVM by a factor of about 2.

4101

Code Data PC Server

IPP const 74 GUPS 47 GUPS
IPP linear 4.8 GUPS 12 GUPS
IPP const plus noise 7.9 GUPS 19 GUPS
IPP linear plus noise 7.8 GUPS 18 GUPS

DLL const 45 GUPS 17 GUPS
DLL linear 41 GUPS 17 GUPS
DLL const plus noise 10 GUPS 17 GUPS
DLL linear plus noise 10 GUPS 17 GUPS
BVM any 16 GUPS 34 GUPS

TABLE I
PERFORMANCE RESULTS FOR MEDIAN FILTERING WITH M = 257.

100 200 300 400 500

5

10

15

20

25

30

35

40 Out�of�Place

IPP 8

DLL 8

BVM 8

IPP 24

DLL 24

BVM 24

Fig. 2. IPP (red), DLL (green) and BVM (blue) performance in GUPS as a
function of M ranging from 3 to 513 in steps of 2 for the linear plus noise
data model measured using 8 threads on the PC (lower curves) and 24 threads
on the server (upper curves). The solid curves show a fit using an improved
performance model for the BVM algorithm.

To give a numerical example regard BVM on the dual Quad
core PC which achieves 16 GUPS. Having a median filter of
257 elements this means that the filter returns nearly 67 million
values per second on a standard PC.

Instead of focussing on a single filter size let figure 1
illustrate the data–dependency for a large range of filter sizes
ranging from 3 through 513. In all realistic cases, i.e. those
data models that contain noise, BVM outperforms IPP as well
as DLL.

Figure 2 plots the median filter performance using the linear
plus noise data model for all three algorithms IPP, DLL,
and BVM for both architectures, the PC and the server, as
a function of the filter size M . As expected, the server with
its 24 compute cores outperforms the PC which only has 8
compute cores. The peak performance of BVM is about 35
GUPS on the server and about 16 GUPS on the PC.

Regarding the IPP and the BVM curve for the 24 core server
we observe a sawtooth behaviour in the plateau region of both
curves. It appears to be more regular for the IPP curve (red
plot) than for the BVM curve (blue plot). The distance of the
sawtooth peaks is 4 increments in M for the IPP while it is 8,
16 or 20 for the BVM. Probably, the behaviour results from
cache misses when array data need to be loaded from the RAM
into the CPU. The plots for the 8 core PC do not show such
a sawtooth. This may be due to either requiring less memory
bandwidth (since only 8 cores are active) or due to different

1 2 3 4 5 6 7 8

0.5

1.0

1.5

2.0

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24

0.5

1.0

1.5

2.0

Fig. 3. IPP (red), DLL (green) and BVM (blue) performance in GUPST
(GUPS per thread) as a function of the number of threads simultaneously
running, plotted for M = 257 using the realistic data model linear plus
noise. For the PC (top) we have up to 8 threads while the server (bottom)
allows to use as much as 24 threads.

cache prefetching strategies on the PC architecture.
The small cusp apparent in IPP’s PC curve for small filter

sizes indicates that IPP switches to a different algorithm
whenever M is small. To be more quantitative, the cusp’s peak
is at M = 9 with a height of 4.6 GUPS.

To finish our analysis on the three median filters available
to us let us regard the scalability of the approaches. Figure
3 shows the performance per thread, given in giga updates
per thread (GUPST), achieved when increasing the number of
threads from 1 to the maximum number of threads available
(which equals the number of cores in our case). IPP as well
as BVM show a perfect scalability since the performance per
thread is constant for all levels of parallelization. The DLL
algorithm however shows a decreasing performance per thread
when more than 12 threads are running simultaneously on the
24 core server. The reason may be that the doubly linked lists
that are used in the DLL median require increased memory
bandwidth since each element in the list of M elements is
linked twice (one predecessor and one successor link).

B. Improved Performance Model for CPU–based BVM

Apart from the sawtooth variation, that we observed in
figure 2, we also find from figure 2 that the BVM performance
increases linear in M for small M while it saturates into a
plateau for large M . The plateau is the expected behaviour:
our operation count NMLK reflects the design of BVM
and therefore we expect the performance measure (our GUPS
value) to be independent of M . This, however, is not the case
for small M . The computation time rather seems to contain
a constant offset O that reflects the time required to load all
NLK data values from the main memory into the processors
and to store them back to RAM after median filtering. When-
ever M is greater than this offset the computation time is given
by the time needed to carry out the M operations necessary
to find one median value.

Hence, a better model would be NLK(O ∨ M) with O
being the offset required to describe the memory latency. We
do not want to promote this model since the model itself

4102

100 200 300 400 500

10

20

30

40

50

60

70

80

90 Const

100 200 300 400 500

10

20

30

40

50

60

70

80

90 Linear

100 200 300 400 500

10

20

30

40

50

60

70

80

90 Const Plus Noise

100 200 300 400 500

10

20

30

40

50

60

70

80

90 Linear Plus Noise

Fig. 1. IPP (red), DLL (green) and BVM (blue) performance in GUPS as a function of M for the four data models constant, linear, constant plus noise,
and linear plus noise. For the two realistic models (constant plus noise and linear plus noise) the BVM is significantly outperforming the other median filters.
The timing was measured using 8 threads on the PC.

is architecture–dependent and it introduces a new parameter
O that is dependent on the compute architecture as well.
However, we can determine O for the performance data used
so far. By fitting we find O = 23.9 for the 8 core PC and
O = 180 for the 24 core server. The corresponding fit curves
are shown as solid black curves in figure 2. Their plateau is
at SO = 16.0 GUPS for the PC and at SO = 34.4 GUPS
for the server. The plateau value is the mean performance of
BVM when operating in the compute–limited region M > O.
The slope S for the linear region can be computed by dividing
the plateau performance value by the offset value and yields
S = 0.67 GUPS for the PC and S = 0.19 GUPS for the
server. This indicates that the memory access is much better
for the PC.

Although a similar linear increase is observed for the
other median filter implementations it should be noted that
it makes no sense to do a similar fit for the IPP and the DLL
performance curves since the internal algorithmic structure is
proprietary and not known to us.

We may further proceed interpreting the slope values. Since
S is given by dividing NLK by the time required to load and
store all data (NLK data values are being filtered) the slope
reveals information about the memory bandwidth utilized.
Since each datum is four bytes and since for each datum we
need to perform read and write we find 0.67 GUPS · 4 B ·
2 = 5.35 GB/s utilized bandwidth on the PC. Can’t we do
better? The code assessed so far performs out–of–place median
filtering, which means that the source and destination arrays
are disjunct and need both to be loaded into cache.

Thus, let us switch to the in–place versions of the median
filters where the source and destination arrays occupy the
same memory. Figure 4 shows the in–place performance as
a function of M . Compared to figure 2 the slope values of
BVM are significantly increased. IPP and DLL seem not to
make much differences between in–place and out–of–place
computation apart from the larger cusp in the IPP curves for
small filter sizes. This cusp, which we also found in the out–
of–place curves and which indicates that IPP switches to a
different implementation for M ≤ 9, has its maximum for
M = 9 at 19.2 GUPS on the PC and at 12.0 GUPS on the
server. Note that the slope values of the rising side of the cusps
are consistent with the slope values determined by fitting of
the BVM curves.

Our observations regarding BVM’s in–place and out–of-
place versions are summarized in table II. It shows BVM’s
slope S, offset O, and plateau values SO together with the

100 200 300 400 500

5

10

15

20

25

30

35

40 In�Place

IPP 8

DLL 8

BVM 8

IPP 24

DLL 24

BVM 24

Fig. 4. Performance of the median filters’ in–place versions. Same data and
layout as figure 2. For small M the slope of the BVM curves is significantly
increased compared to the out–of–place code (c.f. figure 2).

S O SO Bandwidth

out–of–place, PC 0.67 GUPS 23.9 16.0 GUPS 5.35 GB/s
in–place, PC 2.29 GUPS 7.04 16.2 GUPS 18.3 GB/s

out–of–place, server 0.19 GUPS 180 34.4 GUPS 1.53 GB/s
in–place, server 1.34 GUPS 26.1 35.1 GUPS 10.8 GB/s

TABLE II
PERFORMANCE OF BVM FILTERING. THE PLATEAU HEIGHT SO IS THE

AVERAGE BVM PERFORMANCE.

memory bandwidth S · 4 B · 2 provided for median filtering.
The in–place version improves the slope and bandwidth by a
factor of 3.4 on the PC and by a factor of 7.1 on the server
compared to the out–of–place version. The peak performance
is, however, nearly identical.

This analysis further shows us that there is only one point
where the system is well balanced: whenever BVM operates
at the kink in the curve, i.e. using a filter size of M = O, both
the memory performance and the compute performance are at
peak level. For M < O the median filter is bandwidth–limited,
and BVM cannot be outperformed by any other median filter,
while for M > O the median filter is compute–limited. If
M < O one may therefore reduce the number of active
BVM threads and use the remaining ressources to perform
other computations (given that those do not require signficant
bandwidth).

4103

C. Absolute BVM Performance

How good is the BVM performance on an absolute scale?
The dual Quad core PC with its eight cores processing four
floats per vector can achieve a peak performance of 32
computations per clock cycle and it has 3.33 ·109 clock cycles
per second. Hence, the theoretical peak maximum is 99.2
giga computations per second. Comparing this value to the
BVM performance of 16.0 GUPS shows that there are 6.2
computations (clock cycles) per update required on average.

For the hexa core server with its 2.66 · 109 clock cycles
per second, where 96 operations (24 cores with four floats per
vector) can be performed per clock cycle, we find that BVM
on average requires 7.1 computations (clock cycles) per update
to achieve the mean performance of 35.1 GUPS.

Note that the innermost loop of the CPU–based BVM
implementation (listing 5) consists of 9 instructions. Obviously
all instruction latencies can be completely hidden and some in-
structions can even be issued in parallel on different execution
pipelines.

IV. DISCUSSION

Branchless programming can be useful for many applica-
tions. In real–time applications it is of advantage since the
run–time of functions is predictable. In other cases, data–
dependent branches, that are nearly always unpredictable, yield
a significant performance penalty and it may make sense to use
code that is branchless (if this is possible) even if the operation
count is much higher. This strategy may also be of advantage
when designing code for GPUs, FPGAs, or dedicated signal
processors.

The BVM algorithm is such an example. Based on minmax
sorting we achieve a constant run–time. BVM significantly
outperforms other high performance implementations such as
the IPP median, while BVM’s source code is of striking
simplicity.

For small M dedicated hardcoded implementations may be
better. For example Basu and Brown proposed a dedicated
three tap median filter requiring at most 2.5 comparisons per
element [7]. Analyzing listing 7 one finds that it lends itself to
a branchless and vectorizable implementation. Listing 8 shows
such an implementation based on Basu and Brown’s algorithm
for M = 3 (this implementation, however, was not used for
the timing measurements presented in this paper). Since it uses
nothing but minmax functions it is vectorizable and branchless.
It further requires three instructions per (vector) element only.

Regarding the BVM algorithms we find that the minmax
operations always occur in pairs. A sort instruction sort(a, b)
that sorts the vectors a and b element–wise could be realized
in hardware using the same logics as the minmax functions.
To show the high importance of such a sort function regard
listing 9 that uses such a hypothetical sort instruction, and
compare that listing to listing 3. Note that the availability of
such an instruction would reduce the number of instructions
by two compared to the minmax–based deletion and insertion
algorithms. It further requires less resources since register D
is not used anymore.

Modern hardware, such as the Larrabee, provides instruc-
tions with three source operands. Therefore, one can even

Listing 7: Basu and Brown’s median for M = 3.
void BnB3Ref(float const * const Src, float * const Dst,

int const N)
{
for(int n=0; n+3<N; n+=2)

{
float A, B;
if(Src[n+1]<Src[n+2]) A=Src[n+1], B=Src[n+2];
else A=Src[n+2], B=Src[n+1];

if(Src[n+0]<A) Dst[n+1]=A;
else if(Src[n+0]>B) Dst[n+1]=B;
else Dst[n+1]=Src[n+0];

if(Src[n+3]<A) Dst[n+2]=A;
else if(Src[n+3]>B) Dst[n+2]=B;
else Dst[n+2]=Src[n+3];
}

}

Listing 8: Reference BVM for M = 3.
void BVM3Ref(float const * const Src, float * const Dst,

int const N)
{
for(int n=0; n+3<N; n+=2)

{
float const A=min(Src[n+1], Src[n+2]);
float const B=max(Src[n+1], Src[n+2]);

Dst[n+1]=min(max(Src[n+0], A), B);
Dst[n+2]=min(max(Src[n+3], A), B);
}

}

Listing 9: Deletion and insertion with sort instruction.
void DelInsRef(float * const Array, int const M,

float const Del,
float const Ins)

{
float const Inf=Infinity;

float A=Array[0];
float B=Ins;
for(int m=0; m<M-1; m++)

{
float C;

if(A==Del) A=Inf;

C=Array[m+1];
sort(C, A); // now C<=A
sort(C, B); // now C<=B
Array[m]=C;
}

Array[M-1]=B;
}

think of instructions min(a, b, c), med(a, b, c), max(a, b, c),
and sort(a, b, c) that return the element–wise minimum, the
median or the maximum of its three vector operands, or that
put the three operands element–wise into ascending order.
Since all these new instructions can be designed to have a
throughput of one clock cycle and a latency of two or three
clock cycles they would further speed up the BVM and related
algorithms. Hopefully, the CPU designers will provide such
powerful instructions in future hardware.

A final point on this wishlist would be the possiblity to
return or sort an index number together with the associated
value. This could be realized in hardware as well, namely by
treating each pair of vector entries as a pair (value, index). For
example consider the vectors a = (a0, a1) and b = (b0, b1)
with the first entry serving as the value according to which to

4104

sort and the second entry corresponding to the index. Then,

min(a, b) =

{
a if a0 < b0

b else

would yield the desired behaviour. A corresponding max and
a corresponding sort function could be realized as well, to-
gether with the three–operand versions. With today’s hardware
branchless vectorized sorting of value–index–pairs can only be
done with a dirty workaround: use the most significant bits of
a data type to store the value and the least significant bits to
hide the index.

V. SUMMARY

The branchless vectorized median (BVM) proposed in this
paper significantly outperforms other median filtering algo-
rithms under realistic conditions. Since its performance is
data–independent and therefore highly predictable it can be
useful not only for the field of medical imaging but also
for real–time applications such as stream processing. Due
to avoiding generating or searching data–dependent decision
trees the BVM filter is inherently vectorizable, i.e. it can
simultaneously operate on many data streams. If only one
data array is to be median filtered one can still make use
of the vectorization property by splitting the one array into L
subarrays that can be simultaneously median filtered. Another
nice feature of the BVM algorithm is its simplicity: a few lines
of source code suffice to implement BVM.

We believe that our approach of using minmax sorting
to gain data–independent run–time can be also useful to
improve the speed of data sorting. We further see the potential
to generalize BVM from one dimension to two– or multi–
dimensional filtering, and to use the concepts to implement
other types of rank filters. And last but not least a related
paper shows that the BVM approach is advantageous for the
use on graphics processing untis, too [8].

ACKNOWLEDGMENTS

This study was supported by RayConStruct GmbH,
Nürnberg, Germany. The high performance hardware was
provided by the Intel Corporation and by Fujitsu Technology
Solutions GmbH. We thank Sven Steckmann for valuable
discussions and hints regarding the improved performance
model.

REFERENCES

[1] M. Juhola, J. Katajainen, and T. Raita, “Comparison of algorithms for
standard median filtering,” IEEE Transactions on Signal Processing,
vol. 39, no. 1, pp. 204–208, Jan. 1991.

[2] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in C. Cambridge University Press, 1992.

[3] D. Prell, Y. Kyriakou, and W. A. Kalender, “Comparison of ring artifact
correction methods for flat–detector CT,” Phys. Med. Biol., vol. 54, pp.
3881–3895, 2009.

[4] M. Blum, R. Floyd, V. Pratt, R. Rivest, and R. Tarjan, “Time bounds for
selection,” Journal of Computer and System Sciences, vol. 7, pp. 448–461,
1972.

[5] D. E. Knuth, The Art of Computer Programming, 3rd ed. Addison
Wesley Longman, 1997.

[6] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkings, A. Lake, J. Sugerman, R. Cavin, R. Espase, E. Grochowski,
T. Juan, and P. Hanrahan, “Larrabee: A many–core x86 architecture for
visual computing,” ACM Transactions on Graphics, vol. 27, no. 3, pp.
18:1 – 18:15, Aug. 2008.

[7] A. Basu and C. Brown, “Algorithms and hardware for efficient image
smoothing,” Computer Vision, Graphics and Image Processing, vol. 40,
pp. 131–146, Feb. 1987.

[8] W. Chen, M. Beister, Y. Kyriakou, and M. Kachelrieß, “High performance
median filtering using commodity graphics hardware,” IEEE Medical
Imaging Conference Program, p. submitted, Oct. 2009.

4105

