Performance Considerations

0 Dynamic Partitioning of Resources
@ streaming multiprocessor resources
@ the CUDA occupancy calculator

9 the Compute Visual Profiler
@ getting started with conput epr of
@ analysis of the kernel mat ri xMul

9 Data Prefetching and Instruction Mix
@ registers between global and shared memory
@ maximizing instruction throughput

MCS 572 Lecture 35
Introduction to Supercomputing
Jan Verschelde, 6 April 2012

Introduction to Supercomputing (MCS 572) Performance Considerations 6 April 2012 1/26

Performance Considerations

Q Dynamic Partitioning of Resources
@ streaming multiprocessor resources

Introduction to Supercomputing (MCS 572) Performance Considerations 6 April 2012 2/26

streaming multiprocessor resources — part |

We have two graphics cards with respective compute capabilities 1.1
and 2.0: a GeForce 9400M and a Tesla C2050/C2070.

compute capability | 11| 20
maximum number of threads per block | 512 | 1,024
maximum number of resident blocks
per streaming multiprocessor 8 8
warp size 32 32
maximum number of resident warps
per streaming multiprocessor 24 48
maximum number of resident threads
per streaming multiprocessor 768 | 1,536

Introduction to Supercomputing (MCS 572) Performance Considerations 6 April 2012 3/26

dynamic partitioning of thread slots

During runtime, thread slots are partitioned
and assigned to thread blocks.

Streaming multiprocessors are versatile by their ability to dynamically
partition the thread slots among thread blocks.

They can
@ either execute many thread blocks of few threads each,
@ or execute a few thread blocks of many threads each.

In contrast, fixed partitioning where the number of blocks and threads
per block are fixed will lead to waste.

Introduction to Supercomputing (MCS 572) Performance Considerations 6 April 2012 4/26

interactions between resource limitations

The Tesla C2050/C2070 has 1,536 thread slots per streaming
multiprocessor. As 1,536 = 32 x 48, we have

number of thread slots = warp size x number of warps per block.

For 32 threads per block, we have 1,536/32 = 48 blocks
< at most 8 blocks per streaming multiprocessor.

To fully utilize both the block and thread slots,
to have 8 blocks, we should have

@ 1,536/8 = 192 threads per block, or
@ 192/32 = 6 warps per block.

Introduction to Supercomputing (MCS 572) Performance Considerations 6 April 2012 5/26

streaming multiprocessor resources — part Il

We have two graphics cards with respective compute capabilities 1.1
and 2.0: a GeForce 9400M and a Tesla C2050/C2070.

compute capability | 11 | 20
number of 32-bit registers
per streaming multiprocessor 8K 32K
maximum amount of shared memory
per streaming multiprocessor 16KB | 48KB
number of shared memory banks 16 32
amount of local memory per thread 16KB | 512KB
constant memory size 64KB
cache working set for constant memory
per streaming memory 8KB

Local memory resides in device memory, so local memory accesses
have the same high latency and low bandwidth as global memory.

Introduction to Supercomputing (MCS 572) Performance Considerations 6 April 2012 6/26

dynamic partitioning of resources

Registers hold frequently used programmer and compiler-generated
variables to reduce access latency and conserve memory bandwidth.

Variables in a kernel that are not arrays
are automatically placed into registers.

By dynamically partitioning the registers among blocks,
a streaming multiprocessor can accommaodate
@ more blocks if they require few registers, and

@ fewer blocks if they require many registers.

As with block and thread slots, there is a potential interaction between
register limitations and other resource limitations.

Introduction to Supercomputing (MCS 572) Performance Considerations 6 April 2012 7126

interactions between resource limitations
Consider the matrix-matrix multiplication example. Assume

@ the kernel uses 21 registers, and
@ we have 16-by-16 thread blocks.

How many threads can run on each streaming multiprocessor (SM)?

© We calculate the number of registers for each block:
16 x 16 x 21 = 5, 376 registers.

© We have 32 x 1,024 registers per SM:
32 x 1,024/5,376 = 6 blocks
and 6 < 8 = the maximum number of blocks per SM.

© We calculate the number of threads per SM:
16 x 16 x 6 = 1,536 threads
and we can have at most 1,536 threads per SM.

Introduction to Supercomputing (MCS 572) Performance Considerations 6 April 2012 8/26

a performance cliff
Suppose we use one extra register, 22 instead of 21.

© We calculate the number of registers for each block:
16 x 16 x 22 = 5,632 registers.

@ We have 32 x 1,024 registers per SM:
32 x 1,024/5,632 = 5 blocks.

© We calculate the number of threads per SM:
16 x 16 x 5 =1, 280 threads
and with 21 registers we could use all 1,536 threads per SM.

Adding one register led to a reduction of 17% in the parallelism.

When a slight increase in one resource leads to a dramatic reduction
in parallelism and performance, one speaks of a performance cliff.

Introduction to Supercomputing (MCS 572) Performance Considerations 6 April 2012 9/26

Performance Considerations

a Dynamic Partitioning of Resources

@ the CUDA occupancy calculator

o = = = 21N Ge
Introduction to Supercomputing (MCS 572) Performance Considerations

the CUDA occupancy calculator

[CUDA GPU Occupancy Chlculator

Registers Per Thread
Shared Memory Per Block (bytes)

{Don't edit anything below this line]

3] GPU Oceuy Data Is displayed here and in the graj

Active Threads plr Mu«ipmnlmr 1538

Active Warps per M 8|

Active Thread Blocks per Mumpronusor E
of each 100%)

Physical leul’i for GPU Compute
Threads per Warp
Warps per Mulnpmmsw

Threads per Multiprocessar

Thread Blocks per Multiprocessor

Total # of 32-bit registers per Multiprocessor

Register allocation unit size

Register allocation granularity

Registers per Thread

Shared Memory per Mulupmcessur(hytes)

Shared Memory Allocation uni

Warp et granularity (ror umx register allocation)
Maximum Thread Block Size

Allocated

isig)

= Allocatable

Cli detailed in: ne hy use this lator,
| Eor more information on NVIDIA CUDA, visit comicuda

|

|Your chosen resource usage is indicated by the red triangle on the graphs. The other
|data points represent the range of possible block sizes, register counts, and shared
|memory allocation.

Impact of Varying Block Size
N

(# warps)
8

Multiprocessor Warp Octipancy

0 54 128 192 256 320 384 448 512 576 640 704 768 B3 B06 5601024
Threads Per Block

Impact of Varying Register Count Per Thread

Warps {Thveads Per Biock | Threads Perviarp)

Per Block
I

Limit Per SM _Blocks Per SM
48] 8|

Registers (=Regysinrs Par Tread * Threads Per Block)

32768| 8]

(# warps)

snarm Mamnry {Bytes]

49153| 12|

Maximum Thread Blocks Per Multiprocessor

Multiprocessor Warp Ocaipancy

0 Supercompulti

ng (MCS 572)

| I
Physical Max Warps/SM = 48

Occupancy =48 / 48 = 100%

mance Consideration

I Registers Per Thread

6 April 2012 11/26

Performance Considerations

9 the Compute Visual Profiler

@ getting started with conput epr of

o = = = 21N Ge
Introduction to Supercomputing (MCS 572) Performance Considerations

getting started with conput epr of

Compute Visual Profiler is a graphical user interface based profiling
tool to measure performance and to find potential opportunities for
optimization in order to achieve maximum performance.

Login to dezon with ssh - X and go the directory
/usr/ I ocal / cuda/ conput eprof/bin
to launch the program conput epr of .

We look at one of the example projects nat ri xMul .

Introduction to Supercomputing (MCS 572) Performance Considerations 6 April 2012 13/26

Performance Considerations

9 the Compute Visual Profiler

@ analysis of the kernel mat ri xMul

o = = = 21N Ge
Introduction to Supercomputing (MCS 572) Performance Considerations

Introduction to Supel

GPU time summary

Gpu Time Summary Plot

GPU Time (Total)
0.00% 6.65% 13.30% 19.04% 26.59% 33.24% 39.80% 46.54% 53.18% 59.83%
matrixMul { 31)
fermiSgemm_v2_kernel val { 31)
gemm_kernellxl_tex_val {31)
memcpyDtoH (2)
memcpyHtoD 3)

66.48%

0.00% 6.65% 13.30% 19.94% 26.59% 33.24% 39.80% 46.54% 53.18% 59.83% 66.48%

matrixMul_sizeMult::Device_

ontext_0

« Kernel time = 87.20 % of total GPU time

« Memory copy time = 4.6 % of total GPU time

« Kernel taking maximum time = matrixMul (61.0% of total GPU time}

« Memory copy taking maximum time = memcpyDtoH (3.5% of total GPU time)
« There is no time overlap between memory copies and kernels on GPU

Analysis

nputing (MCS 572)

rmance Considerations 6 April 2012 15/26

limiting factor identification

| Analysis for kernel matrixMul on device Tesla C2050

Summary profiling information for the kernel:
+ Number of calls: 31

Minimum GPU time{us): 4184.67

Maximum GPU time{us): 4192.67

Average GPU time{us): 4188.50

GPU time (%): 61.04

Grid size: [20 30 1]

Block size: [32 32 1]

Limiting Factor

Achieved Instruction Per Byte Ratio: 10.87 { Balanced Instruction Per Byte Ratio: 3.57)
Achieved Occupancy: 0.67 (Theoretical Occupancy: 0.87)

IPC: 1.02 { Maximum IPC: 2)

Achieved glebal memaery throughput: 10.00 (Peak global memory throughputiGB/s): 144.00)

IPC = Instructions Per Cycle

Introduction to Supercomputing (MCS 572) Performance Considerations 6 April 2012 16/26

memory throughput analysis

Memory Throughput Analysis for kernel matrixMul on device Tesla C2050

* Kernel requested global memory read throughput{GB/s): 23.47
* Kernel requested global memory write throughput{GB/s): 0.59
+ Kernel requested global memory throughput(GB/s): 24.06

¢ L1 cache read throughput{GB/s): 23.47
+ L1 cache global hit ratio (%): 0.00

* Texture cache memory throughput{GB/s): 0.00
« Texture cache hit rate(%): 0.00
* L2 cache texture memory read throughput{GB/s): 0.00

* L2 cache global memory read throughput{GB/s): 23.47
* L2 cache global memory write throughput({GB/s): 0.59
* L2 cache global memory throughput{GB/s): 24.06

* Local memory bus traffic(%): 0.00

* Global memory excess load(%): 0.00
* Global memory excess store{%): 0.00

+ Achieved global memory read throughput{GB/s): 9.27
+ Achieved global memory write throughput(GB/s): 0.73
+ Achieved global memory throughput{GB/s): 10.00

* Peak global memory throughput(GB/s): 144.00

Introduction to Supercomputing (MCS 572) Performance Considerations 6 April 2012

17/26

instruction throughput analysis

Instruction Throughput Analysis for kernel matrixMul on device Tesla C2050

* |PC: 1.02
* Maximum IPC: 2
* Divergent branches(%): 0.00
* Control flow divergence(%): 0.04
Beplayed Instructions{%): 0.57
Global memory replay(%): 2.25
Local memaory replays(%): 0.00
Shared bank conflict replay({%): 0.00
* Shared memory bank conflict per shared memory instruction(%:): 0.00

IPC = Instructions Per Cycle

Introduction to Supercomputing (MCS 572) Performance Considerations 6 April 2012 18/26

occupancy analysis

Occupancy Analysis for kernel matrixMul on device Tesla C2050

s Kernel details: Grid size: [20 30 1], Block size: [32 32 1]

» Register Ratio: 0.8125 (26624 /32768) [25 registers per thread]
s Shared Memory Ratio: 0.166667 ([8192 /49152) [8192 bytes per Block]

= Active Blocks per 5M: 1 (Maximum Active Blocks per SM: 8)
s Active threads per SM: 1024 (Maximum Active threads per SM: 1536)

* Potential Occupancy: 0.666667 (32 /48)

e Occupancy limiting factor: Block-Size

Introduction to Supercomputing (MCS 572) Performance Considerations 6 April 2012 19/26

Performance Considerations

9 Data Prefetching and Instruction Mix
@ registers between global and shared memory

Introduction to Supercomputing (MCS 572) Performance Considerations 6 April 2012 20/26

accessing global memory

One of the most important resource limitations is access to global
memory and long latencies.

Scheduling other warps while waiting for memory access is powerful,
but often not enough.

A complementary to warp scheduling solution is to prefetch the next
data elements while processing the current data elements.

Combined with tiling, data prefetching provides extra independent
instructions to enable the scheduling of more warps to tolerate long
memory access latencies.

Introduction to Supercomputing (MCS 572) Performance Considerations 6 April 2012 21/26

prefetching in registers

For the tiled matrix-matrix multiplication,
the code below combines prefetching with tiling:

load first tile fromglobal nmenory into registers;

| oop

{
deposit tile fromregisters to shared nenory;
__syncthreads();
| oad next tile fromglobal nenory into registers;
process current tile;
__syncthreads();

}

The prefetching adds independent instructions between loading the
data from global memory and processing the data.

Introduction to Supercomputing (MCS 572) Performance Considerations 6 April 2012 22/26

Performance Considerations

9 Data Prefetching and Instruction Mix

@ maximizing instruction throughput

Introduction to Supercomputing (MCS 572) Performance Considerations 6 April 2012 23/26

throughput of arithmetic instructions

Number of operations per clock cycle per multiprocessor:

compute capability | 1x] 2.0
32-bit floating-point
add, multiply, multiply-add 8| 32
64-bit floating-point
add, multiply, multiply-add 1| 16

32-bit integer
add, logical operation, shift, compare 8| 32
32-bit floating-point

reciprocal, square root, log, exp,
sine, cosine 2 4

Introduction to Supercomputing (MCS 572) Performance Considerations 6 April 2012 24126

loop unrolling

Consider the following code snippet:
for(int k = 0; k <m k++)
AQillj] += ALiJ[K]*B[K][]];
Counting all instructions:
@ 1 loop branch instruction (k < m);
@ 1 loop counter update instruction (k++);
@ 3 address arithmetic instructions ([i] [j], [i]1[k], [kKI[jil);
@ 2 floating-point arithmetic instructions (+ and *).
Of the 7 instructions, only 2 are floating point.

Loop unrolling reduces the number of loop branch instructions,
loop counter updates, address arithmetic instructions.

Note: gcc -funroll -1 oops is enabled with gcc - Q2.

Introduction to Supercomputing (MCS 572) Performance Considerations 6 April 2012 25/26

summary and exercises

We covered 86.3, 86.4, and 86.5 in the book of Kirk & Hwu;
using data from Appendix G in the CUDA programming Guide.

© Examine the occupancy calculator for the graphics card on your
laptop or desktop.

© Read the user guide of the compute visual profiler and perform a
run on GPU code you wrote (of some previous exercise or your
code for the third project). Explain the analysis of the kernel.

© Redo the first “interactions between resource limitations” of this
lecture using the specifications for compute capability 1.1.

© Redo the second “interactions between resource limitations” of
this lecture using the specifications for compute capability 1.1.

Introduction to Supercomputing (MCS 572) Performance Considerations 6 April 2012 26/26

	Dynamic Partitioning of Resources
	streaming multiprocessor resources
	the CUDA occupancy calculator

	the Compute Visual Profiler
	getting started with computeprof
	analysis of the kernel matrixMul

	Data Prefetching and Instruction Mix
	registers between global and shared memory
	maximizing instruction throughput

