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On Implementing the Push—Relabel Method for the
Maximum Flow Problem?

B. V. Cherkassk§and A. V. Goldberg

Abstract. We study efficient implementations of the push—relabel method for the maximum flow problem.
The resulting codes are faster than the previous codes, and much faster on some problem families. The speedup
is due to the combination of heuristics used in our implementations: we show that the highest-level selection
strategy gives better results when combined with both global and gap relabeling heuristics. We also exhibit a
family of problems for which the running time of all implementations we consider is quadratic.
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1. Introduction. The maximum flow problem is a classical combinatorial problem
that arises in a wide variety of applications. In this paper we study implementations of
thepush—relabe[15], [18] method for the problem.

The basic methods for the maximum flow problem include the network simplex
method of Dantzig [7], [8], the augmenting path method of Ford and Fulkerson [13],
the blocking flow method of Dinitz [11], and the push—relabel method of Goldberg and
Tarjan [15], [18]. (An earlier algorithm of Cherkassky [5] has many features of the push—
relabel method.) The best theoretical time bounds for the maximum flow problem, based
on the latter method, are as follows. An algorithm of Goldberg and Tarjan [18] runs in
O(nmlog(n?/m)) time, an algorithm of Kinget al. [22] runs inO(nm + n?*¢) time
for any constant > 0, algorithms of Cheriyaet al. [3] run in O(n®/logn) time and
O(nm+ (nlogn)?) time with high probability, and an algorithm of Ahuga al. [1] runs
in O(nmlog(n/(my/U) + 2)) time.

Prior to the push—relabel method, several studies have shown that Dinitz's algorithm
[11] is in practice superior to other methods, including the network simplex method
[71, [8], Ford—Fulkerson algorithm [12], [13], Karzanov’s algorithm [21], and Tarjan’s
algorithm [24]. See, e.g., [19]. Several recent studies (e.g., [2], [9], [10], and [23]) show
that the push-relabel method is superior to Dinitz's method in practice.

In this paper we study implementations of the push—relabel method. We evaluate
several operation orderings and distance update heuristics. Unlike previous implementa-
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tions, we use both global relabeling and gap relabeling [5], [9] heuristics. As aresult, one
of ourimplementations is faster—on some problem families, asymptotically faster—than
the previous implementatiors.

We study two implementations of the highest-level (HL) selection strategrrFand
M_PRF, the only difference between these implementations is that the former uses both
global and gap relabelings, while the latter uses only global relabeling. We also study
two implementations of the first-in, first-out (FIFO) selection strategyrFandr_PRF,
the former uses both global and gap relabelings and the latter uses only global relabeling.

Our results suggest that, under HL selection, gap relabeling is a very useful addition
to global relabeling: thei_PRFcode is sometimes much faster than therrFcode and
never significantly slower. Under FIFO selection, gap relabeling does not seem very
useful:Q_PRFandr_PRF perform very closely on all problem families we consider. We
give an informal explanation of these experimental observations in Section 6.

The H_PRFimplementation is faster than the other codes on all problem classes we
studied. This is in contrast with the work of [2] and [23], where on some problem classes
the FIFO implementation is faster. In particular, the FIFO implementation of Anderson
and Setubal [2] takes 44 seconds on Washington-RLG-Wide problems with 65,538
nodes compared with 1,081.3 seconds for their HL implementation. Performance of our
implementations on such problems is as folloms$RF, 24.66 secondsQ_PRF, 27.27
secondsy_PRF, 33513 secondsii_PRF, 13.88 seconds. (See Section 5 for details.) This
is a good example of how much gap relabeling can help under the HL selection strategy.

We also exhibit a problem instance generator on which the running time of Dinitz’s
and push-relabel implementations grow quadratically. On DIMACS problem families
we used in the other tests, the growth rate is smaller.

This paper is organized as follows. In Section 2 we review the push—relabel method.
In Section 3 we introduce global relabeling and gap relabeling heuristics. We describe
the implementations we evaluated and the problem families used for the evaluation
in Section 4. The experimental results appear in Section 5. In Section 6 we discuss the
behavior of gap relabeling under HL and FIFO selection rules. We present our conclusions
in Section 7. The Appendix describes our hard problem generator.

2. The Push—Relabel Method. In this section we review some of the basic concepts
of the push—-relabel method. We assume that the reader is familiar with [18]. (See also
[16].) We present the two-phase variant of the method [17], which is the one used in our
implementation.

A flow networkis a directed grape = (V, E, s,t, u), whereV andE are node set
and arc set, respectivelg;andt are the source and the sink, respectively; arid a
nonnegative capacity function on the arcs. We defiae|V| andm = |E|, and assume
that, for each arcv, w), the arc(w, v) is also present. A flow is a function on the arcs
that satisfies capacity constraints on all arcs and conservation constraints on all nodes
except the source and the sink. The conservation constraint at a fredieates that the
excess gv), defined as the difference between the incoming and the outgoing flows,

4 When we say that code A is asymptotically faster than code B on a certain problem family, we mean that the
ratio of the B to A running times increases with the problem size.
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pushv, w).

Applicability: v is activeand (v, w) is admissible.

Action: sends = min(es (v), Ut (v, w)) units of flow fromv to w.
relabelv).

Applicability: v is activeand
push(v, w) does not apply for any.
Action: replaced(v) by min, g, {d(w)} + 1,
orbynif A(v, w) € E;.

Fig. 1. The update operations. Theashingoperation updates the preflow, and tekabelingoperation updates
the distance labeling.

is equal to zero. Areflowsatisfies the capacity constraints and the relaxed version of
conservation constraints that requires the excesses to be nonnegative.

An arc isresidualif the flow on it can be increased without violating the capacity
constraints, andaturatedotherwise. The residual capacity (v, w) of an arc(v, w) is
the amount by which the arc flow can be increased. The residual graph is induced by the
residual arcs.

The distance labeling dV — N satisfies the following conditionst(t) = 0 and
for every residual ar¢v, w), d(v) < d(w) + 1. A residual arqv, w) is admissibleif
d(v) =d(w) + 1.

We say that a node is activeif v ¢ {s, t}, d(v) < n, ande; (v) > 0.

The push-relabel method maintains a preflbvand a distance labeling, Initially
the preflowf is equal to zero on all arcs aegl(v) is zero on all nodes excegite; (S) is
set to a number that exceeds the potential flow value (e.g., sum of capacities of all arcs
out of the source plus one). Initialti(v) is the smaller oh and the distance fromtot in
G:. The method repeatedly performs thedate operationgpushandrelabel described
in Figure 1. When there are no active nodes, the first stage of the method terminates.
(The second stage of the method is discussed at the end of this section.)

The update operations modify the prefldwand the labelingl. A pushfrom v to w
increasesf (v, w) ande;s (w) by § = min{e (v), us (v, w)}, and decreaseb(w, v) and
e (v) by the same amount. elabelingof v sets the label of equal to the largest value
allowed by the valid labeling constraints.

The efficiency of the push—relabel method depends on the ordering of the update
operations. At the low level, these operations are combined as follows. We call an
unordered paifv, w} such thatv, w) € E anedgeof G. We associate the three values
u(v, w), u(w, v), and f (v, w) (= — f (w, v)) with each edgév, w}. Each node has a
listofthe incidentedgel®, w}, infixed but arbitrary order. Thus each edgew} appears
in exactly two lists, the one farand the one fow. Each node has acurrent edgdv, w},
which is the current candidate for a pushing operation foomitially, the current edge
of v is the first edge on the edge list@fThe main loop of the implementation consists
of repeating thelischargeoperation described in Figure 2 until there are no active nodes.
(We discuss the maintenance of active nodes later.Jidohargeoperation is applicable
to an active node. This operation iteratively attempts to push the excessthtough
the current edgév, w} of v if a pushing operation is applicable to this edge. If not, the
operation replacef, w} as the current edge ofby the next edge on the edge listigf
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dischargév).
Applicability: v is active.
Action: let{v, w} be the current edge of

end-of-list« false
repeat
if (v, w) is admissiblghen push(v, w)
else
if {v, w}is not the last edge on the edge listathen
replace{v, w} as the current edge ofby the next edge on the list
else begin
make the first edge on the edge listathe current edge;
end-of-list« true;
end,
until e; (v) = 0 or end-of-list
if end-of-listthen relabelv);

Fig. 2. The discharge operation.

or, if {v, w} is the last edge on this list, it makes the first edge on the list the current one
and relabels. The operation stops when the excess Btreduced to zero.

Note that when the first discharge operation is applies il arcs out ofs become
saturated and the distance labekads$ set ton.

The remaining issue is the order in which active nodes are processed. Two natural
orders were suggested in [17] and [18]. One,RHeO algorithm, is to maintain the set
of active nodes as a queue, always selecting for discharging the front node on the queue
and adding newly active nodes to the rear of the queue. The othdilLttaégorithm,
is always to select for discharging a node with the highest label. In the worst case, the
FIFO algorithm runs inO(n®) time [17], [18] and the highest-label algorithm runs in
O(n?/m) time [4].

The HL algorithm implementation maintains an array of &0 <i <n—1, and
an indexb into the array. SeB; consists of all active nodes with lakiglrepresented as
a doubly linked list, so that insertion and deletion taBél) time. The indexb is the
largest label of an active node. During initializati®is placed inBy, andb is setto 0. At
each iteration, the algorithm removes a node figgnprocesses it using thdischarge
operation, and updatés The algorithm terminates when there are no active nodes.

The WAVE implementation is “in-between” the FIFO and the HL implementations.
Like the HL implementation, WAVE maintains the array of sBfsand makes passes
through the array as follows. The pass starts Widgual to the highestsuch thatB; is
not empty. Nodes i3, are discharged untl; is empty, and theb is decreased. When
i becomes negative, the pass terminates. The WAVE implementation r@{aintime
[5], [18].

At the end of the first stage, the excess at the sink is equal to the minimum cut value
and the set of nodes which can reach the sin&jnnduces a minimum cut.

The second stage of the method convéristo a flow. We experimented with several
ways of implementing the second stage.

Our earlier implementation [6] is based on flow decomposition (see e.g., [16]) and
works as follows. Define thitow graph G' = (V, ef)whereEf = {a e E: f(a) > 0}.

While there are nodes M — {s, t} with a positive excess, we pick a noddrom this
set and search the reversal of the flow graph in a depth-first search manner starting from
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v. The search discovers either a cyEl®r a simple patHP from v to s. In the former
case we decrease flow on the reversdrdfy § = min{ f (a)|a € I'’}. In the latter case
we decrease flow on the reversal®find bys = min{ f (a)|a € P’}.

Although under this implementation the second stage usually takes significantly less
time than the first stage, on some problems (e.g., Washington-RLG-Long problems) the
second stage exhibits large variations in performance and sometimes takes several times
more than the first stage.

An alternative implementation of the second stage is to run the first stage “backward”
[14]. Again, under this implementation the second stage usually takes significantly less
time than the first stage, but on some problems (e.g., Acyclic-Dense), the second stage
takes several times more than the first stage.

Our current implementation of the second stage is similar to the flow-decomposition-
based implementation described above. We run a depth-first search in the reversal of the
flow graph from the set of nodes with positive excess other than the source and the sink.
If the depth-first search discovers a cycle, the flow on the cycle is reduced until one of the
cycle arcs has a zero flow, and the depth-first search is restarted. The depth-first search
produces a topological ordering of the nodes reachable from the nodes with positive
excess. (Note that because we eliminate flow cycles during the search, the flow graph
induced by these reachable nodes is acyclic.) We process these nodes in topological
order. When a node is processed, flow into it is reduced until the excess at the node
becomes zero.

Under this implementation, the second stage takes at most twice the time of the first
stage on all problem instances in our experiments. The second stage takes longer than
the first stage only on some problems in Washington-Line-Moderate family. On the vast
majority of instances we tried, the running time of the second stage is a small fraction
of the running time of the first stage.

3. Heuristics. The push-relabel method, as described above, has poor practical per-
formance. Intuitively, because relabel is a local operation, the method loses the global
picture of the distances.

Theglobal relabelingheuristic updates the distance function by computing shortest
path distances in the residual graph from all nodes to the sink. This can be done in linear
time by a backward breadth-first search, which is computationally expensive compared
with the push and relabel operations. Global relabelings are performed periodically (e.g.,
after everyn relabelings). This heuristic drastically improves the running time.

Another useful relabeling heuristic gap relabeling discovered independently by
Cherkassky [5] and by Derigs and Meier [9], and based on the following observation.
Let g be an integer and & g < n. Suppose at a certain stage of the algorithm there
are no nodes with distance laligbut there are nodaswith g < d(v) < n. Then the
sink is not reachable from any of these nodes. Therefore, the labels of such nodes may
be increased tn. (Note that these nodes will never be active.) If for eveme maintain
linked lists of nodes with the distance lalbethe overhead of detecting the gap is small.

The overhead of maintaining the lists can be charged to relabel operations which
change the distance labels. Other work done by the gap relabeling heuristic is “useful”:
it involves processing the nodes determined to be disconnected from the sink. Therefore



On Implementing the Push—Relabel Method for the Maximum Flow Problem 395

a code that uses gap relabeling cannot be much slower than the same code without gap
relabeling.

4. Experimental Setup

4.1. Computing Environment Our experiments were conducted on SUN Sparc-10
workstation model 41 with a 40 MHZ processor running SUN Unix version 4.1.3. The
workstation had 160 Megabytes of memory. All codes used in our experiments were
written in C and compiled with thgcc compiler version 2.58 using th® optimization
option.

We performed the machine calibration experiment designed by the organizers of the
First DIMACS International Algorithm Implementation Challenge [20]. Figure 3 shows
the average running times of the test programs compiled with and without optimization.

4.2. Problem Families We used seven problem families in our experimental evalua-
tion. Six of these were used at the First DIMACS Challenge [20]. These families are
produced by three generators available from DIMACS. The first generator is RMFGEN
of Goldfarb and Grigoriadis [19], the second is WASHINGTON developed by Anderson
and students in his seminar, and the third is AC of Setubal (a C version of a generator of
Waissi). The seventh problem family is produced by our generator AK (described in the
Appendix). This generator produces problem instances that are hard for the push—relabel
and Dinitz's methods.

The DIMACS generators use randomness to produce different instances for the same
parameter values (except for a pseudorandom generator seed, if available). Some of
these generators do not take a pseudorandom generator seed as a parameter but use a
system clock to obtain the seed. To make our experiments repeatable, we modified these
generators to take the seed argument. For each problem class and problem size, we test
five problem instances with different seeds and report the average running times.

The AK generator produces a deterministic network for each valae of

The problem families are as follows:

e Genrmf-Long. A network withn = 2% nodes in this family is generated by the
genrmf.c program with parametes= 2/ andb= 2*/2.

e Genrmf-Wide. A network withn = 2* nodes in this family is generated by the
genrmf.c program with parametes= 22*/°> andb= 2*/5.

Test1 Test 2
Optimization (average running time) (average running time)
level Real User System Real User System
w/o optm. 1.2 1.2 0.0 111 10.8 0.1
-0 0.9 0.8 0.0 8.3 7.8 0.2

Fig. 3. Average running times (in seconds) of the test programs in C.
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e Washington-RLG-Long. A network withn = 2* nodes in this family is generated
by thewashington.c ~ program withfunction = 2, argl= 64, arg2= 2*-6, and
arg3 = 10%.

e Washington-RLG-Wide. A network withn = 2* nodes in this family is generated
by thewashington.c ~ program withfunction = 2, argl= 2%, arg2= 64, and
arg3 = 10%.

e Washington-Line-Moderate. A network in this family withn = 2* nodes is gener-
ated by thevashington.c  program withfunction = 6, argl= 2*~2, arg2=4, and
arg3=2%/2-2 =  /n/4.

e Acyclic-Dense A network in this family withn = 2% nodes is generated by the.c
program with the options set to produce fully dense graphs and random capacities
with the maximum capacity set at®0

e AK. A network in this family with 4 + 6 nodes andl6+ 7 arcs is generated by the
ak.c program which takes only one parameter,

4.3. Implementations Evaluated We experimented with several variants of the push—
relabel method, but we report on only four code®RF, M_PRF, Q_PRF, andF_PRF. All

these codes use the global update heuristic, with a global update performed after every
n relabelings. The first two codes use HL selection with and without gap relabeling,
respectively. The last two codes use FIFO selection with and without gap relabeling,
respectively. Our implementations use the adjacency list representation of the input
graph.

We tried other operation selection strategies, including WAVE, highest excess selec-
tion, last-in, first-out selection, and various hybrid strategies. In particular, the WAVE
implementation showed reasonable performance similar to that of the FIFO implemen-
tation. Overall performance of these strategies was worse than that efkecode,
however, and we do not report the results. We also experimented with various global
relabeling frequencies. A simple strategy of performing a global relabelingcarftes-
labelings for some constantworks quite well. The best choice ofdepends on the
problem family. For example, an implementation with- 1 can be better than the same
implementation wittc = 1.5 on one problem class but worse on another problem class.
The valuec = 1 used in our experiments seems like a good compromise.

To put performance of our codes in perspective, we compared them with a previous
implementation of the push-relabel method and with an implementation of Dinitz's
algorithm [11].

The former implementation, developed by Anderson and Setubah§?),(imple-
ments the FIFO push-relabel algorithm using the global relabeling heuristic only; global
relabelings are performed after every?2 relabelings. Thasr implements the same
algorithm as ouF_PRF, except the global update frequency is different. We use this code
as a “sanity check” for our implementation and to facilitate the comparison of our data
to the data reported in [2]. (As observed in [23] and confirmed by our data, the global
update frequency used &sF is too low for dense graphs.)

We developed our own implementation of Dinitz’s algorithor), This implementa-
tion is written in the same programming style as eRFimplementations. Our imple-
mentation of Dinitz’s algorithm seems to perform better than that of [2] on the basis of
indirect comparison. We also compared our implementation of Dinitz’s algorithm with
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that of Goldfarb and Grigoriadis [19] (compiled with tfie7 compiler using theO
optimization option). Our implementation was faster by a factor.6fdr more on a
subset of problem instances we tried.

When tabulating results of our experiments, we give the running times, the number
of relabelings, and the number of pushes. To obtain a data point for a code, we make five
runs of the code on problems produced with the same generator parameters but different
pseudorandom generator seeéddie data we tabulate is the average over the five runs.
The programs exceeding the CPU time limit of 2400 seconds (including i/o, which for
all problems we study is below 400 seconds) were terminated and the corresponding
table entries are left blank.

The running time is the user CPU time in seconds and excludes the input and output
times. The number of relabelings is in 100’s, rounded to the nearest integer. Similarly,
the number of pushes is in 100’s, rounded to the nearest integer.

We plot the data in addition to tabulating it. Our plots use logarithmic scales. To
improve the readability of the plots, we do not ploPrFdata because for all problem
families it is within 30% of the=_ PRFdata. We also do not plet_PRFdata for families
where it is within 30% of thei_PRFdata.

5. Experimental Results. Our experiments show thePRFcode to be the fasteston all
the problem instances we report on. The FIFO implementatigmrsandQ_pRFexhibit
similar performance and are the second and the third fastest overali_Pre& code
(which is the same as PRFbut does not use gap relabeling) exhibits a wide variation in
performance: it is about as fastims$RrFon some problem families, somewhat slower on
others, and on some families PRFis the slowest among all the codes we tested. These
results show that, for the problem families we study, gap relabeling is a useful addition
to global relabeling for the HL algorithm and a not very useful but relatively harmless
addition for the FIFO algorithm.

The theoretical motivation of the HL selection strategy is to reduce the number of
pushes. Operation counts ferPRFandQ_PRFshow that the former code usually makes
significantly fewer pushes, and this often seems to be the main reasoA_wREis
faster tharm_PRE

The AsF code implements the same FIFO algorithnraerF but applies global re-
labeling after everyn/2 relabelings (versus for F_PRF. This and the low level imple-
mentation details account for the fact that is slower tharF_PRF On sparse networks,
the relabeling frequency for the two codes is similar, and so is the code performance. On
such network&_PRFis somewhat faster. On dense networss makes too few global
relabelings and performs asymptotically worse tRaRF

Our implementatiomr of Dinitz’s algorithm is the slowest overall, and often asymp-
totically slower than the other codes. However, it is fasterthaikrFon the Washington-
RLG-Wide family (by a wide margin) and on Acyclic-Dense family (by a small margin).
On the latter familypr is faster thamsr (by a wide margin).

Indirect comparison shows thatPrFis faster than the implementations of [23] on

5 Except for the AK generator, which is deterministic.
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all common problem classes, including Genrmf-Wide, Genrmf-Long, Washington-Line-
Moderate, and Acyclic-Dense.

Next we present experimental data for the problem families we studied and make
family-specific comments.

5.1. Genrmf-Wide Family Figure 4 gives data for the Genrmf-Wide problem family.
On this family,m_PRFandH_pPRFperformance is very close.

5.2. Genrmf-Long Family Figure 5 gives data for the Genrmf-Long problem family.
On this familyH_PRFis somewhat faster tham_PRF. DF is asymptotically slower than
the other codes.

5.3. Washington-RLG-Wide Family Figure 6 gives data for the Washington-RLG-
Wide problem family. On this familyH_PRF greatly benefits from gap relabeling: it
is faster tharm_PRF by a wide marginM_PRFis asymptotically slower than the other
codes.

5.4. Washington-RLG-Long Family Figure 7 gives data for the Washington-RLG-
Long problem family. Herei_PRFperforms better tham_PRF M_PRFis slower than the
FIFO codes. On this family the HL codes have better asymptotic performance than the
FIFO codesDF is asymptotically slower than the other codes.

5.5. Washington-Line-Moderate Family Figure 8 gives data for the Washington-Line-
Moderate problem family. On this family, all our push-relabel codes have similar per-
formance. The other two codes are significantly slowetis the slowest code.

5.6. Acyclic-Dense Family Figure 9 gives data for the Acyclic-Dense problem family.
On this family,H_PRFis somewhat faster tham PRF. DF performs about as well &sPRF
on this family.Asr is asymptotically slower than the other codes.

5.7. AK Family. Figure 10 gives data for the AK problem family. On this family all
codes exhibit a roughly quadratic growth rate. However, the fastestieageis, is an or-

der of magnitude faster than the slowest cageThis problem family is designed so that

gap relabeling does not help.PRFis almost as fast as PRF Our FIFO codes do the same
number of relabelings as our HL codes. The FIFO codes, however, do almost twice the
number of pushes the HL codes do, and as a result the FIFO codes are somewhat slower.

6. Discussion of Gap Relabeling. Our experimental results show that when added to
the HL algorithm with global relabeling, gap relabeling sometimes drastically improves
performance and never significantly decreases it. When added to the FIFO algorithm
with global relabeling, gap relabeling does not have much effect on performance, at
least on the problem classes we studied. Below we give an informal explanation of these
observations. Our explanation is not a formal proof, and one might be able to construct
graphs for which the behavior is different. However, the explanation seems to fit our
experimental results.
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Fig. 4. Genrmf-Wide family data.
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130,682 625,537 | 1,360.41 | 104.74 56.08 61.93 28.61 18.68
12,831 12,375 | 14,975 9,315
41,661 41,022 | 21,294 | 13,512
270,848 | 1,306,607 258.01 165.92 173.30 82.80 57.62
34,076 33,420 | 42,838 | 29,107
118,067 | 116,994 | 61,021 | 40,787

Fig. 5. Genrmf-Long family data.
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3,348 3,231 23,752 2,138
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2,400 2,278 2,314 1,229
7,507 7,329 3,723 2,108
65,538 | 195,584 | 101.38 31.86 24.66 27.27 335.13 13.88
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131,074 | 391,168 | 306.73 75.33 61.45 67.04 1,185.51 32.61
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262,146 | 782,336 | 916.51 | 205.23 | 158.55 | 176.96 101.82
29,188 | 29,316 31,121
91,972 | 92,289 81,046

Fig. 6. Washington-RLG-Wide family data.
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65,538 | 196,544 330.62 18.92 11.68 12.69 28.84 2.94
2,446 2,236 21,543 1,121
15,912 | 15,564 33,419 4,355
131,074 | 391,168 | 1,562.85| 52.80 34.59 38.37 78.54 6.21
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262,146 | 786,368 134.30 84.95 93.19 139.25 10.67
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98,419 | 96,698 | 159,696 | 15,250

Fig. 7. Washington-RLG-Long family data.
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11 9 7 5
66 53 48 44
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26 16 20 7
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8,194 | 187,400 3.84 1.90 0.62 0.59 0.52 0.47
38 27 24 10
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16,386 | 522,200 | 11.91 | 10.63 1.81 1.66 1.60 1.40
97 52 76 18
557 501 404 325

Fig. 8. Washington-Line-Moderate family data. The number of arcs is approximate, since the exact number
depends on the seed.
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128 8,128 0.05 0.33 0.04 0.04 0.05 0.03
4 3 6 2
9 9 13 8
256 32,640 0.31 3.83 0.31 0.24 0.38 0.21
9 8 24 7
27 26 36 21
512 130,816 1.60 53.71 1.61 1.52 3.61 1.32
19 17 47 17
60 56 119 49
1,024 523,776 | 8.95 | 258.79 8.65 8.31 17.24 5.60
44 41 95 33
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140 129 412 88
386 370 723 261

Fig. 9. Acyclic-Dense family data.



On Implementing the Push—Relabel Method for the Maximum Flow Problem

1000 F
o
—
©
0
o
g 100 ¢
—
)
&
A
s
o
a
B
5 10
3
o
1 I 1 L 1
4102 8198 16390 32774 65542
number of nodes (logscale)
Nodes Arcs DF ASF F_PRF Q_PRF M_PRF H_PRF
4,102 6,151 13.90 7.97 2.72 2.77 1.85 1.80
657 657 657 657
11,838 11,838 6,585 6,585
8,198 | 12,265 71.00 34.50 10.70 10.73 6.68 6.70
1,947 1,947 1,947 1,947
45,919 45,919 24,926 24,926
16,390 | 24,583 281.98 | 172.15 43.47 42.62 29.03 27.88
5,385 5,385 5,385 5,385
178,710 178,710 94,783 94,783
32,774 | 49,159 | 1,651.90 | 753.52 165.87 164.87 122.70 115.35
15,098 15,098 15,098 15,098
701,606 701,606 365,979 365,979
65,542 | 98,311 740.08 758.78 558.48 555.77
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Fig. 10.AK family data.
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Suppose a gap arises during an execution ofttrRrFimplementation (which does
not use gap relabeling). Then the implementation wastes time processing active nodes
which would have been discarded by the gap heuristic until distance labels of these nodes
increase to or a global relabeling is performed. As a result, under HL selection, nodes
on the source side of a gap are more likely to be processed than the other nodes.

Thus gap relabeling can save a lot of work when combined with HL selection and
global relabeling. Because of its small overhead (see Section 3), gap relabeling does not
waste much work.

Now suppose a gap arises during an execution oftherimplementation (which
does not use gap relabeling). Compared withg@herrFimplementation, the “wasted”
work is in processing nodes with distance labels above the gap. We say that an interval
between global updateshadif at least a quarter of the work during this time interval is
“wasted” andgoodotherwise. Therefore the total time of the good intervals is likely to
be at most four-thirds of the total time of theePRFimplementation. After a bad interval,
itis likely that a constant fraction of the remaining nodes will be discarded by the global
update at the end of the interval, because active nodes are processed uniformly and the
fraction of active nodes behind the gap is likely to be proportional to the fraction of
the total number of nondiscarded nodes behind the gap. Thus the number of bad time
intervals is likely to beO(logn). Since the total work done during an interval between
global updates (which occur after evaryrelabelings) is likely to beéD(m), the total
time of bad intervals i©(mlogn). If the running time ofy_PRFis w (mlogn), which is
usually the case, then the running timerFofrFis unlikely to exceed the running time
of Q_PRFby a factor much more thagl

Thus gaprelabeling is unlikely to save much work when combined with FIFO selection
and global relabeling. On the other hand, since the extra overhead of gap relabeling in
this case is small, gap relabeling does not waste much work.

7. Concluding Remarks. Ourbestimplementation ofthe push-relabel methoeRF,
was always faster than our implementation of Dinitz’s algorith/mon many problem
familiesH_PRFwas asymptotically faster and on large problems the speedup was some-
times one or two orders of magnitude. Our experimental results suggest that the HL
variant of the push—relabel method with global and gap relabeling heuristics is the best
currently available method for solving maximum flow problems.

Problem families that are bad for thePRFcode and not as bad for tRePRFcode can
be designed. This fact, combined with the reasonable performance mftkrecode in
our study, makes the code a natural candidate to consider mirerdoes not perform
well. F_-PRFis also better suited for parallel and distributed implementation, and it is
simpler tharH_PRF

M_PRFis much less robust tham PRFand never performs significantly better. Thus
gap relabeling should be used in implementations for the HL algorithm.

Q_PrRFperformance is similar to (but overall slightly worse thargrrFperformance,
and in this case gap relabeling does not seem to be worth implementing.

With the appropriate heuristics added, the push—relabel method is superior to Dinitz's
method in practice, often by a wide margin when the global and gap relabeling heuristics
are used. However, experiments with the AK problem family show that even with the
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heuristics, push-relabel implementations can take quadratic time on certain problems.
On the positive side, the growth rate was significantly smaller for the other six problem
families.

Acknowledgments. We would like to thank Robert Kennedy for his help in the prepa-
ration of this paper, and Richard Anderson for providing his maximum flow code.

Appendix. The literature contains several problem families which are hard for push—
relabel algorithms [2], [4] in the sense that the algorithms’ running time is close to their
worst-case bounds. These families, however, are not hard if the global update heuristic
is used. Below we describe the problem family generated by our generator AK. For this
family, m = O(n). The FIFO, HL, and WAVE versions of the push—relabel method
take2 (n?) time on problems in this family even if global and gap relabeling operations
are used, under the assumption that the initial distance labeling gives exact distances to
the sink. This assumption holds for most implementations of the push—relabel method.
Although for the push-relabel algorithms without update heuristics the AK networks are
not as hard as those described in [2] and [4], the AK networks are harder if the update
heuristics are used. Dinitz’s algorithm also take@?) time on AK networks.

The AK (k) network consists of two subnetworkid,1(k) and N2(k), connected in
parallel. N1(k) is hard for the HL and the FIFO implementations at#(k) is hard for
the WAVE implementation. BottN1(k) andN2(k) are hard for Dinitz’s algorithm.

Letk be the parameter that determines the network $iA€k) consists of two paths,
upper and lower, containifgnodes each. (See Figure 11.) Lgf. .., uxandéq, ..., £
be the upper and the lower path nodes, respectively. All arcs of the lower path have a
capacity ofk 4+ 1. Capacities of the upper path arcs stark aind decrease by one at
every step; thus the capacity @f, u; 1) isk —i + 1. Also, each node of the upper path
is connected to the first node of the lower path by a unit capacity arc. There are two
more nodess; andt;, in addition to the path nodes, which we call the source and the
sink of N1(k). There are arcésy, u;) of capacityk + 1, (s, £1) of capacity 1,(uy, t1)
of capacity 1, and/y, t;) of capacityk + 1.

N2(k) consists of a path withk2+ 2 nodesxo, X1, . . ., Xoks1. (See Figure 12.) As one
goes along the path, the capacities of the arcs first decrease by one at every step, reaching

Fig. 11.SubnetworkN1(k).
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k+2 " k+1 2 1 2 k+1 k+2

Fig. 12. SubnetworkN2(k).

one at the middle ar¢xk, Xk+1), and then increase by one at every step. (AKgSX1)
and(Xx, X2k+1) have a capacity &€+ 2.) In addition, foreach= 1, 2, ..., k+1, there

is an arc(x;, Xzk+1-i) With unit capacity. We call the first and the last node of the path
the source and the sink &f2(k), respectively.

AK (k) contains the source and the sink in addition to the two subnetworks. The
source node is connected to the sourceNdik) and N2(k) by arcs with very large
capacities. The sinks dfi 1(k) and N2(k) are connected to the sink node by arcs with
very large capacities.

Consider an execution of the HL algorithm on the first subnetwork. Recall that we
assume that the initial distance labeling gives exact distances to the spilask iis
the period from the time the axg;, uj, 1) is saturated for the first time to the time the
arc(ui+1, Ui12) is first saturated. (Note that the upper path arcs are first saturated in the
order determined by the path.) We show that the number of push operations during phase
i is atleast + 1, even with global and gap relabelings. This implies that the total work
is Q(K?).

It can be shown by induction dnthat the following sequence of events takes place.
Just before the beginning of phdse; hask — i + 1 units of excess. Distance labels of
nodeduy, ..., u;_; are equal ta(¢1) + 1 = k+ 1 and distance labels of other nodes are
unchanged. The nodg is discharged, saturating the dtg, uj 1) of capacityk —i + 1
and starting the phase. The discharge also incred@g$ to d(¢1) + 1 and pushes a
unit of flow to ¢;. This flow unit must move t@; . ; before the next phase can start. The
number of pushes required to move the unit of excess fipto ¢;,, is at leasi + 1.

Note that until the ar¢t,, £5) is saturated, distance labels of nodedi&(k) are exact.
Thus the HL algorithm take® (k?) time with or without global and gap relabelings.

Next consider an execution of the FIFO algorithmM(k) (starting from the time
s, is first discharged). We consider the case whgoushes first ta; and then tdq; the
other case is similar. It can be shown by inductionpthat after 2 passes, distance
labels of nodesiy, .. ., uyp are equal tal(¢,) + 1 = k + 1 and distance labels of other
nodes ofN1(k) are unchanged. There &ge- 2p 4 1 units of excess aizp41, 1 unit
of excess aty, 2 units of excess alz, fs, ..., £2p11, anduz,1 appears on the queue
before¢;. The number of active nodes at pgsfor 1 < p < kis Q(p) and therefore
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the algorithm takeS (k?) time for these passes only. The &g, ¢») becomes saturated
only at pask, and until that the distance labels of nodes in the lower path are exact.
Thus the FIFO algorithm oM 1(k) takes (k?) time with or without global and gap
relabelings.

Dinitz's algorithm onN1(k) goes througtk + 1 blocking flow phases. Phase zero
saturates aros, £1) and(ug, t;). For 1<i < k, phase saturates the arwi;, £;). Thus
Dinitz’s algorithm also takeS (k?) time. The WAVE algorithm, however, runs in linear
time onN1(k). We show that it take® (k?) time onN2(K).

Consider an execution of the WAVE algorithm di2(k). At the first pass, the algo-
rithm first dischargeso, pushingk + 2 flow units tox;, then discharges,, saturating
the arc(xq, X), relabelingx;, and saturatingxy, x2). The rest of the pass moves the
unit of flow fromxy to the sink ofN2(k). Fori = 2, ..., k, theith pass first discharges
X1, saturatingXzi _1, Xok—i)+2), relabels<y _1, and pushes the remaining excess;fo
saturatingxzi_1, Xzi ). The rest of the pass moves the unit of flow just pushed#ai,»
to the sink ofN 2(k). Note that distance labels of all nodes with excess considered during
the execution are exact, so global and gap relabelings do not help. It is easy to see that
pass takesQ (i) time, so the total time iS2 (k?).

The above results imply that the HL, FIFO, and WAVE algorithms t@kk?) time on
the AK (k) network with or without global and gap relabelings, and Dinitz's algorithm
also take$2 (k) time.
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