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Abstract— In this paper we present a fast new fully dynamic
algorithm for the st-mincut/max-flow problem. We show how
this algorithm can be used to efficiently computeMAP solutions
for certain dynamically changing MRF models in computer
vision such as image segmentation. Specifically, given the solution
of the max-flow problem on a graph, the dynamic algorithm
efficiently computes the maximum flow in a modified version
of the graph. The time taken by it is roughly proportional to
the total amount of change in the edge weights of the graph.
Our experiments show that, when the number of changes in
the graph is small, the dynamic algorithm is significantly faster
than the best known static graph cut algorithm. We test the
performance of our algorithm on one particular problem: the
object-background segmentation problem for video. It should be
noted that the application of our algorithm is not limited to the
above problem, the algorithm is generic and can be used to yield
similar improvements in many other cases that involve dynamic
change.

Index Terms— Energy Minimization, Markov Random Fields,
Dynamic graph cuts, Maximum flow, st-mincut, Video segmen-
tation.

I. I NTRODUCTION

Graph cuts have been extensively used in computer vision to
compute the maximum a posteriori (MAP) solutions for vari-
ous discrete pixel labelling problems such as image restoration,
segmentation, voxel occupancy and stereo [17], [18], [24],
[26]–[30], [36], [38]. One of the primary reasons behind their
growing popularity is the availability of efficient algorithms
with low polynomial time algorithmic complexity for com-
puting the maximum flow (max-flow) in graphs of arbitrary
topology [1], [5]. These algorithms enable fast computation of
the minimum cost st-cut (st-mincut) problem, which in turn
allows for the computation of globally optimal solutions for
important classes of energy functions [12], [14], [16], [23],
[25]. This includes sub-modular functions of binary random
variables which have been successfully used for formulating
a wide range of problems [4], [32].

Greig et al. [14] were one of the first to use graph cuts
in computer vision. They showed that if the pairwise poten-
tials of a two labelpairwise Markov Random Field (MRF)
were defined as an Ising model, then the exact maximum a-
posteriori (MAP) solution can be obtained in polynomial time
by solving a st-mincut problem. The use of Graph cuts has
since been extended to MRFs with multiple labels (see [6],
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Fig. 1. Dynamic image segmentation using Graph Cuts. The images in
the first and third column are two consecutive frames of a video sequence
and their respective segmentations. The first image in the first column also
shows the user segmentation seeds (pixels marked by black (background) and
white (foreground) colours). The user marked image pixels are used to learn
histograms modelling foreground and background likelihoods (as in [4]). In
column 2, we observe the n-edge flows obtained correspondingto the MAP
solutions of theMRFs used for formulating the image segmentation problem
on the two frames. It can be clearly seen that the flows corresponding to
the two segmentations are similar. The flows from the first segmentation were
used as an initialization for the max-flow problem corresponding to the second
frame. The time taken for this procedure was much less than that taken for
finding the flows from scratch.

[16] and [30]). This equivalence between st-mincut and MAP-
MRF estimation makes graph cuts extremely important.

In many real world applications, multiple similar instances
of a problem need to be solved sequentially e.g. performing
image segmentation on the frames of a video. The data (image)
in this problem changes from one time instance to the next.
Given the solution to an instance of the problem, the question
arises as to whether this solution can help in solving other
similar instances. In this paper we answer this particular
question for energies that can be solved exactly using graph
cuts. Specifically, we show how the solution to the max-flow
problem corresponding to an MRF can be used in solving
anothersimilar MRF with slightly different energy terms.

Our algorithm records the flow obtained during the compu-
tation of the max-flow corresponding to a particular problem
instance. This recorded flow is used as an initialization in the
process of finding the max-flow solution corresponding to the
new problem instance (as seen in figure 1). Our algorithm
belongs to a broad category of algorithms which are referredto
asdynamic. These algorithms solve a problem by dynamically
updating the solution of the previous problem instance. Their
goal is to be more efficient than a recomputation of the solution
after every change from scratch. Given a directed weighted
graph, afully dynamic algorithm should allow for unrestricted
modification of the graph. This involves addition and deletion



of nodes and edges in the graph as well as modification of the
cost (capacity) of any graph edge.

Overview of Dynamic Graph Cuts: Dynamic algo-
rithms are not new to computer vision. They have been
extensively used in computational geometry for problems such
as range searching, intersections, point location, convexhull,
proximity and many others. For more on dynamic algorithms
used in computational geometry, the reader is referred to [8].
A number of algorithms have been proposed for the dynamic
mincut problem. Thorup [33] proposed a method which had
a O(

√
m) update time and took O(logn) time per edge to

list the cut edges wheren andm are the number of nodes
and edges in the graph respectively. However, the dynamic
st-mincutproblem has remained relatively ignored.

Gallo et al. [13] introduced the problem of parametric
max-flow and used a partially dynamic graph cut algorithm
for the problem. Their algorithm had a low polynomial time
complexity but was unable to handle arbitrary changes in
the graph. Recently, Cohen and Tamassia [9] proposed a
dynamic algorithm for the problem by showing how dynamic
expression trees can be used for maintaining st-mincuts with
O(logm) time for update operations. However, their algorithm
could only handle series-parallel diagraphs1.

Boykov and Jolly [4] were the first to use apartially
dynamic st-mincut algorithm in a vision application by propos-
ing a technique with which they could update capacities
of t-edges ofcertain graph edges, and recompute the st-
mincut dynamically. They used this method for performing
interactive image segmentation, where the user could improve
segmentation results by giving additional segmentation cues
(seeds) in an online fashion. Specifically, they described a
method for updating the cost of t-edges in the graph.

In this paper we present a new fully dynamic algorithm
for the st-mincut problem which allows for arbitrary changes
in the graph2. We show how this algorithm can be used
to dynamicallyperform MAP inference in an MRF. Such
an inference procedure is extremely fast and has been used
for a number of problems [7], [15], [21]. Recently, Juan
and Boykov [19] proposed an algorithm in which instead of
reusing flow, they reused the st-mincut solution corresponding
to the previous MRF instance to generate an initialization.

Organization of the Paper: An outline of the pa-
per follows. Section II provides an overview of the st-
mincut/maxflow problem. In section III we show how MRFs
can be used to formulate labelling problems such as image
segmentation. The procedure for minimizing energy functions
using graph cuts and the relationship between energy and
graph reparameterization is explained in section IV. Section
V shows how MAP solutions of dynamically changing MRFs
can be efficiently computed by reusing flow. Specifically, it de-
scribes how the residual graph can be transformed to reflect the
changes in the original graph using graph reparameterization,
and discusses issues related to the computational complexity
of the algorithm. In section VI, we describe how the process of
recomputing the st-mincut/max-flow can be further optimized

1Series-Parallel digraphs are graphs which are planar, acyclic and con-
nected.

2The first version of this paper appeared as [20].

by usingrecycledsearch trees. The procedure for performing
image segmentation on video sequences is described in section
VII-A. In the same section we compare the performance of
our dynamic algorithm with that of the st-mincut algorithm
described in [5].

II. PRELIMINARIES

In this section we provide a general overview of the
st-mincut/maxflow problem, and give the notation used in
the paper. A directed weighted graphG(V,E,C) with non-
negative edge weights, is defined by a set of nodesV , a set
of directed edgesE, and an edge cost functionC : E → R

which maps each edge (i, j) to a real numbercij3. We will
usen andm denote the number of nodes|V | and the number
of edges|E| in the graph respectively. Graphs used in the st-
mincut problem have certain special nodes called the terminal
nodes, namely the sources, and the sinkt. The edges in
the graph can be divided into two disjoint categories: t-
edges which connect a node to a terminal node, and n-edges
which connect nodes other than the terminal nodes with each
other. We make the following assumptions in our notation:
(i, j) ∈ E ⇒ (j, i) ∈ E, and (s, i) ∈ E ∧ (i, t) ∈ E for all
i ∈ V . These assumptions are non-restrictive as edges with
zero edge weights are allowed in our formulation. Thus we
can conform to our notation without changing the problem.

A cut is a partition of the node setV into two partsS
and S = V − S, and is defined by the set of edges (i, j)
such thati ∈ S andj ∈ S. The cost of the cut (S, S) is given
as: CS,S =

∑

i∈S,j∈S cij . An st-cut is a cut satisfying the
propertiess ∈ S and t ∈ S. Given a directed weighted graph
G, the st-mincut problem is that of finding a st-cut with the
smallest cost. By the Ford-Fulkerson theorem [11], this is
equivalent to computing the maximum flow from the source
to the sink with the capacity of each edge equal tocij [1].

Formulating The Max-Flow Problem: For a network
G(V,E) with a non-negative capacitycij associated with each
edge, the max-flow problem is to find the maximum flowf
from the source nodes to the sink nodet subject to the edge
capacity and mass balance constraints:

0 ≤ fij ≤ cij ∀(i, j) ∈ E, and (1)
∑

i∈ N(x)

(fxi − fix) = 0 ∀x ∈ V \{s, t} (2)

wherefij is the flow from nodei to nodej andN(x) is the
neighbourhood ofx i.e.N(x) consists of all nodes connected
by an edge tox [1].

Observe that we can initialize the flows in the t-edges of
any nodex of the graph asfsx = fxt = min(csx, cxt). This
corresponds to pushing flow through these edges from the
source to the sink and has no effect on the final solution of
the st-mincut problem. From this it can be deduced that the
solution of the st-mincut problem is invariant to the absolute
value of the terminal edge capacitiescsx and ctx. It only
depends on the difference of these capacities(cxt − csx).

3In the paper we restrict our attention to edge cost functionsof the form
C : E → R

+∪{0}.



Fig. 2. Graph Reparameterization. The figure shows a graph G its
reparameterization G1 obtained by adding a constantα to both the t-edges
of nodea2. Observe that although the cost of the st-mincut in G and G1

is different, the st-mincut includes the same edges for bothgraphs and thus
induces the exact same partitioning of the graph.

Adding or subtracting a constant to these capacities changes
the objective function by a constant and does not effect the
overall st-mincut solution as can be seen in figure 2. Such
transformations result in a reparameterization of the graph and
will be explained later in the paper.

Augmenting Paths, Residual Graphs:Given a flowfij ,
the residual capacityrij of an edge(i, j) ∈ E is the maximum
additional flow that can be sent from nodei to nodej using
the edges(i, j) and (j, i) or formally rij = cij − fij + fji.
A residual graphG(f) of a weighted graphG consists of
the node setV and the edges with positive residual capacity
(with respect to the flowf ). An augmenting path is a path
from the source to the sink along unsaturated edges of the
residual graph.

III. M ARKOV RANDOM FIELDS

MRFs for labelling problems are described next followed
by some examples in vision where dynamic MRFs occur.
Consider a random field consisting of a set of discrete
random variables{x1, . . . , xn} defined on the setV , such
that each variablexv takes values from the label setXv.
The set of all variablesxv, ∀v ∈ V is represented by the
vector x which takes values from the setX defined as
X = X1 ×X2 × . . .× Xn. Nv will be used to denote the set
consisting of indices of all variables which are neighbours
of the random variablexv in the graphical model. If each
configuration x is assigned a probabilityPr(x), then the
random field defined above is said to be a MRF [37] with
respect to a neighborhoodN = {Nv|v ∈ V} if and only if it
satisfies the positivity propertyPr(x) > 0 ∀x ∈ X , and the
Markovian property:

Pr(xv|{xu : u ∈ V−{v}}) = Pr(xv|{xu : u ∈ Nv}) ∀v ∈ V .
(3)

We follow the notation of [22] and formulate the MAP-
MRF estimation problem as an energy minimization problem.
The energy corresponding to a MRF configurationx is defined
as the negative log likelihood of its joint posterior probability
as:

E(x|θ) = − log Pr(x|D) − const. (4)

Here θ is the energy parameter vector defining the MRF
energy and is derived from the data. The energy of a con-
figuration for such a pairwise MRF can be written in terms
of unary and pairwise energy terms as:

E(x|θ) =
∑

v∈V

(

φ(xv) +
∑

u∈Nv

φ(xu, xv)

)

+ const. (5)

ψ(θ) will be used to denote the value of the energy of the
MAP configuration of the MRF and is defined as:

ψ(θ) = min
x∈X

E(x|θ). (6)

A.. MRFs for Image Segmentation

In the context of image segmentation,V corresponds to
the set of all image pixels,N is a neighbourhood defined
on this set4, each setXv comprises of the labels{l1, . . . , lL}
representing the different image segments, and the random
variables in the setx denote the labelling of the pixels
in the image. Note that every possible assignment of the
random variablesx (or configuration of the MRF) defines
a segmentation. The image segmentation problem can thus be
solved by finding the least energy configuration of the MRF.
The energy corresponding to a configurationx consists of a
likelihood and a prior term as:

Ψ1(x) =
∑

v∈V

(

φ(D|xv) +
∑

u∈Nv

ψ(xu, xv)

)

+ const, (7)

whereφ(D|xv) is the log likelihood which imposes individual
penalties for assigning labellk to pixel v and is given by

φ(D|xv) = − log Pr(v ∈ Sk|Hk) if xv = lk. (8)

HereHk is the RGB distribution forSk, the segment denoted
by labellk, Pr(v ∈ Sk|Hk) = Pr(Iv |Hk) andIv is the colour
of the pixel v. The prior ψ(xu, xv) takes the form of a
Generalized Potts model:

ψ(xu, xv) =

{

Kuv if xu 6= xv,

0 if xu = xv.
(9)

In MRFs used for image segmentation a contrast term is
added which favours pixels with similar colour having the
same label [2] [4] [6] [17]. This is incorporated in the energy
function by reducing the cost within the Potts model for
two labels being different in proportion to the difference in
intensities of their corresponding pixels. For instance, for the
experiments discussed in section VII-A, we use the term

γ(u, v) = λ exp

(−g2(u, v)

2σ2

)

1

dist(u, v)
, (10)

whereg2(u, v) measures the difference in the RGB values of
pixelsu andv, dist(u, v) gives the spatial distance betweenu
and v andσ is a model parameter. This is a likelihood term
(not prior) as it is based on the data. The energy function of
the MRF now becomes:

Ψ2(x) =
∑

v∈V

(

φ(D|xv) +
∑

v∈Nu

(φ(D|xu,xx) + ψ(xu,xv))

)

.

(11)

4For our experiments, we have used the standard 8-neighbourhood.



Fig. 3. Energy minimization using graph cuts. The figure shows how individual unary and pairwise terms of an energy function taking two binary variables
are represented and combined in the graph. Multiple edges between the same nodes are merged into a single edge by adding their weights. For instance, the
cost w1 of the edge (s, xa) in the final graph is equal to:w1 = θa;0 + θab;00. The cost of a st-cut in the final graph is equal to the energyE(x) of the
configurationx the cut induces. The minimum cost st-cut induces the least energy configurationx for the energy function.

The contrast term of the energy function is defined as

φ(D|xu,xv) =

{

γ(u, v) if xu 6= xv

0 if xu = xv.
(12)

B.. Dynamic Markov Random Fields

It can be observed that the energyΨ2 of the MRF defined
above for the image segmentation problem is dependent on
the dataD (the colour of the pixels of the image to be
segmented) and the parameters used in the energy function5.
This dependence results in any change in the data causing a
change in the energy function of the MRF. In many vision
problems the data infact does change with time resulting in
changes in the energy function of the MRF. We refer to
MRFs used for formulating such problems as beingdynamic.
For instance, this is the case when image segmentation is
performed on the frames of a video.

As the image (data) changes slightly from one frame to
the next it might be hoped that the solution of the problem
at the first frame can be used to speed up computation at the
second. We show that this conjecture is infact correct. The key
contribution of this paper is the dynamic max-flow algorithm
with which a solution of a dynamic MRF can be efficiently
computed using the solution of its previous state (see figure
1).

IV. ENERGY M INIMIZATION AND GRAPH

REPARAMETERIZATION

The most probable or the MAP configuration of a MRF
is the configuration having the least energy. Certain classes
of energy functions can be minimized exactly using graph

5This also holds true for other problems which are formulatedusing MRFs
such as the stereo labelling problem.

cuts. In this section we briefly describe the process of energy
minimization. We then explain the concept of Graph Repa-
rameterization which will be used later to explain how we can
minimize dynamic energy functions.

A. Energy Minimization using Graph Cuts

The procedure for energy minimization using graph cuts
comprises of building a graph in which each cut defines a
configurationx. The cost of a cut is equal to the energy
E(x|θ) of its corresponding configurationx. Finding the
minimum cost st-cut in this graph thus provides us with the
the configuration having the least energy. Kolmogorov and
Zabih [25] showed how and under what conditions energies
like (5) with binary random variables can be minimized exactly
using st-mincuts. Later, [16] defined a set of conditions under
which problems with multiple labels can be solved exactly.

We now explain the graph construction for minimizing
energies involving binary random variables. These function
need to be sub-modular to be solved exactly using graph cuts
[3], [25]. We use the notation of [22] and write the MRF
energy (5) as:

E(x|θ) = θconst+
∑

v∈V,i∈Xv

θv;iδi(xv) (13)

+
∑

(s,t)∈E,(j,k)∈(Xs,Xt)

θst;jkδj(xs)δk(xt),

whereθv;i is the penalty for assigning labeli to latent variable
xv, θst;ij is the penalty for assigning labelsi andj to the latent
variablesxs andxt and eachδj(xs) is an indicator function,
which is defined as:

δj(xs) =

{

1 if xs = j, wherej ∈ Xs

0 otherwise.



Fig. 4. Graph Reparameterization. The figure shows a graph G, its tworeparameterizations G1 and G2 along with their respective st-mincuts. The edges
included in the st-mincut are marked by dashed lines. The reparameterized graphs G1 and G2 are a results of two different valid transformations of graph
G. It can be clearly seen that reparameterized graphs G1 and G2 have the same st-mincut as graph G.

The individual unary and pairwise terms of the energy
function are represented by weighted edges in the graph.
Multiple edges between the same nodes are merged into a
single edge by adding their weights. The graph construction
for a two node MRF is shown in figure 3. The constant
term θconst of the energy does not depend onx and thus is
not considered in the energy minimization procedure. The st-
mincut in this graph provides us with the MAP solution. The
cost of this cut corresponds to the energy of the MAP solution.
The labelling of a latent variable depends on the terminal itis
disconnected from by the minimum cut6.

B. Energy and Graph Reparameterization

Energy parameter vectorsθ1 andθ2 are called reparameteri-
zations of each other if and only if∀x,E(x|θ1) = E(x|θ2) [3],
[22], [31], [34]. Note that this simply means that all possible
labellings x have the same energy under both parameter
vectorsθ1 and θ2, and does not imply thatθ1 = θ2. There
are a number of transformations which can be applied to a
energy parameter vectorθ to obtain its reparameterizationθ.
For instance the transformations given as:

∀i θv,i = θv,i + α, θconst = θconst − α and (14)

∀i, j θst,ij = θst,ij + α, θconst = θconst − α (15)

result in the reparameterization of the energy parameter vector.
As both parametersθ andθ define the same energy function,

the minimum energy labelling for both will be the same i.e.

x
∗ = arg min

x

E(x|θ1) = arg min
x

E(x|θ2) (16)

This means that the graphs constructed for minimizing the
energy functionsE(x|θ1) andE(x|θ2) (using the procedure
explained in the previous subsection) will have the same st-
mincut. We call these graphs reparameterizations of each other.
For any transformation of the energy function which results

6In our notation, if the node is disconnected from the source,we assign it
the label zero and one otherwise.

in such areparameterizationwe can derive a corresponding
transformation for a graph. Under these transformations the
resulting graph will be a reparameterization of the original
graph and thus will have the same st-mincut. The graph
transformations corresponding to energy transformationsgiven
by equations (14) and (15) are shown in figure 4.

The transformations given above are not the only way
to obtain a reparameterization. In fact pushing flow through
any path in the graph can be seen as performing a valid
transformation. The residual graph resulting from this flow
is a reparameterization of the original graph where no flow
was being passed. This can be easily observed from the fact
that the residual graph has the same st-mincut as the original
graph. In the next section we show how the property of graph
reparameterization can be used for updating the residual graph
when the original graph has been modified and the st-mincut
needs to be recomputed.

V. RECOMPUTINGMAP SOLUTIONS FORDYNAMIC MRFS

This section describes one of the primary contributions
of this paper. Having shown how energy functions defining
certain pairwise MRFs can be minimized exactly by solving a
st-mincut/maxflow problem, we now show how this max-flow
solution can be used to efficiently solve other MRFs defined
by similar energy functions.

Consider two MRFsMa and Mb whose corresponding
energy functionsEa and Eb differ by a few terms. As we
have seen in the previous section this implies that the graph
representing energyEb i.e. Gb differs from that representing
energyEa i.e.Ga by a few edge costs. Suppose we have found
the MAP solution ofMa by solving the max-flow problem on
the graphGa and now want to find the solution ofMb. Instead
of the conventional procedure of recomputing the max-flow on
Gb from scratch, we perform the computation by reusing the
flows obtained while solvingMa.

Boykov and Jolly [4], in their work on interactive image
segmentation used this technique for efficiently recomputing



the MAP solution when only the unary likelihood terms (8)
change (due to addition of new hard and soft constraints by the
user). However, they did not address the problem of handling
changes in the pairwise terms of the energy function which
result in changes in the cost of the n-edges of the graph. Our
method (explained below) can handle arbitrary changes in the
graph.

A.. Updating Residual Graphs

The flow through a graph defines a residual graph (as
explained in section II). Our algorithm works by updating
the residual graph obtained from the max-flow computation in
graphGa to make it representGb. This is done by reducing
or increasing the residual capacity of an edge according to the
change made to its cost going fromGa to Gb.

While modifying the residual graph certain flows may
violate the new edge capacity constraints(1). This is because
flow in certain edges might be greater than the capacity of
those edges underGb. To make these flows consistent with
the new edge capacities we reparameterize the updated graph
(using reparameterizations described in the previous section)
to make sure that the flows satisfy the edge capacity constraints
(1) of the graph. The max-flow is then computed on this
reparameterized graph. This gives us the st-mincut solution
of graphGb, and hence the MAP solution of MRFMb.

We now show how the residual graph is transformed to make
such flows consistent. We use the two graph transformations
given in section IV to increase the capacities of edges inGb

in which the flow exceeds the true capacity. These transfor-
mations lead to a reparameterization of the graphGb. We can
then solve the max-flow on this graph to get the solution of
the max-flow onGb.

The various changes that might occur to the graph going
from Ga to Gb can be expressed in terms of changes in the
capacity of t-edges and n-edges of the graph. The methods for
handling these changes will be discussed now. We usec

′

si to
refer to the new edge capacity of the edge (s, i). r

′

si and f
′

si

are used to represent the updated residual capacity and flow
of the edge(s, i) respectively.

1) Modifying t-edge Capacities:Our method for updating
terminal or t-edges is similar to the one used in [4] and is
described below.

The updated residual capacity of an edge(s, i) can be
computed as:r

′

si = rsi + c
′

si − csi. This can be simplified to:
r
′

si = c
′

si − fsi. If the flow fsi is greater than the updated
edge capacityc

′

si, it violates the edge capacity constraint (1)
resulting inr

′

si becoming negative. To make the flow consistent
a constantγ = fsi − c

′

si is added to the capacity of both
the t-edges{(s, i),(i, t)} connected to the nodei. As has been
observed in section 2 and in [4], this transformation is an
example of graph reparameterization which does not change
the minimum cut (it’s cost changes but not the cut itself).
For an illustration see figure 2. The residual capacities thus
become:r

′

si = c
′

si − fsi + γ = 0 and, r
′

it = cit − fit + γ, or
r
′

it = rit − c
′

si + fsi.
2) Modifying n-edge Capacities:We now describe how the

residual graph is updated when n-edge capacities are changed.

Observe that updating edge capacities in the residual graphis
simple if the new edge capacityc

′

ij is greater than or equal to
the old edge capacitycij . This operation involves addition of
extra capacity and thus the flow cannot become inconsistent.
The updated residual capacityr

′

ij is obtained as:

r
′

ij = rij + (c
′

ij − cij). (17)

Even if c
′

ij is less thancij , the procedure still remains trivial
if the flow fij is less than the new edge capacityc

′

ij . This is
due to the fact that the reduction in the edge capacity does
not affect the flow consistency of the network i.e flowfij

satisfies the edge capacity constraint (1) for the new edge
capacity. The residual capacity of the edge can still be updated
according to equation (17). The difference in this case is that
(c

′

ij − cij) is negative and hence will result in the reduction
of the residual capacity. In both these cases, the flow through
the edge remains unchanged i.e.f

′

ij = fij .
The problem becomes complex when the new edge capacity

c
′

ij is less than the flowfij . In this case,fij violates the
edge capacity constraint (1). To makefij consistent, we have
to retract the excess flow(fij - c

′

ij) from the edge(i, j). At
this point, the reader should note that a trivial solution for
this operation would be to push back the flow through the
augmenting path it originally came through. However such an
operation would be extremely computationally expensive. We
now show how we resolve this inconsistency in constant i.e.
O(1) time.

The inconsistency arising from excess flow through edge
(i, j) can be resolved by a single valid transformation of the
residual graph. This transformation is the same as the one
shown in figure 2 for obtaining graph G2 from G, and does
not change the st-mincut. It leads to a reparameterization of
the residual graph which has non-negative residual capacity for
the edge(i, j). The transformation involves adding a constant
α = fij − c

′

ij to the capacity of edges(s, i), (i, j), and(j, t)
and subtracting it from the residual capacity of edge(j, i). The
residual capacityrji of edge(j, i) is greater than the flowfij

passing through edge(i, j). As α is always less thanfij the
above transformation does not make the residual capacity of
edge(j, i) negative. The procedure for restoring consistency
is illustrated in figure 5.

B.. Complexity Analysis of Update Operations

Modifying an edge cost in the residual graph takes constant
time. Arbitrary changes in the graph like addition or deletion
of nodes and edges can be expressed in terms of modifying
an edge cost. The time complexity of all such changes is O(1)
except for deleting a node where the update time is O(k). Here
k is the degree of the node to be deleted7.

After the residual graph has been updated to reflect the
changes in the MRF the augmenting path procedure is used to
find the maximum flow. This involves repeatedly finding paths
with free capacity in the residual graph and saturating them.
When no such paths can be found i.e. the source and sink are

7The capacity of all edges incident on the node has to be made zero which
takes O(1) time per edge.



Fig. 5. Restoring consistency using Graph Reparameterization. The figure illustrates how edge capacities can be made consistent with the flow by
reparameterizing the residual graph. It starts by showing aresidual graph consisting of two nodesi and j. obtained after a max-flow computation. For
the second max-flow computation the capacity of edge (i, j) is reduced by 3 units resulting in the updated residual graph in which the residual capacity of
edge (i, j) is equal to -1. To make the residual capacities positive we reparameterize the graph by addingα = 1 to the capacity of edges (i, j), (s, i) and
(j, t) and subtracting it from the capacity of edge (j, i). This gives us the reparameterized residual graph in whichthe edge flows are consistent with the edge
capacities.

disconnected in the residual graph, we reach the maximum
flow.

The maximum flow from the source to the sink is an
upper bound on the number of augmenting paths found by
the augmenting path procedure. Also, the total change in edge
capacity bounds the increase in the flow∇f defined as:

∇f ≤
m

′

∑

i=1

|c′ei
− cei

|, where ei ∈ E

or, ∇f ≤ m
′

cmax wherecmax = max(|c′ei
− cei

|). Thus we
get alooseO(m

′

cmax) bound on the number of augmentations,
wherem

′

is the number of edge capacity updates.

VI. OPTIMIZING THE ALGORITHM

We have seen how by dynamically updating the residual
graph we can reduce the time taken to compute the st-mincut.
We can further improve the running time by using a technique
motivated by [5].

Typical augmenting path based methods start a new breadth-
first search for (source to sink) paths as soon as all paths of a
given length are exhausted. For instance, Dinic [10] proposed
an augmenting path algorithm which builds search trees to
find augmenting paths. This is a computationally expensive
operation, as it involves visiting almost all nodes of the graph,
and makes the algorithm slow if it has to be performed too
often. To counter this, Boykov and Kolmogorov [5] proposed
an algorithm in which they reused the search tree. In their
experiments, this new algorithm outperformed the best-known
augmenting-path and push-relabel algorithms on graphs com-
monly used in computer vision.

Motivated from their results we decided to reuse the search
trees available from the previous max-flow computation to
find the solution in the updated residual graph. This technique

saved us the cost of creating a new search tree and made our
algorithm substantially faster. The main differences between
our algorithm and that of [5] are the presence of the tree
restoration stage, and the dynamic selection of active nodes.
We will next describe how the algorithm of [5] works and then
explain how we modify it to recycle search trees for dynamic
graph cuts.

A.. Reusing Search Trees

The algorithm described in [5] maintains two non-
overlapping search treesS andT with roots at the sources
and the sinkt respectively. In treeS all edges from each parent
node to its children are non-saturated, while in treeT edges
from children to their parents are non-saturated. The nodes
that are not inS or T are calledfree. The nodes in the search
treesS andT can be eitheractive(cangrow by acquiring new
children along non-saturated edges) orpassive. The algorithm
starts by setting all nodes adjacent to the terminal nodes as
active. The three basic stages of the algorithm are as follows:

a) Growth Stage: The search trees S and T are grown
until they touch each other (resulting in an augmenting path) or
all nodes becomepassive. The active nodes explore adjacent
non-saturated edges and acquire new children from the set
of free nodes which now become active. As soon as all
neighbours of a given active node are explored the active node
becomes passive. When an active node comes in contact with
a node from the other tree an augmenting path is found.

b) Augmentation Stage: In this stage of the algorithm
flow is pushed through the augmenting path found in the
growth stage. This results in some nodes of the treesS and
T becomingorphanssince the edges linking them to their
parents become saturated. At this point the sink and source
and sink search trees have decomposed into forests.



Fig. 6. Segmentation in Videos using user seeds. The first image shows
one frame of the input video with user segmentation seeds (the back and
white boxes). The image pixels contained in these boxes are used to learn
histograms modelling foreground and background likelihoods. The second
image shows the segmentation result obtained using these likelihoods with
the method of [4]. The result contains a certain portion of the background
wrongly marked as the foreground due to similarity in colour. This error in
the segmentation can be removed by the user by specifying a hard constraint.
This involves marking a set of pixel positions in the wronglylabelled region
as background (shown as the checkered region in the second image). This
constraint is used for all the frames of the video sequence. The third image
is the final segmentation result.

c) Adoption Stage: During the adoption stage the search
trees are restored by finding a new valid parent (of the same
set) through a non-saturated edge for each orphan. If no
qualifying parent can be found, the node is made free.

B.. Tree Recycling for Dynamic Graph Cuts

We now explain our method for recycling search trees of the
augmenting path algorithm. Our algorithm differs from thatof
[5] in the way we initialize the set of active nodes and in the
presence of the Tree restoration stage.

1) Tree Restoration Stage:While dynamically updating the
residual graph (as explained in section V) certain edges of the
search trees may become saturated and thus need to be deleted.
This operation results in the decomposition of the trees into
forests and makes certain nodesorphans. We keep track of
all such edges and before recomputing the st-mincut on the
modified residual graph restore the trees by finding a new valid
parent for each of them. This process is similar to the adoption
stage and works as follows.

The aim of the tree restoration stage is two fold. First
to find parents for orphaned nodes, and secondly but more
importantly, to make sure that the length of the path from
the root node to all other nodes in the tree is as small as
possible. This is necessary to reduce the time spent passing
flow through an augmenting path. Note that longer augmenting
paths would lead to a slower algorithm. This is because the
time taken to update the residual capacities of the edges in the
augmenting path during the augmentation stage is proportional
to the length of the path.

The first objective of the restoration stage can be met by
using the adoption stage alone. For the second objective we
do the following: Suppose nodei belonged to the source tree
before the updates. For each graph nodei which has been
affected by the graph updates we check the residual capacities
of its t-edges ((s, i) or (i, t)). We can encounter the following
two cases:

1) rsi ≥ rit : The original parent of the node (in this case,
the source (s)) is reassigned as the parent of the node.

Fig. 7. Segmentation results of the human lame walk video sequence.

2) rsi < rit : The parent of the node is changed to the other
terminal node ‘sink’ (t). This means that the node has
now become a member of sink tree T. All the immediate
child nodes ofi are then made orphans as they had
earlier belonged the source tree.

The reassignment of parents of updated nodes according to the
above mentioned rules resulted in a moderate but significant
improvement in the results.

2) Dynamic Node Activation:The algorithm of [5] starts by
marking the set of all nodes adjacent to the terminal nodes as
active. This set is usually large and exploring all its constituent
nodes is computationally expensive. However this is necessary
as an augmenting path can pass through any such node.

In the case of the dynamic st-mincut problem however, we
can isolate a much smaller subset of nodes which need to be
explored for possible augmenting paths. The key observation
to be made in this regard is that all new possible augmenting
paths are constrained to pass through nodes whose edges have
undergone a capacity change. This results in a much smaller
active set and makes the max-flow computation significantly
faster. When no changes are made to the graph all nodes
remain passiveand thus our augmenting path algorithm for
computing the max-flow takes no time.

VII. A PPLICATIONS AND EXPERIMENTAL RESULTS

Our dynamic algorithm for the st-mincut problem has been
used for a number of problems [7], [15], [21]. Here we
demonstrate its performance on the problem of image segmen-
tation in videos. We provide quantitative results comparing its
performance with the dual-search tree algorithm proposed in
[5] which has been experimentally shown to be the fastest for
several vision problems including image segmentation8. We
refer this algorithm asstatic since it starts afresh for each
problem instance.

The dynamic algorithm which reuses the search trees will
be referred to as theoptimizeddynamic graph cut algorithm. It
should be noted that while comparing running times the time
taken to allocate memory for graph nodes was not considered.
Further, to make the experimental results invariant to cache
performance we kept the graphs in memory.

A. Image Segmentation in Videos

The object-background segmentation problem aims to cut
out user specified objects in an image [4]. We consider the

8For the static algorithm we used the authors original implementation.



case when this process has to be performed over all frames in
the video sequence. The problem is formulated as follows.

The user specifies hard and soft constraints on the segmenta-
tion by providing segmentation cues or seeds on only the first
frame of the video sequence. Thesoft constraintsare used to
build colour histograms for theobjectandbackground. These
histograms are later used for calculating the likelihood term
φ(D|fi) of the energy function (11) of the MRF [4] for all
the frames of the video sequence.

Thehard constraints are used for specifying pixel positions
which are constrained to take a specified label (object or
background) in all the frames of the video sequence. Note
that unlike soft constraints, the pixel positions specifiedunder
hard constraints do not contribute in the construction of the
colour histograms for theobject and background. This is
different from the user-input strategy adopted in [4]. In our
method the hard constraints are imposed on the segmentation
by incorporating them in the likelihood termφ(D|fi). This
is done by imposing a very high cost for a label assignment
that violates the hard constraints in a manner similar to [4].
This method for specifying hard constraints has been chosen
because of its simplicity. Readers should refer to [35] for
a sophisticated method for specifying hard constraints for
the video segmentation problem. Figure 6 demonstrates the
use of constraints in the image segmentation process. The
segmentation results are shown in figure 7.

B.. Experimental Results

The video sequences used in our tests had between one
hundred to a thousand image frames. For all the video se-
quences dynamically updating the residual graph produced
a decrease in the number of augmenting paths. Further the
dynamic algorithms (normal and optimized) were substan-
tially faster than thestatic algorithm. The average running
times per image frame for the static, dynamic and optimized-
dynamic algorithms for the human lame walk sequence9 of
size (368x256) were 91.4, 66.0, and 33.6 milliseconds and
for the grazing cow sequence of size (720x578) were 188.8,
151.3, and 78.0 milliseconds respectively. The time taken by
the dynamic algorithm includes the time taken to recycle the
search trees. The experiments were performed on a Pentium
4 2.8 GHz machine.

The graphs in figure 8 show the performance of the al-
gorithms on the first sixty frames of the human lame walk
sequence. Observe that the number of augmenting paths found
is lowest for the dynamic algorithm, followed by the dynamic
(optimized) and then the static algorithm. This differenceis
due to the use of recycled search trees in the optimized
algorithm.

VIII. R EUSING FLOW VS REUSING SEARCH TREES

In this section, the relative contributions of reusing flow and
search trees in improving the running time of the dynamic
algorithm are discussed.

The procedure for constructing a search tree has linear time
complexity and thus should be quite fast. Further as seen in

9Courtesy Derek Magee, University of Leeds.

Fig. 8. Running time and number of augmenting paths found by the different
algorithms. Observe as the first and second frames of the video sequence are
the same, the residual graph does not need to be updated, which results in no
augmenting paths found by the dynamic algorithms when segmenting frame
2. Further, the optimized dynamic algorithm takes no time for computing the
segmentation for the second image frame as theMRFs corresponding to the
first and second image frames are the same and thus no modifications were
needed in the residual graph and search trees. However, the normal dynamic
algorithm takes a small amount of time since it recreates thesearch trees for
every problem instance from scratch.

figure 8 using a fresh search tree after every graph update
results in fewer augmenting paths. From these results it might
appear that recycling search trees would not yield a significant
improvement in running time. However this is not the case
in practice as seen in figure 9. This is because although the
complexity of search tree construction is linear in the number
of edges in the graph, the time taken for tree construction is
still substantial. This is primarily due to the nature of graphs
used in computer vision problems. The number of nodes/edges
in these graphs may be of the order of millions. For instance,
when segmenting an image of size640× 480, max-flow on a
graph consisting of roughly3 × 105 nodes and more than 2
million edges needs to be computed. The total time taken for
this operation is 90 milliseconds (msec) out of which almost
15 msec is spent on constructing the search tree.

The time taken by the dynamic algorithm to compute the st-
mincut decreases with the decrease in the number of changes
made to the graph. However, as the time taken to construct
the search tree is independent of the number of changes, it
remains constant. This results in a situation where if only afew
changes to the graph are made (as in the case of min-marginal
computation [21]), the dominant part of computation time is
spent on constructing the search tree itself. By reusing search
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Fig. 9. Behavior of the dynamic algorithm. The figure illustrates how the
time taken by the dynamic algorithm (with/without tree recycling) changes
with the number of modifications made to the graph. The graph shows the
fraction of time taken to compute the st-mincut in the updated residual graph
(with/without tree recycling) compared to that taken for computing the st-
mincut in the original graph using the algorithm of [5]. For this experiment,
we used a graph consisting of1x105 nodes which were connected in a 8-
neighbourhood. The dynamic algorithm with tree recycling is referred as
dynamic(op).

trees we can get rid of this constant cost of creating a search
tree and replace it with a change dependent tree restoration
cost.

The exact amount of speed-up contributed by reusing flow
and search trees techniques varies with the problem instance.
For a typical interactive image segmentation example, the first
st-mincut computation takes 120 msec out of which 30 msec is
spent on constructing the search tree. We need to recompute
the st-mincut after further user interaction (which results in
changes in the graphs). For the later st-mincut computation,
if we construct a new search tree then the time taken by the
algorithm is 45 msec (a speed up of roughly 3 times) out of
which 30 msec is used for tree creation and 15 msec is used
for flow computation. However, if we use reuse the search
trees, then the algorithm takes only 25 msec (a speed up of 5
times) out of which 7 msec is used for recycling the tree and
18 msec is used for flow computation.

Our results indicate that when a small number of changes
are made to the graph the recycled search tree works quite
well in obtaining short augmenting paths. The time taken for
recycling search trees is also small compared to the time taken
to create a new search tree in a large graph. With increased
change in the graph the advantage in using the recycled search
tree fades due to the additional number of flow augmentations
needed as a result of longer augmentation paths obtained from
the search tree.

IX. CONCLUSION

In this paper we presented a newfully dynamic algorithm
for the st-mincut problem which can be used to find MAP
solutions for certain dynamically changing MRFs rapidly. It
should be noted that our method is generic and finds exact
solutions for all dynamic problems which can be formulated

as sub-modular energy functions of binary variables. The
results show that our algorithm is substantially faster than the
best known static st-mincut algorithm. We have demonstrated
how our method can be used to perform efficient image
segmentation in video sequences in a manner much faster than
previously possible.
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