Automated Dynamic Analysis of CUDA Programs

Michael Boyer
University of Virginia
Dept. of Computer Science
Charlottesville, VA 22904
boyer@cs.virginia.edu

ABSTRACT

Recent increases in the programmability and performance
of GPUs have led to a surge of interest in utilizing them
for general-purpose computations. Tools such as NVIDIA’s
CuDA allow programmers to use a C-like language to code al-
gorithms for execution on the GPU. Unfortunately, parallel
programs are prone to subtle correctness and performance
bugs, and CUDA tool support for solving these remains a
work in progress.

As a first step towards addressing these problems, we present
an automated analysis technique for finding two specific
classes of bugs in CUDA programs: race conditions, which
impact program correctness, and shared memory bank con-
flicts, which impact program performance. Our technique
automatically instruments a program in two ways: to keep
track of the memory locations accessed by different threads,
and to use this data to determine whether bugs exist in the
program. The instrumented source code can be run directly
in CUDA’s device emulation mode, and any potential errors
discovered will be automatically reported to the user. This
automated analysis can help programmers find and solve
subtle bugs in programs that are too complex to analyze
manually. Although these issues are explored in the context
of CUDA programs, similar issues will arise in any sufficiently
“manycore” architecture.

1. INTRODUCTION

The microprocessor industry has recently shifted from maxi-
mizing single-core performance to integrating multiple cores.
Graphics Processing Units (GPUs) are notable because they
contain many processing elements—up to 128 [12, p.73]-a
level of multicore integration that is often referred to as
“manycore.” GPUs present a level of concurrency today that
cannot be found in any other consumer platform. Although
GPUs have been designed primarily for efficient execution
of 3D rendering applications, demand for ever greater pro-
grammability by graphics programmers has led GPUs to be-
come very general-purpose architectures, with fully featured
instruction sets and rich memory hierarchies. Tools such as
NVIDIA’s CUuDA have further simplified the process of de-
veloping general-purpose GPU applications.

*This work was conducted while Kevin Skadron was on sab-
batical with NVIDIA Research.

*
Kevin Skadron
University of Virginia
Dept. of Computer Science
Charlottesville, VA 22904
skadron@cs.virginia.edu

Westley Weimer
University of Virginia
Dept. of Computer Science
Charlottesville, VA 22904
weimer@cs.virginia.edu

Unfortunately, writing massively multi-threaded GPU pro-
grams is still difficult due to the risk of data races and the
much greater likelihood and severity of resource contention.
While a subtle synchronization bug in a CPU program with
two threads may have an extremely low probability of occur-
ring during execution, that same bug in a parallel program
with thousands of threads will have a much higher probabil-
ity of occurring. At the same time, testing and debugging
tools that are common for desktop applications are often
unavailable in a massively parallel environment.

Finding and solving a bug in a parallel program can also
be extremely difficult for the same reasons. Most program-
mers can easily reason about a sequentially executing pro-
gram and potentially even about a multi-threaded program
with a small number of threads. However, as the number of
threads increases to hundreds or even thousands, reasoning
effectively about programs becomes much more challenging.
Therefore, automated analyses are needed to aid program-
mers in finding and fixing bugs in their parallel programs.

We propose adapting software instrumentation techniques
to CUDA programs. Traditional approaches (e.g., [4, 10, 11,
14]) are not directly applicable for various reasons: CUDA
programs use barriers instead of locks, are massively multi-
threaded, have space and memory limitations, and are not
written in strongly-typed high-level languages. We present
an automated approach to instrumenting CUDA programs to
detect and report certain classes of bugs at runtime. Pro-
grammers can use this approach to find correctness and per-
formance bugs in code that may be too complex to analyze
manually. As a proof of concept, we implemented our al-
gorithm in a prototype tool that automatically detects race
conditions and inefficient memory access patterns in CUDA
programs. These two specific analyses were chosen because
we consider them to be representative examples of two gen-
eral classes of problems, synchronization errors and memory
contention, that will occur more frequently as core counts
and thread counts increase.

Even in situations where testing a program against a known
correct output is possible, and thus the detection of race con-
ditions is likely, our tool still provides a substantial benefit
by pinpointing the exact variables involved. In situations
where testing is more difficult, as is the case with memory
access pattern problems that impact execution time but not
correctness, our approach highlights optimization opportu-
nities that programmers may not have been aware of. Our

tool can help find bugs regardless of how obviously they
manifest themselves in the program’s behavior.

The rest of this paper is organized as follows. Section 2
motivates our interest in general-purpose computation on
GPUs. Section 3 provides an overview of the CUDA system.
Section 4 describes our automated approach to finding race
conditions and Section 5 extends this approach to discover
inefficient memory access patterns. Section 6 demonstrates
the results of using the tool to analyze a real application.
Section 7 discusses related work. Section 8 concludes and
presents the future directions of this research.

2. GRAPHICS PROCESSING UNITS

Over the past few years, the performance of GPUs has been
improving at a much faster rate than the performance of
CPUs. For example, in early 2003, the most advanced GPU
and CPU from NVIDIA and Intel, respectively, offered ap-
proximately the same peak performance. Four years later,
NVIDIA’s most advanced GPU provided six times the peak
performance of Intel’s most advanced CPU [12, p.1].

GPUs have been able to provide such rapid performance
growth relative to CPUs by replicating simple processing ele-
ments (PEs), targeting throughput rather than single-thread
performance, and devoting much less die area to caches and
control logic. To further improve area efficiency, groups of
PEs are harnessed together under SIMD control, amortiz-
ing the area overhead of the instruction store and control
logic. Instead of large caches, GPUs cope with memory la-
tency using massive multi-threading, supporting thousands
of hardware thread contexts. Even if some threads are wait-
ing to receive data from main memory, there will most likely
be many other threads that can be executed while they wait.

2.1 General-Purpose Computation on GPUs
The tremendous growth in GPU performance and flexibil-
ity has led to an increased interest in performing general-
purpose computation on GPUs (GPGPU) [7]. Early GPGPU
programmers wrote programs using graphics APIs. This had
the benefit of exposing some powerful GPU-specific hard-
ware, but incurred the programming and execution overhead
of mapping a non-graphics computation onto the graphics
API and execution stack.

The two largest discrete GPU vendors, ATI and NVIDIA,
recently released software tools designed to simplify the de-
velopment of GPGPU applications. In 2006, ATI released
Close-to-the-Metal (CTM) [15], which, as its name implies,
is a relatively low-level interface for GPU programming that
bypasses the graphics API. NVIDIA took a different ap-
proach with its tool, Compute Unified Device Architecture
(Cupa) [12]. CubA, supported on all NVIDIA GeForce,
Quadro, and Tesla products based on the Tesla hardware ar-
chitecture, allows programmers to develop general-purpose
applications for the GPU using the C programming lan-
guage, with some extensions described in Section 3.1. To
date, CUDA has enjoyed more widespread use, and this work
focuses specifically on programs developed using CUDA.

3. CUDA

NVIDIA’s CUDA is a freely available language standard and
development toolkit that simplifies the process of writing

general-purpose programs for recent NVIDIA GPUs. Cubpa
is a software layer that supposes certain hardware abstrac-
tions. These are described in turn.

3.1 CUDA Software

CUDA consists of a runtime library and an extended version
of C. The main abstractions on which CUDA is based are the
notion of a kernel function, which is a single routine that is
invoked concurrently across many thread instances; a soft-
ware controlled scratchpad (which CUDA calls the “shared
memory”) in each SIMD core; and barrier synchronization.

CuDA presents a virtual machine consisting of an arbitrary
number of streaming multiprocessors (SMs), which appear
as 32-wide SIMD cores with a total of up to 512 thread
contexts (organized into warps of 32 threads each). Kernels
are invoked on a 2D grid that is divided into as many as
64K 3D thread blocks. Each thread block is mapped in its
entirety and executes to completion on an arbitrary SM.
Warps are multiplexed onto the SIMD hardware on a cycle-
by-cycle granularity according to their execution readiness.
Execution is most efficient if all threads in a warp execute
in lockstep; divergence is handled with a branch stack and
masking.

Each SM has a small, fast, software-controlled shared mem-
ory through which threads in a thread block may commu-
nicate. Threads may also read and write to much slower
global memory, but thread blocks may be scheduled in any
order onto the SMs and thread blocks run to completion be-
fore releasing their resources. This means that thread blocks
should not try to communicate with each other except across
kernel calls, as deadlock may occur otherwise.

A kernel runs to completion before a subsequent kernel may
start, providing a form of global barrier. Within a thread
block, arbitrary communication through the shared mem-
ory is allowed, but scheduling of warps is arbitrary and data
races must therefore be prevented by executing an intra-
thread-block barrier. Note that shared memory is private to
each thread block; even thread blocks that happen to map to
the same SM cannot access the shared memory of previous
or co-resident thread blocks. Inter-thread-block communi-
cation must therefore occur across kernel calls.

CUDA’s extensions to the C programming language are fairly
minor. Each function declaration can include a function type
qualifier that specifies whether the function will execute on
the CPU or the GPU, and if it is a GPU function, whether it
is callable from the CPU. Also, each variable declaration in
a GPU function can include a wvariable type qualifier, which
specifies where in the memory hierarchy the variable will
be stored. These type qualifiers are similar to, for exam-
ple, the local and global qualifiers for pointers in distributed
memory systems (e.g., [6]). Finally, any call to a GPU func-
tion from within a CPU function must include an execution
configuration, which specifies the grid and thread-block con-
figuration and the amount of shared memory to allocate in
each SM. Finally, kernels have special thread-identification
variables automatically defined to allow threads to differen-
tiate themselves and work on separate parts of a data set.

3.2 CUDA Hardware

There is nothing in the CUDA specification that prevents
compilation of CUDA programs for non-GPU platforms, but
NVIDIA so far only supports CUDA for its Tesla architec-
ture, which encompasses the GeForce 8-series and recent
Quadro GPUs and the Tesla GPU Computing product line.
The flagship products provide 16 SMs, each consisting of
8 PEs. Once a kernel is launched, a hardware scheduler
assigns each thread block to an SM with sufficient spare ca-
pacity to hold the entire thread block. If multiple (small)
thread blocks fit onto a single SM, they will execute con-
currently but cannot communicate or even be aware of the
existence of their co-resident thread blocks.

Each thread is completely independent, scalar, and may exe-
cute arbitrary code and access arbitrary addresses. Memory
access is more efficient if warps access contiguous data, and
the benefits of SIMD execution are only realized if threads
stay in lockstep. Since thread blocks of a single kernel call
usually behave equivalently, we assume for simplicity that
all programs we analyze contain a single thread block.

4. CORRECTNESS ANALYSIS

Compared to earlier GPGPU approaches, CUDA greatly sim-
plifies the process of developing general-purpose programs
for the GPU. CubA allows the user to write nearly standard
C code for a single thread, and execute that code concur-
rently across a multidimensional domain. Still, transition-
ing from developing single-threaded programs to developing
multi-threaded programs introduces new classes of potential
programming errors—this is true for any platform. Since the
number of threads in a CUDA program can be so much larger
than in a CPU program, these errors are potentially more
likely to manifest themselves in CUDA. Thus, programmers
need to pay special attention to ensuring the correctness of
CuDA programs. Here we focus on race conditions, a specific
type of correctness bug.

4.1 Race Conditions

CuDA programs, like any parallel program, are susceptible
to race conditions, in which arbitrary behavior results when
multiple unsynchronized threads write to and possibly read
from the same memory location. Figure 1 shows a simple
CuDA function that contains a race condition. Each thread
executing this function first determines its own thread iden-
tifier as well as the total number of threads, then writes
its identifier to shared memory, and finally reads the value
written by its neighboring thread and writes it to global
memory. A race condition exists because the value output
by each thread in line eight depends on the order in which
it is executed with respect to its neighboring thread. Since
there is no explicit synchronization performed by this func-
tion, the behavior of the program is non-deterministic.

Explicit synchronization is needed to restore determinism.
In CUDA, synchronization is accomplished using the function
syncthreads, which acts as a barrier or memory fence. When
a thread calls this function, it must wait for all other threads
within its thread block to call the function before it can
proceed to its next instruction. In the example discussed
above, adding a call to syncthreads between lines seven and
eight would prevent the race condition and remove the non-
determinism.

1 extern __shared__ int s[];

2

3 __global__ void kermnel(int *out) {
4 int id = threadIdx.x;

5 int nt = blockDim.x;

6

7 s[id]l = id;

8 out[id] = s[(id + 1) % nt];

9 }

Figure 1: A simple CUDA program containing a race
condition on lines seven and eight. Multiple threads
execute the code in kernel () simultaneously.

A naive approach to preventing race conditions is to add
a call to syncthreads after every instruction that accesses
memory. There are two significant problems with this ap-
proach. First, adding numerous calls to syncthreads can
significantly degrade performance. Second, adding a call to
syncthreads can potentially cause deadlock. Specifically, a
program will deadlock if a syncthreads call is added inside
of a conditional block that is not executed by all threads.

4.2 Automated Race Condition Detection

For simple programs, such as the one in Figure 1, race con-
ditions can be detected by manually analyzing the source
code. For more complex programs, this manual analysis
quickly becomes infeasible. We have developed a tool that
instruments CUDA source code to automatically detect race
conditions. The tool operates as follows:

1. The program source code is parsed and converted to an
intermediate representation that retains knowledge of
CubA-specific built-in declarations and type qualifiers.
Our prototype uses the CIL framework [9].

2. The intermediate representation is transformed and in-
strumented. These transformations are only applied to
functions declared as __global__ or __device__, in-
dicating that the functions will run on the GPU, and
to accesses to variables declared as __shared__, indi-
cating that the variables are stored in shared memory
and accessible by all threads within a block.

3. The instrumented representation is converted back to
CubA’s dialect of C, with CUDA-specific type qualifiers
and annotations preserved.

The code added to check for race conditions contains decla-
rations for two global bookkeeping arrays, which keep track
of the number of read and write accesses made by all threads
to each location in shared memory since the last synchro-
nization point. It also contains two bookkeeping arrays lo-
cal to each thread, which keep track of the accesses made
only by that thread. After each instruction that accesses
shared memory, code is added to update the bookkeeping
arrays and then check for race conditions. In order for a
given thread ¢ to know that a race condition exists at a
given shared memory location i, the following three condi-
tions must be true: location ¢ must have been both read from
and written to'; at least one of the accesses to ¢ must have

!'Note that we are only checking for read-after-write (RAW) and
write-after-read (WAR) hazards. Future implementations will
check for write-after-write (WAW) hazards as well.

come from a thread other than t; and at least one of the ac-
cesses to i must have come from ¢. Any thread that detects
a race condition sets a global flag; after synchronizing, one
of the threads checks the flag and generates the appropriate
output.

The amount of shared memory allocated to a function is
specified when the function is called, not when it is defined.
Since our tool is only guaranteed to have access to the def-
inition of the instrumented function, we require that the
user manually specify the amount of shared memory allo-
cated. The instrumented code can be compiled and run
directly. For our prototype tool, the code can only be run in
device emulation mode and not on the actual GPU device
since the instrumented code reports errors using the printf
function, which cannot be called from the GPU. Section 6
discusses the performance overhead due to this emulation
requirement.

4.3 Analysis Example

In the example function shown in Figure 1 earlier, we noted
that a race condition existed at the expression on line eight.
Running the function through the automated instrumenta-
tion tool and executing the resulting code using CUDA’s de-
vice emulation mode generates the following output:

// RAW hazard at expression:
#line 8
out [id] = s[(id + 1) % ntl;

In other words, the automated instrumentation tool success-
fully detects and reports the race condition. Adding a call
to syncthreads between lines seven and eight and re-running
the automated analysis does not report a race condition, as
we would expect. A more substantial example of the race
condition analysis is presented in Section 6.

S. PERFORMANCE ANALYSIS

Parallelizing an application only makes sense if it signifi-
cantly improves some other important aspect of the appli-
cation, such as its performance. As we have seen earlier,
maximizing the performance of a CUDA program generally
requires the use of shared memory. Thus, it is important
for programmers to understand the factors that may impact
the performance of shared memory.

5.1 Bank Conflicts

Shared memory is located on-chip, making much faster to
access than global memory, especially since global memory
is not cached. In fact, accessing shared memory can be as
fast as accessing a register, depending upon the memory ac-
cess pattern of the threads. Physically, the shared memory
is divided into 16 banks, with successive words in memory
residing in successive banks. If all 16 threads in each half-
warp access different banks, then the memory accesses will
in fact be as fast as register access. If any threads access the
same bank, then those accesses are serialized, decreasing the
aggregate throughput of the program [12, p.56]. As the num-
bers of cores in many-core processors continue to increase,
memory structures will need to be increasingly banked for
scalability. Thus, we expect this type of analysis to be gen-
eral enough to apply to many future architectures.

To demonstrate the performance impact of bank conflicts,
we developed the simple CUDA program shown in Figure 2.

1 extern __shared__ int mem[];

2

3 __global__ void k(int *out, int iters) {
4 int min, stride, max, i, j;

5 int id = threadldx.x;

6 int num_banks = 16;

7 char cause_bank_conflicts = 0;

8

9 if (cause_bank_conflicts) {

10 min = id * num_banks;

11 stride = 1;

12 max = (id + 1) * num_banks;

13 } else {

14 min = id;

15 stride = num_banks;

16 max = (stride * (num_banks - 1))
17 + min + 1;

18 }

19

20 for (j = min; j < max; j += stride)
21 mem[j]l = 0;

22 for (i = 0; i < iters; i++)

23 for (j = min; j < max; j += stride)
24 mem[j]++;

25 for (j = min; j < max; j += stride)
26 out[j] = mem[j];

27}

Figure 2: CUDA program used to measure the impact
of bank conflicts.

9
- 4 -No Bank Conflicts —#— Maximal Bank Conflicts —— Global Memory\

Runtime (Seconds)

Iterations (Millions)

Figure 3: Performance impact of bank conflicts in
the CubpA program shown in Figure 2.

Each thread in the program executes for a certain number of
iterations. During each iteration, the threads access shared
memory in a strided fashion. Depending on the value of
the stride, this program can exhibit no bank conflicts or the
maximum number of bank conflicts. Figure 3 shows the per-
formance of the program in these two cases as a function of
the number of iterations executed. The performance with
maximal bank conflicts is approximately four times worse
than the performance with no bank conflicts. In fact, the
performance with maximal bank conflicts is worse than the
same program rewritten to use the slow, off-chip global mem-
ory. Clearly, bank conflicts can have a significant impact on
performance and must be taken into consideration when op-
timizing CUDA programs.

5.2 Automated Bank Conflict Detection

For simple programs, programmers may be able to manu-
ally analyze the memory accesses to detect bank conflicts.

However, as with the correctness analysis, this manual bank
conflict detection quickly becomes infeasible as the complex-
ity of the program increases. To address this problem, we
have extended the tool presented earlier to also instrument
CUDA programs to automatically measure bank conflicts.
The instrumentation process is similar to the process de-
scribed in Section 4.2; the only difference is in the specific
instrumentation code added in the second step.

For this analysis, a declaration is added for a global array
to store the addresses accessed by each thread. After every
shared memory access, code is added for each thread to up-
date its entry in the array. After synchronizing, one thread
uses the global array to compute the memory bank accessed
by each thread and determine the existence and severity of
bank conflicts. This information is then reported to the user.

5.3 Analysis Example

We can use this automated instrumentation to analyze the
example function shown earlier in Figure 2. In this spe-
cific case, we would expect the output of the instrumented
program to depend on the value of cause_bank_conflicts
specified in line seven. With the flag set to false, the instru-
mented program generates the following output for the first
iteration of the first for loop:

// No bank conflicts at expression:
#line 21
mem[j] = 0;

With the flag set to one, the instrumented program gener-
ates the following output:

// Bank conflicts at expression:
#line 21
mem[j] = 0;
// Bank: 0o 1 2 3 4 5 6 7 8
// Accesses: 16

The automated instrumentation correctly determines that,
with the flag set to true, this program exhibits the maximum
number of bank conflicts during each iteration. This detailed
output is potentially much more useful than a binary out-
put indicating only whether or not bank conflicts occurred,
since the performance impact depends on the severity of the
conflicts. In addition, the tool output pinpoints the instruc-
tion causing the bank conflicts. Automatically providing
programmers with this analysis allows them to easily de-
termine whether they can improve the performance of their
programs by adjusting shared memory access patterns.

6. RESULTS

We used the tool described in the previous sections to au-
tomatically analyze a real application, scan [3], which is
included in the CubpA Standard Developer Kit. Scan im-
plements the all-prefix-sums operation [2], which is a well-
known building block for parallel computations, and is over
400 lines of CUDA code. The program uses explicit synchro-
nization to avoid race conditions and defines a specific macro
for avoiding bank conflicts. Thus, we can selectively remove
synchronization statements in the program and observe if
the tool successfully detects the race conditions that arise,
and we can also enable the bank conflict avoidance macro
and observe if the tool successfully detects the resulting lack
of bank conflicts.

Execution Average
Code Version Environment | Runtime | Slowdown
Original GPU 0.4 ms
Original Emulation 27 ms
Instrumented g otion | 324 ms 12.0x
(race conditions)
[nstrumented Emulation 71 ms 2.6x
(bank conflicts) '

Table 1: Performance impact of emulation and in-
strumentation. Slowdown is relative to the perfor-
mance of the original application in emulation mode.

6.1 Correctness Analysis

We analyzed scan using the race condition analysis pre-
sented in Section 4. The original version of scan is properly
synchronized using three syncthreads calls. Analyzing the
unmodified version, the instrumented application correctly
reported no race conditions. We then generated three modi-
fied versions of scan, each of which had one of the three calls
to syncthreads removed. Analyzing these modified versions
of scan, each instrumented application correctly reported
race conditions after the removed synchronization point, but
not beyond the next synchronization point.

6.2 Performance Analysis

We also analyzed scan using the bank conflict analysis pre-
sented in Section 5. The original version of scan is designed
to have a small but non-zero number of bank conflicts. Ana-
lyzing the unmodified version, the instrumented application
correctly reported relatively mild bank conflicts (two threads
accessing the same bank) for about one third of the memory
accesses. Enabling the macro for avoiding all bank conflicts
had an unexpected result: the number of statement with
bank conflicts doubled and the severity of bank conflicts in-
creased significantly, with some statements causing 16-way
bank conflicts. This counter-intuitive result was confirmed
with extensive manual analysis of the program’s behavior.
This example shows the utility of this analysis: with rel-
atively little user effort we were able to determine that a
program which we assumed exhibited efficient memory ac-
cess patterns in fact has significant room for improvement
in its memory performance.

6.3 Performance Impact of Instrumentation

As noted earlier, the instrumented source code produced by
our prototype tool must be run in CUDA’s device emulation
mode rather than on the actual GPU hardware. Table 1
shows the performance of the original application, execut-
ing natively and in emulation mode, and the performance of
the two instrumented versions of the application, both exe-
cuting in emulation mode. As expected, emulation mode is
significantly slower than native execution. When debugging
a CUDA application, we expect that most CUDA program-
mers will run their applications in emulation mode for the
improved debugging capabilities, such as the ability to call
printf. Thus, when computing the performance overhead of
the instrumentation code, we compare the runtime of the in-
strumented code against the original application running in
emulation mode. We can see that the race condition detec-
tion degrades performance by a factor of 12, while the bank
conflict detection degrades performance by a much more

modest factor of 2.6. The performance degradation of these
analyses is small enough to make them feasible for larger ap-
plications. Popular memory-debugging tools such as Purify
can degrade performance by a factor of 40 or more [10].

7. RELATED WORK

A number of dynamic analyses exist that instrument pro-
grams to detect concurrency errors. The Eraser tool is a
popular example: it transforms programs to explicitly track
the set of locks held on each access to a shared variable [14].
Any variable not consistently protected by a lock is sub-
ject to race conditions. Unfortunately, CUDA programs are
not amenable to such an analysis because the syncthreads
memory barrier used for concurrency control is not a lock.

Our instrumentation approach is similar to work by Mellor-
Crummey [8] and the LRPD test [13] in that we declare
shadow arrays to track memory references. However, the
work by Mellor-Crummey is specific to programs utilizing
fork-join parallelism and the LRPD test speculatively par-
allelizes doall loops in Fortran programs; CUDA programs
employ neither fork-join parallelism nor doall loops.

The CCured [10], Valgrind [11] and Purify [4] tools all in-
strument programs to verify memory safety and resource us-
age. They all incur run-time overhead on the instrumented
program, and Valgrind and Purify are typically more ex-
pensive to use than our transformation. Most importantly,
however, they address the orthogonal problem of memory
safety. CUDA programs would certainly benefit from such
tools, although in some cases the tools cannot be applied di-
rectly. It is not clear, for example, how to effectively extend
CCured’s bounds checking to concurrent programs.

Abadi et al. have proposed static type systems for race
detection in Java programs [1]. However, they focus on
particular idioms for synchronization not present in CUDA
programs, they require non-trivial programmer annotations,
and take advantage of Java’s type safety. Other recent ap-
proaches work well on C programs but still require explicit
locks (e.g., [5]). Our approach requires almost no annota-
tions and works on barrier-synchronized, weakly-typed, C-
style CUDA programs.

8. CONCLUSIONS

For future work, we intend to address some of the limitations
of the current prototype. We also plan to add support for
the detection of additional types of bugs. For example, this
approach could be extended to detect other correctness bugs,
such as out-of-bounds array accesses, or other performance
bugs, such as inefficient global memory coalescing [12, p.50].

As the performance of manycore processors continues to in-
crease rapidly, programmer interest in harnessing their com-
putational power for general-purpose computations will in-
tensify. Tools such as CUDA simplify the previously arcane
process of developing these GPGPU applications. However,
it is still easy for programmers to make mistakes that com-
promise the correctness or performance of their applications,
and it can still be difficult to find and solve those mistakes.

We have presented a technique for automatically instru-
menting CUDA programs to find and report, with essentially

no programmer input, race conditions and inefficient shared
memory access patterns. This automated analysis increases
the likelihood that programmers will find and solve these
specific problems, helping them increase both the correct-
ness and efficiency of their CUDA programs.

9. ACKNOWLEDGMENTS

This work was supported in part by NSF grant 11S-0612049.
We would like to thank the anonymous reviewers for their
helpful comments.

10. REFERENCES

[1] M. Abadi, C. Flanagan, and S. N. Freund. Types for
safe locking: Static race detection for java. ACM
Transactions on Programming Languages and
Systems, 28(2):207-255, 2006.

[2] G. E. Blelloch. Prefix sums and their applications.
Technical Report CMU-CS-90-190, Computer Science,
Carnegie Mellon University, 1990.

[3] M. Harris. Parallel prefix sum (scan) with CUDA.
Technical report, NVIDIA Corporation, 2007.

[4] R. Hastings and B. Joyce. Purify: Fast detection of
memory leaks and access errors. In Winter Useniz
Conference, 1992.

[5] V. Kahlon, Y. Yang, S. Sankaranarayanan, and
A. Gupta. Fast and accurate static data-race detection
for concurrent programs. In Computer Aided
Verification, 2007.

[6] B. Liblit and A. Aiken. Type systems for distributed
data structures. In Principles of Programming
Languages, 2000.

[7] D. Luebke and G. Humphreys. How GPUs Work.
IEEE Computer, 40(2):96-100, 2007.

[8] J. Mellor-Crummey. On-the-fly detection of data races
for programs with nested fork-join parallelism. In
Supercomputing, 1991.

[9] G. Necula, S. McPeak, S. Rahul, and W. Weimer. Cil:
Intermediate language and tools for analysis and
transformation of C programs. In Compiler
Construction, 2002.

[10] G. C. Necula, S. McPeak, and W. Weimer. CCured:
type-safe retrofitting of legacy code. In Principles of
Programming Languages, 2002.

[11] N. Nethercote and J. Seward. Valgrind: a framework
for heavyweight dynamic binary instrumentation. In
Programming Language Design and Implementation,
2007.

[12] NVIDIA. CUDA Programming Guide. Technical
report, NVIDIA Corporation, 2007. Version 1.1.

[13] L. Rauchwerger and D. A. Padua. The LRPD test:
Speculative run-time parallelization of loops with
privatization and reduction parallelization. IEFE
Transactions on Parallel and Distributed Systems,
10(2):160-180, 1999.

[14] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A dynamic data race detector
for multithreaded programs. ACM Transactions on
Computer Systems, 15(4):391-411, 1997.

[15] M. Segal and M. Peercy. A performance-oriented data
parallel virtual machine for GPUs. In SIGGRAPH,
2006.

