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Analysis-Driven Optimization f,%\

Determine the limits for kernel performance

= Memory throughput

= Instruction throughput

= Latency

= Combination of the above
= Use appropriate performance metric for each kernel

=  For example, for a memory bandwidth-bound kernel, Gflops/s don’t make sense
Address the limiters in the order of importance

= Determine how close resource usage is to the HW limits

= Analyze for possible inefficiencies

= Apply optimizations

Often these will just be obvious from how HW operates

© NVIDIA Corporation 2011



Presentation Outline <X

NVIDIA

ldentifying performance limiters
Analyzing and optimizing :
=  Memory-bound kernels (Oct 11th, Tim Schroeder)
= [nstruction (math) bound kernels
= Kernels with poor latency hiding
= Register spilling (Oct 4th, Paulius Micikevicius)

For each:
= Brief background
= How to analyze
= How to judge whether particular issue is problematic
= How to optimize
= Some cases studies based on “real-life” application kernels

Most information is for Fermi GPUSs
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Notes on profiler S:ZD.A

= Most counters are reported per Streaming Multiprocessor (SM)
= Not entire GPU
= EXceptions: L2 and DRAM counters

= A singlerun can only collect a few counters

=  Multiple runs are needed when profiling more counters
- Done automatically by the Visual Profiler
- Have to be done manually using command-line profiler
- Use CUPTI API to have your application collect signals on its own
= Counter values may not be exactly the same for repeated runs

= Threadblocks and warps are scheduled at run-time
= S0, “two counters being equal” usually means “two counters within a small delta

= See the profiler documentation for more information

”
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Limited by Bandwidth or Arithmetic? <3

NVIDIA

= Perfect fp32 instructions:bytes ratio for Fermi C2050:
with ECC on
with ECC off
= These assume fp32 instructions, throughput for other instructions varies
= Algorithmic analysis:
= Rough estimate of arithmetic to bytes ratio

= Actual Code likely uses more instructions and bytes
than algorithmic analysis suggests:
= Instructions for loop control, pointer math, etc.
= Address pattern may result in more memory transactions/bandwidth

=  Two ways to investigate:
- Use the profiler (quick, but approximate)
- Use source code modification (more accurate, more work intensive)
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CUDA 4.0: Visual Profiler Optimization Hints

@ convolutionColumnsKernel analysis - [Sessiond - Device_0 - Context_0]

File View

= Visual Profiler gathers hardware signals [
Vi a CO m m an d R | i n e p rOfi | e r. Instruction Throughput Analysis for kernel convolutionColumnsKernel on device GeForce GTX 480

= Profiler computes derived values:
» [nstruction throughput |
= Memory throughput =
= GPU Occupancy k
(Computation detailed in documentation)

= Using these derived values,
profiler hints at limiting factors
This talk shows the thoughts

Factors that may affect analysis

behind Profiler hints, but

Limsting Factor

also how to interpret GPU profiler signals [ . =
while doing your own experiments, e.g. | -
through source-code modifications P e

S 495419 1653.09
Occupancy Analysis | ;  canen o IR v acer A

© NVIDIA Corporation 2011



<

NVIDIA.

Optimizations for Instruction Throughput
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Possible Limiting Factors <

NVIDIA

= Raw instruction throughput
=  Know the kernel instruction mix
= fp32, fp64, int, mem, transcendentals have different throughputs
- Refer to the CUDA Programming Guide / Best Practices Guide

= Can examine assembly, if needed:
- Can look at PTX (virtual assembly), though it's not the final optimized code
- Can look at post-optimization machine assembly (--dump-sass, via cuobjdump)

= Instruction serialization ("instruction replays" for warp's threads)

= QOccurs when threads in a warp execute/issue the same instruction
after each other instead of in parallel
- Think of it as “replaying” the same instruction for different threads in a warp
= Some causes:
- Shared memory bank conflicts
- Constant memory bank conflicts
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Instruction Throughput: Analysis N>

NVIDIA

= Profiler counters (both incremented by 1 per warp):

. counts instructions encountered during execution
also includes additional issues due to serialization

= Difference between the two: instruction issues that happened due to
serialization, instruction cache misses, etc.

- Will rarely be 0, concern only if it's a significant percentage of instructions issued

= Compare achieved throughput to HW capabilities

= Peak instruction throughput is documented in the Programming Guide
= Profiler also reports throughput:

- GT200: as a fraction of theoretical peak for fp32 instructions

- Fermi: as IPC (instructions per clock).
Note that theoretical maximum depends on instruction mix:
e.g. fp32 only: IPC of 2.0 possible; fp64 instructions: IPC of 1.0 possible
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Instruction Throughput: Optimization ,f,?z,,m

= Use intrinsics where possible (__sin(), __sincos(), __exp(), etc.)
= Avallable for a number of math.h functions

= 2-3 bits lower precision, much higher throughput
Refer to the CUDA Programming Guide for details

= Often a single instruction, whereas a non-intrinsic is a SW sequence
= Additional compiler flags that also help (select GT200-level precision):
= -ftz=true : flush denormals to O
= -prec-div=false  : faster fp division instruction sequence (some precision loss)
= -prec-sqri=false : faster fp sqrt instruction sequence (some precision l0ss)

= Make sure you do fp64 arithmetic only where you mean it:

= fp64 throughput is lower than fp32
= fp literals without an “f" suffix ( 34.7 ) are interpreted as fp64 per C standard

10
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Serialization: Profiler Analysis >

NVIDIA

= Serialization is significant if
IS significantly higher than
= CUDA 4.0 Profiler: Instructions replayed %

= Warp divergence (Warp has to execute both branch of if() )

= Profiler counters: divergent_branch, branch
Profiler derived: Divergent branches (%)).

= However, only counts the branch instructions, not the rest of divergent instructions.

= Better: ‘threads instruction executed’ counter:
Increments for every instruction by number of threads that executed the instruction.

= |f there is no divergence, then for every instruction it should increment by 32
(and threads_instruction_executed = 32* instruction_executed)

= Thus: Control_flow_divergence% =
100 * ((32 * instructions executed) — threads instruction executed)/(32* instructions executed)

11
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Serialization: Profiler Analysis >

NVIDIA

= SMEM bank conflicts
= Profiler counters:

- incremented by 1 per warp for each replay
(or: each n-way shared bank conflict increments by n-1)

- double increment for 64-bit accesses
: . incremented by 1 per warp per instruction
= Bank conflicts are significant if both are true:
- Instruction throughput affects performance
Is significant compared to
- Shared bank conflict replay (%) =
100 * (I1_shared_bank_conflict)/instructions_issued

- Shared memory bank conflict per shared memory instruction (%) =
100 * (11 shared bank conflict)/(shared load + shared store)
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Serialization: Analysis with Modified Code <3

NVIDIA

Modify kernel code to assess performance improvement if
serialization were removed
= Helps decide whether optimizations are worth pursuing

Shared memory bank conflicts:
= Change indexing to be either broadcasts or just threadldx.x
= Should also declare smem variables as volatile
- Prevents compiler from “caching” values in registers
Warp divergence:
= Change the if-condition to have all threads take the same path
= Time both paths to see what each costs

13
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Serialization: Optimization <3

NVIDIA

= Shared memory bank conflicts:

= Pad SMEM arrays
- For example, when a warp accesses a 2D array’s column
- See CUDA Best Practices Guide, Transpose SDK whitepaper

= Rearrange data in SMEM

= Warp serialization:

= Try grouping threads that take the same path into same warp
- Rearrange the data, pre-process the data
- Rearrange how threads index data (may affect memory perf)

14
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Case Study: SMEM Bank Conflicts .f,?zm

= A different climate simulation code kernel, fp64

= Profiler values:
= [nstructions:
- Executed /issued: 2,406,426 / 2,756,140
- Difference: 349,714 ( of instructions issued were “replays”)
« GMEM:
- Total load and store transactions: 170,263
- Instr:byte ratio: 4

- Suggests that instructions are a significant limiter
(especially since there is a lot of fp64 math)

= SMEM:
- Load / store: 421,785/ 95,172
- Bank conflict: 674,856 (really 337,428 because of double-counting for fp64)

- This means a total of 854,385 SMEM access instructions
( + , of which replays
= Solution: Pad shared memory array

Performance increased by 15%
- replayed instructions reduced down to 1%

15
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Instruction Throughput: Summary <3

NVIDIA

= Analyze:
= Check achieved instruction throughput
= Compare to HW peak (note: must take instruction mix into consideration)
= Check percentage of instructions due to serialization
= Optimizations:
= Intrinsics, compiler options for expensive operations
=  Group threads that are likely to follow same execution path
=  Avoid SMEM bank conflicts (pad, rearrange data)

16
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NVIDIA.

Optimizations for Latency

17
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Latency: Analysis <3

NVIDIA

= Suspect latency issues if:
= Neither memory nor instruction throughput rates are close to HW theoretical rates

= Poor overlap between mem and math
- Full-kernel time is significantly larger than max{mem-only, math-only}

= Two possible causes:

= Insufficient concurrent threads per multiprocessor to hide latency
- Occupancy too low
- Too few threads in kernel launch to load the GPU

- Indicator: elapsed time doesn’t change if problem size is increased (and with
it the number of blocks/threads)

= Too few concurrent threadblocks per SM when using
can prevent overlap between math and mem within the same threadblock

18
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Simplified View of Latency and Syncs N>

NVIDIA

Kernel where most math cannot be
executed until all data is loaded by

s Memory-only time the threadblock
] Math-only time

| Full-kernel time, one large threadblock per SM

time > 19
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Simplified View of Latency and Syncs N>

NVIDIA

Kernel where most math cannot be

executed until all data is loaded by
I Memory-only time the threadblock

| | Math-only time

— | Full-kernel time, one large threadblock per SM

_: Full-kernel time, two threadblocks per SM
_: (each half the size of one large one)

time > 20
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Latency: Optimization ,f,%A

» [nsufficient threads or workload:
= Best: Increase the level of parallelism (more threads)
= Alternative: Process several output elements per thread — gives more independent
memory and arithmetic instructions (which get pipelined) - downside: code complexity
= Synchronization Barriers:

= Can assess impact on perf by commenting out __ syncthreads()
- Incorrect result, but gives upper bound on improvement

= Try running several smaller threadblocks
- Less hogging of SMs; think of it as SM “pipelining” blocks
- In some cases that costs extra bandwidth due to more halos

= More information and tricks:

= Vasily Volkov, GTC2010: “Better Performance at Lower Occupancy”
http://www.qgputechconf.com/page/qgtc-on-demand.html#session2238

21
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>
Su m m a‘ry NVIDIA
= Determining what limits your kernel most:

= Arithmetic, memory bandwidth (Oct 11th), latency, register spilling (Oct 4th)

= Address the bottlenecks in the order of importance
= Analyze for inefficient use of hardware
= Estimate the impact on overall performance
=  Optimize to use hardware most efficiently

= More resources:

= Profiler documentation! (Especially on derived profiler values)
=  Prior CUDA tutorials at Supercomputing

- http://gpgpu.org/{sc2007,sc2008,sc2009,sc2010}
= GTC2010 talks: http://www.nvidia.com/gtc2010-content

= CUDA Programming Guide, CUDA Best Practices Guide

22
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