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Abstract

We introduce a new graph-theoretic approach to image
segmentation based on minimizing a novel class of ‘mean
cut’ cost functions. Minimizing these cost functions corre-
sponds to finding a cut with minimum mean edge weight in a
connected planar graph. This approach has several advan-
tages over prior approaches to image segmentation. First,
it allows cuts with both open and closed boundaries. Sec-
ond, it guarantees that the partitions are connected. Third,
the cost function does not introduce an explicit bias, such
as a preference for large-area foregrounds, smooth or short
boundaries, or similar-weight partitions. This lack of bias
allows it to produce segmentations that are better aligned
with image edges, even in the presence of long thin re-
gions. Finally, the global minimum of this cost function
is largely insensitive to the precise choice of edge-weight
function. In particular, we show that the global minimum is
invariant under a linear transformation of the edge weights
and thus insensitive to image contrast. Building on algo-
rithms by Ahuja, Magnanti, and Orlin (1993), we present a
polynomial-time algorithm for finding a global minimum of
the mean-cut cost function and illustrate the results of ap-
plying that algorithm to several synthetic and real images.

1. Introduction

Image segmentation is often formulated as the problem
of partitioning an image into regions such that a cost func-
tion of the regions and/or the boundary between those re-
gions is minimized. Two fundamental issues motivate the
choice of cost function. First, the cost function should
lead to perceptually salient segmentations. Second, the
cost function should be amenable to global optimization to
give confidence that the segmentations found result from
the cost function itself and not from artifacts of the opti-
mization procedure. Research in image segmentation over

the past 15 years has explored the space of cost functions
and the tradeoffs between these two issues. Early work,
such as the active contour method (Kass, Witkin, & Ter-
zopolous, 1987), used gradient descent to find local min-
ima of a boundary cost function. Amini, Weymouth, and
Jain (1990) introduced a dynamic-programming method for
finding a global minimum to this boundary cost function
within a local neighborhood of an initial boundary and iter-
ated this method in a hill-climbing fashion to find local min-
ima. Geiger, Gupta, Costa, and Vlontzos (1995) extended
this dynamic-programming method to find a global mini-
mum in the entire image under the constraint that the bound-
ary pass through specified pixels. Motivated by the desire
to find a cost function amenable to global optimization over
the entire image, without constraint, Wu and Leahy (1993)
introduced a graph-theoretic approach to image segmenta-
tion. This approach takes the image pixels to be vertices
in an undirected graph � � ����� with weighted edges
between neighboring pixels. Throughout this paper, we
only consider neighborhoods that lead to connected planar
graphs. The non-negative real-valued edge-weight function
���� �� is selected to reflect the similarity between pixels �
and � and is often chosen as a decreasing function of the
difference in intensity � of adjacent pixels, such as the fol-
lowing Gaussian edge-weight function:

���� �� � �
�

�������
�

�� (1)

A �-way cut of � partitions � into two subsets 	 and 


such that 	 �
 � � and 	 �
 � �. Let us define the cut
boundary as the set of edges that cross from 	 to 
. Let us
further define:

��	�
��� �
�

���������������

�

The cut cost is defined as ��	�
����� ���. Wu and Leahy
(1993) perform image segmentation by finding a minimum-
cost cut in �.

This approach suffers from a bias toward cuts with short
boundaries and thus small regions, especially when the
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Figure 1. (a) Cut with open boundary. (b) Cut
with closed boundary. (a) & (b) Cuts with con-
nected partitions. (c) & (d) Cuts with uncon-
nected partitions.

edge-weight function is not carefully selected. To address
this problem, several researchers (Cox, Rao, & Zhong,
1996; Shi & Malik, 1997; Jermyn & Ishikawa, 1999; Vek-
sler, 2000) have proposed a variety of normalized cost func-
tions. Each cost function and optimization method has its
advantages and disadvantages. Some allow cuts with both
open (figure 1a) and closed (figure 1b) boundaries, while
others only allow cuts with closed boundaries. Some pro-
duce cuts with only connected partitions (figures 1a and 1b),
while others can produce cuts with unconnected partitions
(figures 1c and 1d). Further, the different normalization
methods induce different biases in the segmentation pro-
cess. For some cost functions, this bias can drive the bound-
ary away from image edges, while for others, it does not.
The different cost functions and their properties are sum-
marized in table 1.

This paper introduces a novel graph-theoretic image-
segmentation cost function, mean cut, along with a novel
polynomial-time global optimization algorithm for this cost
function. This new method has several advantages over
prior methods. First, it allows cuts with both open and
closed boundaries. Supporting open boundaries is allows
segmenting an object that is partially out of the field of view
and also allows segmenting two objects whose boundary is
partially occluded by a third object as shown in figure 4(b).
Second, it guarantees that partitions are connected. Uncon-
nected partitions may lead to spatially incoherent segmen-
tations. Third, the cost function does not introduce an ex-
plicit bias, such as a preference for large-area foregrounds,
smooth or short boundaries, or similar-weight partitions.
This lack of bias allows it to produce segmentations that
are better aligned with image edges, even in the presence
of long thin regions. Finally, the global minimum of this
cost function is largely insensitive to the precise choice of
edge-weight function. In particular, we show that the global

minimum of this cost function is invariant under a linear
transformation of the edge weights and thus insensitive to
image contrast.

Our method uses algorithmic techniques that bear super-
ficial resemblance to those used by Jermyn and Ishikawa
(1999). Their method finds minimum mean cycles in di-
rected graphs. Part of our method involves finding mini-
mum mean simple cycles in undirected graphs. These are
different graph-theoretic problems. Furthermore, these two
approaches use different classes of cost functions that have
different image-segmentation properties.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces our novel mean-cut cost function along
with an algorithm for finding the global minimum to that
cost function. Section 3 presents an experimental evalua-
tion of our method on several synthetic and real images.
Section 4 concludes with a discussion of future work.

2. Minimum mean cut

The mean-cut cost function is:

������� �
���������� ���

��������

which normalizes the cut cost by the cut boundary length. In
contrast to approaches to image segmentation based on min-
cut (Wu & Leahy, 1993) which find cuts that minimize the
sum of the edge weights in the cut boundary, our approach
finds cuts that minimize the average edge weight in the cut
boundary. This normalization avoids the bias towards cuts
with short boundaries that is inherent in using the cut cost
alone.

In the next three subsections, we present a polynomial-
time algorithm for finding a global minimum to the mean-
cut cost function when applied to connected planar graphs.
We do not know whether it is possible to find the minimum
mean cut of an arbitrary graph in polynomial time and have
not found any references to this problem in the literature.
Our method, limited to connected planar graphs, consists
of three reductions: minimum mean cut to minimum mean
simple cycle, minimum mean simple cycle to negative sim-
ple cycle, and negative simple cycle to minimum-weight
perfect matching. The above reductions all operate on undi-
rected graphs. The second reduction, from minimum mean
simple cycle to negative simple cycle was motivated by a
similar reduction, discussed in Ahuja et al. (1993, pp. 150–
157), that is used to find the minimum mean cycle in a
directed graph. The third reduction, from negative simple
cycle to minimum-weight perfect matching, was also mo-
tivated by a similar reduction, discussed in Ahuja et al.
(1993, pp. 496–497), that is used to find shortest paths in
undirected graphs.
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method cost function optimization open connected bias edge
method� boundaries partitions aligned

Kass et al.

�
�

����������� � ������������ � � �������� local �-way no yes smooth boundary no

Wu & Leahy ����	�
��� ��� global �-way yes yes short boundary �

Cox et al.
����	�
��� ���

���
global �-way no no

smooth boundary,� is
foreground,� is background,

foreground has large area
no

Shi & Malik
����	�
��� ���

���� � �
��� ���
�

����	�
��� ���

��	� � �
��� ���
� yes no

similar weight
partition

no

Jermyn & Ishikawa

�
��


�����
�
�����

�� global �-way no yes� depends on � and � no

Veksler no explicit cost function n/a yes yes depends on threshold yes

MMC
����	�
��� ���

����	���
global �-way yes yes none yes

� All of the optimization methods listed as global in this table find a global optimum of the stated cost function in polynomial time.
� Finding the global minimum to the discrete problem is NP-complete. Spectral graph theory (Chung, 1997) can be used to find a global minimum to a continuous approximation to this discrete problem in polynomial time.
� depends on edge-weight function
� Jermyn and Ishikawa (1999) do not discuss whether their algorithm can produce non-simple cycles. If it can, regions can contain partitions that are connected only by a single pixel.

Table 1. Comparison between different image-segmentation cost functions.

2.1. Reducing minimum mean cut to minimum
mean simple cycle

We reduce the problem of finding a minimum mean cut
(MMC) to the problem of finding a minimum mean sim-
ple cycle (MMSC), i.e. a simple cycle with minimum mean
edge weight. A cycle is simple if it does not traverse a ver-
tex more than once. Our reduction assumes that � is a con-
nected planar graph. Initially, this graph will correspond
to the entire image. However, recursive application of the
algorithm, as will be described in section 2.4, applies this
algorithm to graphs corresponding to image segments. The
reduction constructs a dual graph �� � ��� � ��� from �. For
simplicity, we limit our discussion here to grid-like graphs,
though we have generalized the reduction to arbitrary con-
nected planar graphs. The limited reduction, illustrated in
figure 2, is as follows:

1. For every grid in �, �� contains a corresponding vertex
located in the center of this grid. These vertices are
called basic vertices and form a new grid system.

2. �� contains a distinct vertex for each border of �.
These vertices are called auxiliary vertices. Conven-
tional images are compact (i.e. do not contain holes).
Graphs constructed from such images will have a sin-
gle border and thus the corresponding �� will have a
single auxiliary vertex. However, recursive applica-
tion of MMC can yield non-compact image segments
which will have multiple boundaries and correspond-
ing auxiliary vertices.

3. Each non-border edge � � � is mapped to a corre-

ej

ej
^

êi

Vertex and edge in G

Vertex and edge in G^

ei

auxiliary
vertex

Figure 2. An illustration of the method for con-
structing �� from � to reduce MMC to MMSC
for the case of a rectangular compact image.
The mapping from �� to ��� illustrates the trans-
formation of border edges while the mapping
from �� to ��� illustrates the transformation of
non-border edges.

sponding edge �� � ��, with the same weight, that
crosses �, in the grid system of ��, as shown in figure 2.

4. Each border edge � � � is mapped to a corresponding
edge �� � ��, with the same weight, that crosses � and
connects a border vertex to the auxiliary vertex for that
border, as shown in figure 2.

For any simple cycle �� � ����� ���� ���� ���� in ��, removing
the edges � � ���� ��� ���� ��� from � partitions � into two
connected components and thus corresponds to a cut in �
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with boundary �, and vice versa. Furthermore, if �� traverses
an auxiliary vertex, then � is an open boundary for that cut.
Otherwise, � is a closed boundary. Thus we have the fol-
lowing lemma:

Lemma 1 The MMC in � corresponds to the MMSC in ��.

2.2. Reducing minimum mean simple cycle to neg-
ative simple cycle

One can find a minimum mean cycle in a directed graph
using dynamic programming (Karp, 1978). This has been
applied to image segmentation by Jermyn and Ishikawa
(1999). However, we need to find the minimum mean sim-
ple cycle in an undirected graph. To do this, we first show
the following:

Lemma 2 Applying a linear transformation �� � � ��� �

with � � � to the edge weights of an undirected graph does
not change its MMSC.

Proof: Assume ���� � ���� ��� ���� ��� is the MMSC.
Then for any other simple cycle � � �	�� 	�� ���� 	��, we
have

�




��

���

����� �
�

�

��

���

��	��

Then, we have

�




��

���

������ � � �
�




��

���

������ �

� � �
�

�

��

���

��	��� � �
�

�

��

���

���	��

Thus ���� is still the MMSC. �

A corollary of this lemma is that a linear transforma-
tion of the edge weights does not change the MMC in the
original graph �. A second corollary of this lemma is
that we can remove the non-negativity constraint on edge
weights that applies to other graph-based segmentation al-
gorithms. This property of linear transformation invariance,
along with the following lemma, can be used to reduce the
problem of finding a MMSC to the problem of finding a
negative simple cycle (NSC). The reduction, adapted from
Ahuja et al. (1993, pp. 150–157), relies on the following
lemma:

Lemma 3 A graph �� has a MMSC � with mean weight ��

if and only if �� has a zero-weight minimum simple cycle
when its edge weights are transformed by �� � � � ��.

If �� has a NSC when its edge weights are transformed
by �� � � � �, then �� � �. Likewise, if �� does not
have a NSC under that transformation, then �� � �. If we

have an algorithm for determining whether a graph has a
NSC, �� can be found by binary search. Let � and � be the
smallest and largest edge weights in �� respectively. Initial-
ize � to � and � to �. We know that � � �� � �. Repeatedly
let �� be the mean of � and �. If �� has a NSC when its edge
weights are transformed by �� � � � �� then set � to ��.
Otherwise set � to ��.

Unfortunately, binary search is not guaranteed to termi-
nate with real-valued edge weights. Even limiting edge
weights to integers can yield rational mean values and lead
to nontermination. However, given the mean-cut cost func-
tion and integral edge weights, the mean value will be ra-
tional with a denominator in the range �� � � � � �
�. Thus the
denominator will always be divisible by �
��. By lemma 2,
we can multiply all edge weights by �
�� without changing
the MMSC or MMC. Under such a scale transformation,
the MMSC and MMC will have integral value. Since the
search range is now from �
�� � � to �
�� � �, and since
�
�� � �
����, binary search is now guaranteed to terminate
in at most �
� �� �
�	 ���� � �� iterations.

The above binary search algorithm yields only ��, the
mean value of the MMSC, but not the MMSC itself. To
recover the MMSC, we can find one NSC for �� when its
edge weights are transformed by �� � � � ��� 	 �

�
� using

the algorithm discussed in the next section. This NSC is the
desired MMSC.

While the above binary search algorithm yields a
polynomial-time algorithm for MMC, since, as shown in the
next section, NSC can be reduced to minimum-weight per-
fect matching, which is polynomial time (Edmonds, 1965a,
1965b), it might not be practical because �
�� can be large.
Accordingly, our implementation uses a different technique
for finding �� and the corresponding MMSC. While we
have not yet been able to prove that the implemented tech-
nique is polynomial time, it works well in practice, typi-
cally converging in a few iterations. Furthermore, while
the binary-search technique works only for rational-valued
edge weights, the implemented technique works for real-
valued edge weights.

Our implemented technique works as follows: Like the
binary search algorithm, we start by initializing � to �. We
know that �� � �. We use the algorithm discussed in the
next section to find a set � � ���� � � � � ��� of NSCs for ��
when its edge weights are transformed by �� � � � �.
Let �� denote the (negative) mean value of each �� � �. We
know that �� must be less than each ��	 �. Thus we set � to
the smallest of ��	� and repeat until no NSCs are found for
some �. This � is ��. The desired MMSC is the NSC with
the minimum mean value that was found in the penultimate
iteration.

Both the binary and linear search techniques described
above are similar to techniques described in Ahuja et al.
(1993, pp. 150–157), where they are used to find the min-
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Figure 3. An illustration of the method for
constructing �� from �� to reduce NSC to
minimum-weight perfect matching. Adapted
from Ahuja et al. (1993, figure 12.22).

imum mean cycle in a directed graph. These techniques
do not apply directly to undirected graphs because finding
negative cycles in undirected graphs is more difficult than
in directed graphs. It is this problem that we address in the
next section.

2.3. Reducing negative simple cycle to minimum
weight perfect matching

We can determine whether a graph �� � ��� � ��� has a
NSC by asking whether a new graph �� � �� �� ��� has a
negative-weight perfect matching. A perfect matching in a
graph is a subset of the edges such that each vertex has one
incident edge from that subset. The reduction, adapted from
Ahuja et al. (1993, pp. 496–497) and illustrated in figure 3,
constructs �� from �� as follows:

1. For each vertex � in ��, �� contains two correspond-
ing vertices, �� and ��, and one corresponding zero-
weight edge ���� ���.

2. For each edge ��� �� in ��, �� contains two correspond-
ing vertices, �� and ��, and five corresponding edges
with weights as follows: ����� ��� � ����� ��� �
����� ��� � ����� ��� �

�

�
���� �� and ���� � ��� �

�.

A graph has a negative perfect matching if and only if its
minimum-weight perfect matching is negative. Edmonds
(1965a, 1965b) gives a polynomial-time algorithm for find-
ing a minimum-weight perfect matching. Our implemen-
tation of MMC uses the blossom4 implementation of
minimum-weight perfect matching (Cook & Rohe, 1998).
We can show that �� always contains a perfect matching
by constructing a trivial perfect matching containing all the
edges of the form ���� ��� and ���� ��� for each � � �� and
��� �� � ��. Since the total weight of this perfect matching

is zero, the minimum-weight perfect matching in �� must
have non-positive weight. The next lemma, adapted from
an argument in Ahuja et al. (1993, pp. 496–497), addresses
the relation between the existence of a NSC in �� and the
existence of a negative-weight perfect matching in ��.

Lemma 4 �� contains a NSC if and only if �� has a
negative-weight perfect matching.

Proof: To prove the forward direction, assume �� has
a NSC �. Select an arbitrary direction for this cycle and
direct the edges according to this cycle direction. We can
construct a perfect matching � in �� from � as follows:

1. � contains the two edges ���� ��� and ���� ��� for
each directed edge ��� �� � �. Note that the total
weight of these edges is the same as that of �.

2. � contains the zero-weight edge ���� ��� for each
edge ��� �� �� �.

3. � contains the zero-weight edge ���� ��� for each ver-
tex � that is not mentioned in �.

� is thus a perfect matching with the same (negative) total
weight as �.

To prove the converse, we show a mapping from a nega-
tive minimum-weight perfect matching � in �� to a set of
negative-weight cycles 	 � ���� ��� 


� ��� in ��. 	 contains
those edges ��� �� for which � contains either ���� ���
or ���� ���. First, we show that 	 is a set of simple cy-
cles. � can contain at most one of ���� ��� and ���� ���.
If � contains either ���� ��� or ���� ���, it must also con-
tain either ���� ��� or ���� ��� and must not contain any
of ���� ���, ���� ���, and ���� ���. If � contains neither
���� ��� nor ���� ���, it must contain ��� � ��� and must not
contain any of ���� ��� and ���� ���. If� contains ���� ���,
it must also contain ���� ���, for some other vertex �. Like-
wise, if � contains ���� ���, it must also contain ���� ���,
for some other vertex �. This means that every vertex that
appears in 	 must have precisely two incident edges in 	

and thus the connected segments in 	 must be simple cy-
cles. Finally, we show that the cycles in 	 must be non-
positive. The sums of the edge weights in 	 and � are the
same. If 	 contains some � that has positive total weight,
we can remove � from 	 to yield a corresponding perfect
matching in �� with smaller total weight and thus � is not
the minimum-weight perfect matching. �

This proof for lemma 4 not only shows how to determine
whether �� has a NSC, by a reduction to minimum-weight
perfect matching, it also shows how to construct a set 	
of NSCs from the negative minimum-weight perfect match-
ing � .
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Figure 4. The number of boundaries in a re-
gion can be less than, the same as, or greater
than the number of boundaries in its parent.
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Figure 5. Illustration of the algorithm for split-
ting �� into ��� and ���.

2.4. Graph splitting for recursive segmentation

After MMC is used to segment an initial image into
two connected subregions, it can be applied recursively to
each subregion. Initial images are typically compact and
thus have a single border and corresponding auxiliary ver-
tex in ��. However, recursive application of MMC to image
segments may require processing non-compact segments,
i.e. segments, such as � in figure 4(a), that have multiple
boundaries and thus multiple auxiliary vertices. Sometimes,
as for � in figure 4(a) or �� in figure 4(c), a subregion may
have more boundaries than its parent. Sometimes, as for ��

or�� in figure 4(b), a subregion may have fewer boundaries
than its parent. And sometimes, as for � in figures 4(a-c),
a subregion may have the same number of boundaries as its
parent.

There is an efficient method for constructing ��� and ���

from ��, after MMC partitions � into �� and ��, in a way
that preserves much of the graph structure. This method,
illustrated in figure 5, can be summarized as follows:

(a) (b) (c)

Figure 6. Applying MMC to a synthetic binary
image. (a) Original image. (b) Segmentation
after the first iteration. (c) Segmentation after
four iterations.

1. Remove edges in �� that are in the MMSC �.

2. Label each edge in �� with �, if the corresponding edge
in � is in ��.

3. Merge all vertices mentioned in � into a single new
auxiliary vertex �. Replace any edge that is incident
on a vertex mentioned in � with an edge of the same
weight and label that is instead incident on �.

4. Label each vertex in �� with the same label as its inci-
dent edge. Note that it is not possible for a vertex to
have two incident edges with different labels.

5. Split � into new auxiliary vertices �� and ��, labeled �

and � respectively. Each edge labeled � that is incident
on � is replaced with an edge of the same weight and
label that is incident on ��.

6. ��� is the collection of vertices and edges with label �.

3. Experiments

Previous authors (Wu & Leahy, 1993; Shi & Malik,
1997; Veksler, 2000) have noted that graph-based image
segmentation is often sensitive to the choice of edge-weight
function. Prior work typically adopts equation (1) as the
edge-weight function. With this function, segmentation is
sensitive to the choice of �. MMC is much less sensitive
to the choice of edge-weight function. This is illustrated
by the synthetic binary image in figure 6. Choosing any
decreasing function of the intensity difference ��� � �� �
as the edge-weight function with MMC will result in the
proper segmentation as shown in figure 6. No other image-
segmentation method from table 1 has this property.

To further illustrate the insensitivity of MMC to the
choice of edge-weight function, we processed the images in
figures 7(a) and 7(e) with two different edge-weight func-
tions. Figures 7(b) and 7(f) show the results of process-
ing these images with the Gaussian edge-weight function
from equation (1). Figures 7(c) and 7(g) show the results
of processing these images with the edge-weight function
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Applying MMC to a desktop scene
(80�60) (a-d) and to the ‘peppers’ image
(Veksler, 2000) (128�128) (e-f). (a,e) Orig-
inal images. (b,f) Segmentation with the
Gaussian edge-weight function with � �
��. (c,g) Segmentation with the edge-weight
function ���� �� � ���� � �� �. (d,h) The final
segmentation after post-processing.

3

c 2

A

B Cc

c 1

Figure 8. An illustration of the cause behind
spurious cuts.

���� �� � ����� �� �. Both edge-weight functions produce
similar results on both images.

The segmentations shown in figures 7(b), 7(c), 7(f),
and 7(g) contain many small regions. Reasons for this in-
clude salt and pepper noise in the image and the fact that
region boundaries in the image are wider than one pixel.
This results in many short cuts inside these region bound-
aries. We can post-process the segmentation results to
merge small adjacent regions (Wu & Leahy, 1993).

A more serious problem is that segmentations sometimes
contain spurious cuts that do not correspond to image edges.
An example of this phenomenon can be seen in figure 7(c),
where the desk surface is segmented into several regions,
and in figure 7(g), where the bottom-left pepper is seg-
mented into two regions. Sometimes, these spurious cuts
disappear with a different choice of edge weights, as in fig-
ure 7(f), and sometimes they do not, as in figure 7(b).

The cause of this phenomenon is illustrated in figure 8.

Suppose that the desired cut boundary, which corresponds
to image edges, is �� � �� with length �� � ��. And sup-
pose that the boundary ��, which does not correspond to
image edges, has a large mean value �����

��
. In this case,

MMC will yield the undesired cut boundary �� � �� when
�����
��

�
�����
��

and �� � �� � ��. Nonetheless, a sub-
sequent recursive application of MMC will likely segment
region 	 � 
 along ��. This motivates the use of a second
region-merging criterion to address this problem.

The region-merging criterion that we use is also based
on the mean-cut cost function. Suppose that recursive ap-
plication of MMC yields the set ���� ��� ���� ��� of regions.
Repeatedly merge the neighbors �� and �� with the largest
������ ��� so long as ������ ��� 
 Æ. In the experiments de-
scribed below, we select the threshold Æ to obtain a desired
number of regions. Alternatively, Æ can be varied to yield a
multi-scale segmentation.

We applied the first region-merging criterion to the seg-
mentations in figures 7(b) and 7(f), removing regions with
less than �� pixels, and then applied the second region-
merging criterion with the target of obtaining �� and �� re-
gions respectively. These targets were empirically selected
to produce aesthetically pleasing segmentations. The results
are shown in figures 7(d) and 7(h). Figure 9 shows the ap-
plication of MMC along with both region-merging criteria
on various images. For this experiment, a Gaussian edge-
weight function was used with � � ��.

4. Conclusion

We have presented our novel approach to image segmen-
tation. This approach is based on a novel polynomial-time
algorithm for finding the minimum mean cut in a connected
planar graph. Our approach has four main advantages over
prior graph-based approaches to image segmentation: it al-
lows open cut boundaries, it guarantees that the partitions
are connected, the mean-cut cost function does not intro-
duce an explicit bias, and the minimum of this cost function
is largely insensitive to the choice of edge-weight function.
We have implemented our approach and used this imple-
mentation to illustrate these advantages on synthetic and
real sample images.

Our initial prototype implementation is slow. Further-
more, as discussed in section 3, the approach produces frag-
mented segmentations when presented with noisy input. We
are currently investigating enhancements to the approach
that we hope will address these issues and plan on reporting
on these results in the future.
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