
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 2, FEBRUARY 2011 545

Multiregion Image Segmentation by
Parametric Kernel Graph Cuts

Mohamed Ben Salah, Member, IEEE, Amar Mitiche, Member, IEEE, and Ismail Ben Ayed, Member, IEEE

Abstract—The purpose of this study is to investigate multire-
gion graph cut image partitioning via kernel mapping of the image
data. The image data is transformed implicitly by a kernel func-
tion so that the piecewise constant model of the graph cut for-
mulation becomes applicable. The objective function contains an
original data term to evaluate the deviation of the transformed
data, within each segmentation region, from the piecewise con-
stant model, and a smoothness, boundary preserving regulariza-
tion term. The method affords an effective alternative to complex
modeling of the original image data while taking advantage of the
computational benefits of graph cuts. Using a common kernel func-
tion, energy minimization typically consists of iterating image par-
titioning by graph cut iterations and evaluations of region param-
eters via fixed point computation. A quantitative and comparative
performance assessment is carried out over a large number of ex-
periments using synthetic grey level data as well as natural images
from the Berkeley database. The effectiveness of the method is also
demonstrated through a set of experiments with real images of a
variety of types such as medical, synthetic aperture radar, and mo-
tion maps.

Index Terms—Graph cuts, image segmentation, kernel k-means.

I. INTRODUCTION

I MAGE segmentation is a fundamental problem in computer
vision. It has been the subject of a large number of theo-

retical and practical studies [1]–[3]. Its purpose is to divide an
image into regions answering a given description. Many studies
have focused on variational formulations because they result in
the most effective algorithms [4]–[11]. Variational formulations
[4] seek an image partition which minimizes an objective func-
tional containing terms that embed descriptions of its regions
and their boundaries. The literature abounds of both continuous
and discrete formulations.

Continuous formulations view images as continuous func-
tions over a continuous domain [4]–[6]. The most effective min-
imizes active curve functionals via level sets [2], [3], [6]. The
minimization relies on gradient descent. As a result, the algo-
rithms converge to a local minimum, can be affected by the
initialization [6], [12], and are notoriously slow in spite of the
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various computational artifacts which can speed their execution
[13]. The long time of execution is the major impediment in
many applications, particularly those which deal with large im-
ages and segmentations into a large number of regions [12].

Discrete formulations view images as discrete functions over
a positional array [9], [14]–[16], [18], [19]. Combinatorial op-
timization methods which use graph cut algorithms have been
the most efficient. They have been of intense interest recently as
several studies have demonstrated that graph cut optimization
can be useful in image analysis. Very fast methods have been
implemented for image segmentation [15], [20]–[25], motion
and stereo segmentation [26], [27], tracking [28], and restora-
tion [11], [14]. Following the work in [10], objective functionals
typically contain a data term to measure the conformity of the
image data within the segmentation regions to statistical models
and a regularization term for smooth segmentation boundaries.
Minimization by graph cuts of objective functionals with a
piecewise constant data term produce nearly global optima [11]
and, therefore, are less sensitive to initialization.

Unsupervised graph cut methods, which do not require user
intervention, have used the piecewise model, or its Gaussian
generalization, because the data term can be written in the
form required by the graph cut algorithm [11], [25], [29],
[30]. However, although useful, these models are not generally
applicable. For instance SAR images are best described by
the Gamma distribution [31]–[33] and polarimetric images
the Wishart distribution or the complex Gaussian [12], [34].
Even within the same image, different regions may require
completely different models. For example, the luminance
within shadow regions in sonar imagery is well modeled by the
Gaussian distribution whereas the Rayleigh distribution is more
accurate in the reverberation regions [35]. The parameters of all
such models do not depend upon the data in a way that would
preserve the form of the data term required by the graph cut
algorithm and, as a result, the models cannot be used. The form
of the objective function must be a sum over all pixels of pixel
or pixel neighborhood dependent data and variables. Variables
which are global over the segmentation regions do not apply if
they cannot be written in a way that affords such a form. The
parameters of a Gaussian are, in discrete approximation, linear
combinations of image data and, as a result, can be used in the
objective function.

One way to introduce more general models is to allow user
interaction. Several interactive graph cut methods have used
models more general than the Gaussian by adding a process to
learn the region parameters at any step of the graph cut seg-
mentation process. These parameters become part of the data at
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Fig. 1. Illustration of nonlinear 3-D data separation with mapping. Data is non-
linearly separable in the data space. The data is mapped to a higher dimensional
feature (kernel) space so as to have a better separability, ideally linear. For the
purpose of display, the feature space in this example is of the same dimension
as the original data space. In general, the feature space is of higher dimension.

each step. However, the parameter learning and the segmenta-
tion process are only loosely coupled in the sense that they do
not result from the objective function optimization. Current in-
teractive methods have treated the case of the foreground/back-
ground segmentation, i.e., the segmentation into two regions.
The studies in [10], [14] have described the regions by their
image histograms and [17], [18] used mixtures of Gaussians. Al-
though very effective in several applications, for instance image
editing, interactive methods do not extend readily to multiregion
segmentation into a large number of regions, where user inter-
actions and general models, such as histograms and mixtures of
Gaussians, become intractable. Note that it is always possible
to use a given model in unsupervised graph cut segmentation if
this model were learned beforehand. In this case, the model be-
comes part of the data. However, modeling is notoriously diffi-
cult and time consuming [36]. Moreover, a model learned using
a sample from a class of images is generally not applicable to
images of a different class.

The purpose of this study is to investigate kernel mapping to
bring the unsupervised graph cut formulation to bear on multi-
region segmentation of images more general than Gaussian. The
image data is mapped implicitly via a kernel function into data
of a higher dimension so that the piecewise constant model, and
the unsupervised graph cut formulation thereof, becomes appli-
cable (see Fig. 1 for an illustration). The mapping is implicit be-
cause the dot product, the Euclidean norm thereof, in the higher
dimensional space of the transformed data can be expressed via
the kernel function without explicit evaluation of the transform
[37]. Several studies have shown evidence that the prevalent ker-
nels in pattern classification are capable of properly clustering
data of complex structure [37]–[43]. In the view that image seg-
mentation is spatially constrained clustering of image data [44],
kernel mapping should be quite effective in segmentation of var-
ious types of images.

The proposed functional contains two terms: an original
kernel-induced term which evaluates the deviation of the
mapped image data within each region from the piecewise con-
stant model and a regularization term expressed as a function of
the region indices. Using a common kernel function, the objec-
tive functional minimization is carried out by iterations of two

consecutive steps: 1) minimization with respect to the image
segmentation by graph cuts and 2) minimization with respect
to the regions parameters via fixed point computation. The pro-
posed method shares the advantages of both simple modeling
and graph cut optimization. Using a common kernel function,
we verified the effectiveness of the method by a quantitative
and comparative performance evaluation over a large number
of experiments on synthetic images. In comparisons to existing
graph cut methods, the proposed method brings advantages in
regard to segmentation accuracy and flexibility. To illustrate
these advantages, we also ran the tests with various classes
of real images, including natural images from the Berkeley
database, medical images, and satellite data. More complex
data, such as color images and motion maps, have also been
used.

The remainder of this paper is organized as follows. The
next section reviews graph cut image segmentation commonly
stated as a maximum a posteriori (MAP) estimation problem
[10], [14], [17], [29]. Section III introduces the kernel-induced
data term in the graph cut segmentation functional. It also gives
functional optimization equations and the ensuing algorithm.
Section IV describes the validation experiments, and Section V
contains a conclusion.

II. UNSUPERVISED PARAMETRIC GRAPH CUT SEGMENTATION

Let be an image
function from a positional array to a space of photometric
variables such as intensity, disparities, color or texture vectors.
Segmenting into regions consists of finding a partition

of the discrete image domain so that each region is
homogeneous with respect to some image characteristics.

Graph cut methods state image segmentation as a label as-
signment problem. Partitioning of the image domain amounts
to assigning each pixel a label in some finite set of labels

. A region is defined as the set of pixels whose label is
, i.e., is labeled . The problem consists

of finding the labeling which minimizes a given functional de-
scribing some common constraints. Following the pioneer work
of Boykov and Jolly [10], functionals which are often used and
which arise in various computer vision problems are the sum
of two characteristic terms: a data term to measure the confor-
mity of image data within the segmentation regions to a sta-
tistical model and a regularization term (the prior) for smooth
regions boundaries. Definition of the data term is crucial to the
ensuing algorithms and is the main focus of this study. In this
connection, several existing methods state image segmentation
as a MAP estimation problem [10], [14], [17], [18], [25], [29],
[30], [45]–[47], where optimization of the region term amounts
to maximizing the conditional probability of pixel data given
the assumed model distributions within regions, . In
the context of interactive image segmentation, these model dis-
tributions are estimated from user interactions [14], [17], [18].
In this connection, Histograms [14] and mixture of Gaussian
models (MGM) [17] are commonly used to estimate model dis-
tributions. In the context of unsupervised image segmentation,
i.e., segmentation without user interactions, some parametric
distributions, such as the Gaussian model, were amenable to
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graph cut optimization [29], [30]. To write down the segmen-
tation functional, let be an indexing function. assigns each
point of the image to a region

(1)

where is the finite set of region indices whose cardinality is
less or equal to . The segmentation functional can then be
written as

(2)

where is the data term and the prior. is a positive factor.
The MAP formulation using a given parametric model defines
the data term as follows:

(3)

In this statement, the piecewise constant segmentation model, a
particular case of the Gaussian distribution, has been the focus
of several recent studies [11], [29], [30] because the ensuing
algorithms are computationally simple. Let be the piecewise
constant model parameter of region . In this case, the data
term is given by

(4)

The prior is expressed as follows:

(5)

with a neighborhood set containing all pairs of neighboring
pixels and is a smoothness regularization func-
tion given by the truncated squared absolute difference [11],
[21], [29] where

is a constant.
Although used most often, the piecewise constant model is,

generally, not applicable. For instance, natural images require
more general models [48], and the specific, yet important,
SAR and polarimetric images require the Rayleigh and Wishart
models [12], [31], [32]. In the next section, we will introduce
a data term which references the image data transformed via
a kernel function, and explain the purpose and advantages of
doing so.

III. SEGMENTATION FUNCTIONAL IN THE

KERNEL INDUCED SPACE

In general, image data is complex. Therefore, computation-
ally efficient models, such as the piecewise Gaussian distribu-
tion, are not sufficient to partition nonlinearly separable data.
This study uses kernel functions to transform image data: rather
than seeking accurate (complex) image models and addressing
a non linear problem, we transform the image data implicitly
via a mapping function , typically nonlinear, so that the piece-
wise constant model becomes applicable in the mapped space

and, therefore, solve a (simpler) linear problem (refer to Fig. 1).
More importantly, there is no need to explicitly compute the
mapping . Using the Mercer’s theorem [37], the dot product in
the feature space suffices to write the kernel-induced data term
as a function of the image, the regions parameters, and a kernel
function. Furthermore, neither prior knowledge nor user inter-
actions are required for the proposed method.

A. Proposed Functional

Let be a nonlinear mapping from the observation space
to a higher (possibly infinite) dimensional feature/mapped space

. A given labeling assigns each pixel a label and, consequently,
divides the image domain into multiple regions. Each region is
characterized by one label:

. Solving image segmentation in a kernel-induced space
with graph cuts consists of finding the labeling which minimizes

(6)

measures kernel-induced non Euclidean distances between
the observations and the regions parameters for

.
In machine learning, the kernel trick consists of using a linear

classifier to solve a nonlinear problem by mapping the original
nonlinear data into a higher dimensional space. Following the
Mercer’s theorem [37], which states that any continuous, sym-
metric, positive semidefinite kernel function can be expressed
as a dot product in a high-dimensional space, we do not have
to know explicitly the mapping . Instead, we can use a kernel
function, , verifying

(7)

where “ ” is the dot product in the feature space.
Substitution of the kernel functions gives

(8)

which is a nonEuclidean distance measure in the original data
space corresponding to the squared norm in the feature space.

Now, the simplifications in (8) lead to the following kernel-
induced segmentation functional

(9)
The functional (9) depends both upon regions parameters,

, and the labeling . In the next subsection,
we describe the segmentation functional optimization strategy.
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B. Optimization

Functional (9) is minimized with an iterative two-step op-
timization strategy. Using a common kernel function, the first
step consists of fixing the labeling (or the image partition) and
optimizing with respect to statistical regions parameters

via fixed point computation. The second step
consists of finding the optimal labeling/partition of the image,
given region parameters provided by the first step, via graph
cut iterations. The algorithm iterates these two steps until con-
vergence. Each step decreases with respect to a parameter.
Thus, the algorithm is guaranteed to converge at least to a local
minimum.

1) Update of the Region Parameters: Given a partition of the
image domain, the derivative of with respect to , ,
yields the following equations:

(10)

For each pixel , the -neighborhood system we adopt, , is
of size 4, i.e., it is compound of the four horizontally and verti-
cally adjacent pixels to . Let be the set of neighbors of
verifying and . Then (10)
can be written as

(11)

The sum in (11) can be restricted to pixels laying on the
boundary of each region . Indeed, for a pixel in the in-
terior of , i.e., and , all neighbors belong to

so that . This simplifies (11) to

Table I lists commonly used kernel functions [39]. In all our
large number of experiments, we used the radial basis function
(RBF) kernel. The RBF kernel has been prevalent in pattern
data clustering [39], [43], [59]. With this kernel, the necessary
condition for a minimum of the segmentation functional

TABLE I
EXAMPLES OF PREVALENT KERNEL FUNCTIONS

with respect to region parameter , , is the following
fixed-point equation:

(12)

where

(13)
and designates set cardinality. A proof of the existence of a
fixed point is given in the Appendix A. Therefore, a minimum
of with respect to the region parameters can be computed by
gradient descent or fixed-point iterations using (12). The RBF
kernel, although simple, yields outstanding results on a large
set of experiments with images of various types (see the experi-
mental Section IV). Also, note that, obviously, this RBF kernel
method does not reduce to the gaussian model methods com-
monly used in the literature [17], [29]. The difference can be
clearly seen in the fixed point update of the region parameters
in (12) which, in the case of the Gaussian model, would be the
simple mean update inside each region.

2) Update of the Partition With Graph Cut Optimization: In
each iteration of this algorithm, the first step, described previ-
ously, is followed by a second step which minimizes the seg-
mentation functional with respect to the partition of the image
domain. The second step, based upon graph cut optimization,
seeks the labeling minimizing functional . In the following,
we give some basic definitions and notations. For easier referral
to the graph cut literature, we will use the word label to mean
region index.

Let be a weighted graph, where is the set of
vertices (nodes) and the set of edges. contains a node for
each pixel in the image and two additional nodes called termi-
nals. Commonly, one is called source and the other is called sink.
There is an edge between any two distinct nodes and .
A cut is a set of edges verifying:

• terminals are separated in the graph ;
• no subset of separates terminals in .

This means that a cut is a set of edges the removal of which
separates the terminals into two induced subgraphs. In addi-
tion, this cut is minimal in the sense that none of its subsets
separates the terminals into the same two subgraphs. The min-
imum cut problem consists of finding the cut , in a given graph,
with the lowest cost. The cost of a cut, denoted , equals
the sum of its edge weights. By setting properly the weights
of graph , one can use swap moves from combinatorial opti-
mization [11] to compute efficiently minimum cost cuts corre-
sponding to a local minimum of functional . For each pair of
labels , swap moves find the minimum cut in the subgraph
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TABLE II
WEIGHTS ASSIGNED TO THE EDGES OF THE GRAPH FOR MINIMIZING THE

PROPOSED FUNCTIONAL WITH RESPECT TO THE PARTITION

. The set is equal to , i.e.,
it consists of the set of vertices labeled or and termi-
nals and . The set consists of edges connecting nodes of

between them and to terminals and .
Given region parameters provided by the first step, this step

consists of iterating the search for the minimum cut on the sub-
graph over all pairs of labels. To do so, the graph weights
need to be set dynamically whenever region parameters and the
pair of labels change. Table II shows the weights assigned to
the graph edges for minimizing functional (9) with respect to
the partition.

IV. EXPERIMENTAL RESULTS

Recall that the intended purpose of the proposed parametric
kernel graph cut method (KM) is to afford an alternative image
modeling by implicitly mapping the image data by a kernel
function so that the piecewise constant model becomes appli-
cable. Therefore, the purpose of this experimentation is to show
how KM can segment images of a variety of types without an
assumption regarding image model or models.

To this end, we have two types of validation tests:
1) quantitative verification, via pixel misclassification fre-

quency, using:
• synthetic images of various models;
• multimodel images, i.e., images composed of regions

each of a different model;
• simulations of real images such as SAR.

2) real images of three types:
• SAR, which are best modeled by a Gamma distribu-

tion;
• medical/polarimetric, which are best modeled by a

Wishart distribution;
• natural images of the Berkeley database—these re-

sults will be evaluated quantitatively using the pro-
vided multioperator manual segmentations.

Additional experiments using vectorial images, namely color
and motion, will also be given.

A. Performance Evaluation With Synthetic Data

In this subsection, we first show two typical examples of our
large number of experiments with synthetic images and define
the measures we adopted for performance analysis: the con-
trast and the percentage of misclassified pixels (PMP). Fig. 3(a)
and (d) depicts two different versions of a two-region synthetic
image, each perturbed with a Gamma noise. In the first version
[Fig. 3(a)], noise parameters result in a small overlap (significant
contrast) between the intensity distributions within the regions
as shown in Fig. 2(a). In the second version [Fig. 3(d)], there is

Fig. 2. Image intensity distributions. (a) Small overlap. (b) Significant overlap.

Fig. 3. Segmentation of two Gamma noisy images with different contrasts.
(a),(d) Noisy images with different contrasts. (b),(e) Segmentation boundary re-
sults with PGM. (c),(f) segmentation results with KM. Images size: 128� 128.

a significant overlap between the intensity distributions as de-
picted in Fig. 2(b). The larger the overlap, the more difficult the
segmentation [50].

The piecewise constant segmentation method and its piece-
wise Gaussian generalization have been the focus of most
studies and applications [11], [29], [30], [51] because of
their tractability. In the following, evaluation of the proposed
method, referred to as kernelized method (KM), is systemati-
cally supported by comparisons with the piecewise Gaussian
method (PGM).

The PGM was used first to segment, as depicted in Fig. 3(b)
and (e), the two versions of the two-region image with different
contrast values. As the actual noise model is a Gamma model,
segmentation quality obtained with the PGM was significantly
affected when the contrast is small in Fig. 3(e). However, the
KM yielded almost the same results quality for both images
[Fig. 3(c) and3(f)], although the second image undergoes a sig-
nificant overlap between the intensity distributions within the
two regions as shown in Fig. 2(b).

The previous example, although simple, showed that, without
assumptions as to the images model, the KM can segment im-
ages whose noise model is different from piecewise Gaussian.
To demonstrate that the KM is a flexible and effective alter-
native to image modeling, we proceeded to a quantitative and
comparative performance evaluation over a very large number
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Fig. 4. (a) Synthetic images with Gamma (first row) and Exponential (second row) noises. (b) Segmentation boundary results with PGM. (c) Segmentation adapted
to the actual noise model; and (d) The KM. Image size: 241� 183.

of experiments. We generated more than 100 versions of a syn-
thetic two-region image, each of them is the combination of a
noise model and a contrast value. The noise models we used in-
clude the Gaussian, exponential and Gamma distributions. We
segmented each image with the PGM, the KM and the actual
noise model, i.e., the noise model used to generate the image at
hand.1 The contrast values were measured by the Bhattacharyya
distance between the intensity distributions within the two re-
gions of the actual image [50]

(14)

where and denote the intensity distributions within the
two regions and is the Bhattacharyya co-
efficient measuring the amount of overlap between these dis-
tributions. Small values of the contrast measure , correspond
to images with high overlap between the intensity distributions
within the regions. We carried out a comparative study by as-
sessing the effect of the contrast on segmentation accuracy for
the three segmentations methods. We evaluated the accuracy of
segmentations via the percentage of misclassified pixels (PMP)
defined, in the two-region segmentation case, as

(15)

where and denote the background and foreground of the
ground truth (correct segmentation) and and denote the
background and foreground of the segmented image.

One example from the set of experiments we ran on syn-
thetic data is depicted in Fig. 4. We show two different noisy
versions of a piecewise constant two-region image perturbed
with a Gamma (first row) and exponential noises (second row).
The overlap between the intensity distributions within regions
is relatively important in both images of Fig. 4(a). Indeed, the
Gamma noisy image has a contrast of , and the expo-
nentially noisy image (second row) a contrast of . The

1By the method using the actual noise model, we mean the method adapted
for the noise model of the image at hand. For example, if we treat a synthetic
image perturbed with a Gamma noise, the PGM and KM are compared together
with the segmentation method where the parametric conditional probability in
(3) is supposed Gamma.

PGM yielded unsatisfactory results [Fig. 4(b)]; the percentage
of misclassified pixels was 36% for the Gamma noise and 42%
for the exponential noise. The white contours are not visible be-
cause the regions they enclose are very small. When the correct
model is assumed2 [Fig. 4(c)], better results were obtained. Al-
though no assumption was made as to the noise model, the KM
yielded a competitive segmentation quality [Fig. 4(d)]. For in-
stance, in the case of the image perturbed with an exponential
noise, the method adapted to the actual model, i.e., the exponen-
tial distribution, yielded a PMP equal to 5.2% wheras the KM
yielded a PMP less than 2.6% for both noisy images. The pro-
posed method allows much more flexibility in practice because
the model distribution of image data and its parameters do not
have to be fixed.

Our comparative study investigated the effect of the contrast
on the PMP over more than 100 experiments. Several synthetic
two-region images were generated from the Gaussian, Gamma
and exponential noises. For each noise model, the contrast be-
tween the two regions was varied gradually, which yielded more
than 30 versions. For each image, we evaluated the segmenta-
tion accuracy, via the PMP, for the three segmentation methods:
The KM, the PGM, and segmentation when the correct model
and its parameters are assumed, i.e., the model and parameters
used to generate the image of interest.

First, we segmented the subset of images perturbed with the
Gaussian noise using both the KM and PGM methods, and dis-
played the PMP as a function of the contrast [Fig. 5(a)]. In this
case, the actual model is the piecewise Gaussian model which
corresponds to the PGM. Therefore; we plotted only two curves.
The higher the PMP, the higher the segmentation error and the
poorer the segmentation quality. Although fully unsupervised,
the KM yielded approximately the same error as segmentation
with the correct model whose parameters are learned in advance,
i.e., the Gaussian model in this case.

2Note that, for comparisons, embedding models such Gamma and exponential
in the data term is not directly amenable to graph cut optimization. Instead, we
assume that these parametric distributions are known beforehand. This is similar
to several previous studies which used interactions to estimates the distributions
of the segmentation regions. The negative log-likelihood of these distributions
is, thus, used to set regional penalties in the data term [10], [14], [23]. Note
that assuming that regions distributions are known beforehand is in favor of
the methods we compared with and, therefore, would not bias the comparative
appraisal of the proposed kernel method.
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Fig. 5. Evaluation of segmentation error for different methods over a large number of experiments (PMP as a function of the contrast): comparisons over the
subset of synthetic images perturbed with a Gaussian noise in (a), the exponential noise in (b), and the Gamma noise in (c).

Fig. 6. Image with different noise models. (a) Noisy image. (b) Segmentation
boundary at convergence. (c) Regions labels at convergence. (d)–(f) Segmen-
tation regions separately. (h) Segmentation boundary at convergence with the
PGM. (i) Regions labels at convergence with PGM. � � � for both methods.
Image size: 163� 157. Note that a value of parameter � approximately equal
to 2 is shown to be optimal for distributions from the exponential family such
as the piecewise Gaussian model [50]. The study in [50] shows that this value
corresponds to the minimum of the mean number of misclassified pixels, and
has an interesting minimum description length (MDL) interpretation.

Second, we segmented the set of images perturbed with the
exponential noise with PGM, KM and the method adapted to
the actual model, i.e., the exponential model in this case. In
Fig. 5(b), the PMP is plotted as a function of the contrast. The
PGM undergoes a high error gradient at some Bhattacharyya
distance. This is consistent with the level set segmentation ex-
periments in [49], [50]. When is superior to 0.55, all methods
yield a low segmentation error with a PMP less than 5%. When
the contrast decreases , the KM outperforms clearly
the PGM and behaves like the correct model for a large range of
Bhattacharyya distance values [refer to Fig. 5(b)].

Similar experiments were run with the set of images per-
turbed with a Gamma noise, and a similar behavior was ob-
served [refer to Fig. 5(c)]. These results demonstrate that the
KM can deal with various classes of image noises and very small
contrast values. It yields competitive results in comparison to
using the correct model, neither the model nor its parameters

Fig. 7. (a) Simulated multilook SAR image. (b) Segmentation at convergence
with KM. (c)–(f) Segmentation regions separately. � � ���. Image size:
512� 512.

were learned a priori. This is an important advantage of the pro-
posed method-it relaxes assumptions as to the noise model and,
therefore, is a flexible alternative to image modeling.

Another important advantage of the KM is the ability to seg-
ment multimodel images, i.e., images whose regions require
different models. For instance, this can be the case with syn-
thetic aperture radar (SAR) images where the intensity follows
a Gamma distribution in a zone of constant reflectivity and a
K distribution in a zone of textured reflectivity [52]. The lumi-
nance within shadow regions in sonar imagery is well modeled
by the Gaussian distribution while the Rayleigh distribution is
more accurate in the reverberation regions [35].

To demonstrate the ability of KM to process multimodel
images, consider the synthetic image of three regions, each
with a different noise model in Fig. 6(a). A Gaussian dis-
tributed noise has been added to the clearer region, a Rayleigh
distributed noise to the gray, and a Poisson distributed noise to
the darker region. The final segmentation (i.e., at convergence)
with the KM is displayed in Fig. 6(b) where each region is
delineated by a colored curve. Fig. 6(c) shows each region, in
the final segmentation, represented by its corresponding label
and Fig. 6(d)–6(f) show the segmentation regions separately.
As expected, the PGM yielded corrupted segmentation results
[see the segmentation regions at convergence in Fig. 6(h),
and/or the labels at convergence in Fig. 6(i)]. This experiment
demonstrates that the KM can discriminate different distribu-
tions within one single image.
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Fig. 8. (a) Monolook SAR image. (b) Segmentation boundary at convergence with KM. (c) Segmentation labels. (d) Segmentation boundary at convergence with
PGM. Values of � were set for each method in order to give the best results. Image size: 361� 151.

Fig. 9. (a) SAR image of the Flevoland region. (b) Segmentation boundary at convergence. (c) Segmentation labels. � � ���. Image size: 512� 800.

The preceding example used a multimodel image with ad-
ditive noise. The purpose of this next example is to show that
KM is also applicable to multimodel images with multiplicative
noise such as SAR. It is generally recognized that the presence
of multiplicative speckle noise is the single most complicating
factor in SAR segmentation [31]–[33]. Fig. 7(a) depicts an am-
plitude 8-look3 synthetic 512 512 SAR image compound of
four regions. The KM was applied with an initialization of four
regions with their parameters chosen arbitrarily. The purpose of
this experiment, is to show the ability of the KM to adapt sys-
tematically to this kind of noise model. Fig. 7(b) depicts final
segmentation regions, each represented by its label at conver-
gence. These segmentation regions are displayed separately in
Fig. 7(c)–7(f).

B. Real Data

The following experiments demonstrate KM applied to three
different types of images: SAR, polarimetric/medical, and the
images of the Berkeley database. We also include additional ex-
periments with vectorial images, namely color and motion.

3In single-look SAR images, the intensity is given by � � � � � , where �

and � denote the real and imaginary parts of the complex signal acquired from
the radar. For multilook SAR images, the L-look intensity is the average of the
L intensity images [31].

1) SAR and Polarimetric/Medical Images: As mentioned
earlier, SAR image segmentation is generally acknowledged
to be difficult [31], [48] because of the multiplicative speckle
noise. We also recall that SAR images are best modeled by
Gamma distribution [31]. Fig. 8(a) depicts a monolook SAR
image where the contrast is very low in many spots of the
image. Detecting the edges of the object of interest, in such
case, is very sensible. In Fig. 8(b), we show the final segmenta-
tion of this image into two regions, where the region of interest
is delineated by the colored curve. In Fig. 8(c), each region is
represented by its parameter (corresponding to label ) at
convergence. As we can see, the PGM produces unsatisfactory
results although we used the value of parameter which gives
the best visual result. Another example of real SAR images
is given in Fig. 9(a). This SAR image depicts the region of
Flevoland in Netherland. Fig. 9(b)–(c) depicts, respectively, the
final segmentation and segmentation regions represented with
their parameters at convergence.

This next example uses medical/polarimetric images, best
modeled by a Wishart distribution [12]. The brain image, shown
in Fig. 10(a), was segmented into three regions. In this case, the
choice of the number of regions is based upon prior medical
knowledge. Segmentation at convergence and final labels are
displayed as in previous examples. Fig. 10(d) depicts a spot
of very narrow human vessels with very small contrast within
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Fig. 10. Brain and Vessel images. (a),(d) Original images. (b),(e) Segmenta-
tions at convergence. (c),(f) Final labels.

some regions. The results obtained in both cases are satisfying.
The most important aim of this experiment is to demonstrate
the ability of the proposed method to adapt automatically to
this class of images acquired with special techniques other than
the common ones.

These results with gray level images show that the proposed
method is robust and flexible; it can deal with various types of
images.

2) Natural Images-Berkeley Database: We compare the KM
against five unsupervised algorithms which are publicly avail-
able on natural images from the Berkeley database: Mean-Shift
[53], NCuts [9], CTM [54], FH [55], and PRIF [56]. As our pur-
pose is to address a variety of image models, we perform also
comparative tests on the synthetic dataset used in Section IV-A
to study the ability of these methods to adapt to different noise
models. These comparisons are based basically on two perfor-
mance measures which seem to be among the most correlated
with human segmentation in term of visual perception: The
probabilistic rand index (PRI) and the variation of information
(VoI)4 [54], [57]. Since all methods are unsupervised, we use
both training and test images in the Berkeley database which
consists of 300 color images of size 481 321. To measure the
accuracy of the results, a set of benchmark segmentation results
provided by four to seven human observers for each image are
available [58]. The PRI is conceived to take into account this
variability of segmentations between human observers as it,
not only, counts the number of pairs of pixels whose labels are
consistent between automatic and ground truth segmentations,
but also averages with regard to various human segmentations
[57].

For the comparative appraisal, internal parameters of the
five used algorithms are set (as in [54]) to optimal values or
to values suggested by the authors. These parameters are:

for Mean-shift [53]; for NCuts
[9]; for FH [55]; which gives
the best PRI for CTM [54], and

4We used the Matlab codes provided by Allen Y. Yang to compute PRI and
VoI measures. This code is available on-line at http://www.eecs.berkeley.edu/
~yang/software/lossy_segmentation/.

TABLE III
AVERAGE PERFORMANCES OF THE KM METHOD AGAINST FIVE UNSUPERVISED

ALGORITHMS IN TERMS OF THE PRI AND VOI MEASURES ON THE BERKELEY

DATABASE [58]. THE FIRST LINE CORRESPONDS TO PERFORMANCES OF

HUMAN OBSERVERS

for PRIF [56]. As in [54], [56], the color images are normalized
to have the longest side equal to 320 pixels due to memory
issues.

As the purpose of our method is to address various image
noise models, we compare the KM on two datasets: the Berkeley
database for natural images and the synthetic dataset containing
images with three noise models: Gaussian, Gamma and expo-
nential. In the first comparative study, we tested the KM against
five unsupervised algorithms which are available on-line. After
that, the two methods which obtained the best PRI scores in the
first comparative study, PRIF and FH for instance, are tested
against the KM on the synthetic database. The KM has been
run with an initial maximum number of regions and
the regularization weight . Note that, in this work, a re-
gion is a set of pixels having the same label which is different
from works in [54], [56], and [58] where it is rather a set of non
connected pixels belonging to the same class. Experimentally, a
value of agrees with the average number of segments
from the human subjects.

Table III shows the quantitative comparison of KM against
the five other algorithms on the Berkeley benchmark. Values of
PRI are in , higher is better and VoI ranges in , lower
is better. The KM outperforms CTM, mean-shift, and NCuts in
terms of the PRI indice although it is not conceived to specially
work on natural images as the CTM does for example. The FH
yields better performance than KM in terms of PRI but not the
VoI. In terms of VoI, the KM outperforms mean-shift, NCuts,
and FH. It is not surprising that the CTM yielded better VoI
than the KM as it optimizes an information-theoretic criterion
(recall that VoI measures the average conditional entropy of one
segmentation given the other). PRIF is the unique method which
yields the best results in terms of both measures.

Based upon these performances in terms of the PRI, we also
compared the KM with both PRIF and FH on images of the
synthetic multimodel image dataset, images which are very dif-
ferent from natural images. We recall that these images are per-
turbed with Gaussian, Gamma, and exponential noises and the
contrasts between the foreground and the background varies
considerably (see Section IV-A). As shown in Table IV, the KM
outperforms PRIF and FH algorithms in terms of both indices.
We kept the same internal parameters used in the first com-
parison on Berkeley database for the three algorithms. This is
mainly because the purpose is to compare the behavior of the
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Fig. 11. Examples of segmentations obtained by the KM algorithm on color images from Berkeley database. Although displayed in gray level, all the images are
processed as color images.

TABLE IV
AVERAGE PERFORMANCES OF THE KM METHOD AGAINST TWO UNSUPERVISED

ALGORITHMS IN TERMS OF THE PRI AND VOI MEASURES ON THE SYNTHETIC

DATASET OF SECTION IV-A

different methods regarding different kind of images without
any specific tuning for each dataset.

Overall, the KM reached competitive results as it gives rela-
tively good results in terms of two segmentation indices for nat-
ural images, and the best results for the synthetic images com-
pared to two state of the art algorithms. Fig. 12 depicts the dis-
tribution of the PRI indice corresponding to the KM over the

Fig. 12. Distribution of PRI measure of the KM applied to the images of
Berkeley database. � � ��, � � �. Images size 320� 214.
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Fig. 13. Segmentation of the Road and Marmor sequences. (a) Motion map of the Road sequence. (b) Segmentation at convergence of Road sequence. (c) Moving
object segmentation region. (d) Motion map of Marmor sequence. (e) Segmentation at convergence of Marmor sequence. (f)-(g) Moving objects separately.

300 images of Berkeley database. Note the relative low vari-
ance especially for low scores standard deviation . For
visual inspection, we show some examples of these segmenta-
tions obtained by the KM in Fig. 11.

3) Vectorial Data: In this part, we run experiments on vec-
torial images in order to test the effectiveness of the method for
more complex data. We show a representative sample of the tests
with motion sequences. Color images have been already treated
in Section IV-B-II with the Berkeley database. In an -vecto-
rial image, each pixel value is viewed as a vector of size .
The kernels in Table I support vectorial data and, hence, may be
applied directly.

Motion sequences are the kind of vectorial data that we
consider here for experimentation. In the following, we seg-
ment optical flow images into motion regions. Optical flow
at each region is a 2-D vector computed using the
method in [60]. We consider two typical examples: the Road
image sequence (refer to the first row of Fig. 13) and the
Marmor sequence (refer to the second row of Fig. 13). The
Road sequence is compound of two regions: a moving vehicle
and a background. Marmor sequence contains three regions:
two moving objects in different directions and a background.
The optical flow field is represented, at each pixel, by a vector
as shown in Fig. 13(a) and (d). Final segmentations are shown
in Fig. 13(b) and (e) where each moving object is delineated by
a different colored curve. In Fig. 13(c), (f), and (g), we display
the segmented moving objects separately.

V. CONCLUSION

This study investigated multiregion graph cut image seg-
mentation in a kernel-induced space. The method consists of
minimizing a functional containing an original data term which
references the image data transformed via a kernel function.
The optimization algorithm iterated two consecutive steps:
graph cut optimization and fixed point iterations for updating
the regions parameters. A quantitative and comparative per-
formance study over a very large number of experiments on

synthetic images illustrated the flexibility and effectiveness
of the proposed method. We have shown that the proposed
approach yields competitive results in comparison with using
the correct model learned in advance. Moreover, the flexibility
and effectiveness of the method were tested over various types
of real images including synthetic SAR images, medical and
natural images, as well as motion maps.

APPENDIX

Consider the scalar function

(A.1)

where is the RBF kernel used in our experiments. In the fol-
lowing, we prove that this function has at least one fixed point.

The continuous variable is a continuous grey level which,
typically, belongs to a given interval . Similarly, and

lay in the same interval. Hence, the following inequali-
ties are automatically derived:

(A.2)

It results from these inequalities that . Conse-
quently, the function is as follows:
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Let us define the function as follows:

One can easily note that . As is continuous
(sum of continuous functions) over , there is at least one

such that . Hence, the function has at
least as a fixed-point.
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