
1

Ziyi Zheng and Klaus Mueller are with the Center for Visual Computing,

Computer Science, Stony Brook University, Stony Brook, NY 11790 USA

(phone: 631-632-1524; e-mail: {zizhen, mueller}@cs.sunysb.edu).

Funding was provided by NSF grant EAGER 1050477.

Abstract—Neighborhood denoising filters are powerful

techniques in image processing and can effectively enhance the

image quality in CT reconstructions. In this study, by taking the

bilateral filter and the non-local mean filter as two examples, we

discuss their implementations and perform fine-tuning on the

targeted GPU architecture. Experimental results show that the

straightforward GPU-based neighborhood filters can be further

accelerated by pre-fetching. The optimized GPU-accelerated

denoising filters are ready for plug-in into reconstruction

framework to enable fast denoising without compromising image

quality.

Index Terms—GPU, Denoising, Bilateral Filter, non-local mean

filter, CUDA, Computed Tomography

I. INTRODUCTION

There has been growing concern about the high radiation dose

delivered to patients in cone-beam X-ray CT, and thus recently

low dose CT has gained substantial interests in research. It

usually involves lowering X-ray energy or reducing the

number of projections, or both. In traditional scenarios, these

approaches suffer from low signal-noise-ratio (SNR). To lower

the radiation doses without compromising image quality,

recent research proposes to use iterative reconstruction

methods together with neighborhood denoising filters [1] as

regularization steps interleaved with reconstruction steps.

Neighborhood filters are ubiquitous in image de-noising.

The bilateral filter (BF) [2] and the non-local means filter

(NLM) [3] are two of the most popular neighborhood filters

and there has been widespread coverage of research on using

these two filters [1] [4-6]. The advantages of these denoising

filters are that they can help to reduce substantial noise and in

the meantime preserve edges. However, to achieve the high-

quality denoising effects, these filters require extensive

neighborhood search which results in long running times.

There are two major approaches to speed up the denoising

procedure. One approach focuses on how to approximate exact

filtering computations [2][3]. Another approach turns to

parallel computing devices for solutions, most dominantly

high-performance graphics processing units (GPUs). Our

earlier works [1] shows that a straightforward GPU

implementation offered better speed than filtering via TVM

(Total Variation Minimization). In that study we focused on

both the quality and speed performance of regularized iterative

CT reconstruction. In the current paper, we focus on advanced

accelerating techniques for the various neighborhood filters.

We show that pre-computation along with a pre-fetching

scheme is quite effective for denoising filters, especially for

large neighborhood sizes.

In this paper, Section 2 presents related work and

background. Section 3 introduces the overall methodology and

Section 4 shows results, followed by conclusion in Section 5.

II. BACKGROUND

In this paper, we take the NVIDIA GeForce GTX 480 GPU as

an example to discuss the GPU architecture. A GTX 480 GPU

card contains 480 processors. These 480 processors are

grouped into 15 streaming multi-processor (SMP) which can

perform tasks independently from each other. Each SMP

contains 32 processors, which allow 32 threads (a warp) to

execute concurrently. Thus each SMP is inherently based on

single instruction multiple data (SIMD) design. In the best

case, the GTX 480 has theoretical computational power

reaching 1.3 Tera-floating point operations per second

(TFLOPS) in single floating-point precision which largely

outperform the CPU computational power.

GPU device memory is an off-chip memory that stores the

input data and receives the output from the processors. The

GTX 480 has 1.5GB DDR5 device memory with peak

bandwidth 177.4 GB/s. Although the bandwidth of GPU

memory is much faster than that of the CPU memory, it has

several limitations. First, each off-chip memory (also called

device/global memory) access instruction takes several

hundreds of clock cycle. This latency needs to be alleviated by

issuing a large amount of threads which will automatically

enable hardware context switching. Second, the memory

instructions should better to be coalesced or at least have a

specified granularity (128 bytes). The maximum GPU global

bandwidth can only be achieved by issuing 1 memory

instruction for 128 bytes data. This implies 32 neighbouring

threads (a warp) should read/write within a 128-byte-aligned

segment. With proper alignment, sequential mapping of

threads to memory address will yield a coalesced memory

access pattern.

To further reduce the huge costs associated with off-chip

memory access, the cache can be leveraged. Constant memory

cache is the simplest type of cache. It is an off-chip memory

with the similar bandwidth as device memory. To speed up the

constant data access rate, a GTX 480 contains an 8KB cache

per 8 processors for constant memory access. Besides the

constant cache, 32 processors within one SMP share an L1

Performance Tuning for CUDA-Accelerated

Neighborhood Denoising Filters

Ziyi Zheng, Wei Xu and Klaus Mueller

2

cache and a user-controllable cache known as the shared

memory. The difference between the L1 cache and the shared

memory is that the former is automatically scheduled by the

hardware and the latter can be controlled by the user to

perform prefetching. The amount of shared memory and L1

cache in one SMP is user-configurable (16KB + 48KB or

48KB + 16 KB).

NVIDIA GPUs can be programmed via a C-like API –

CUDA. CUDA is a general purpose API which exposes more

control over how a task is computed on the GPU hardware, as

compared to graphics-based APIs (CG, GLSL). The task-

hardware mapping is enabled by introducing the concept of

―block”. Each block is mapped to an SMP.

The key difference between CPU implementation and its

GPU counterpart is the parallel programing. While typically

CPU program will launch one thread, GPU will launch

millions of threads with the same instruction. A large amount

of threads are executed in terms of thread blocks, whereas the

total task is called grid. On the hardware level, each block is

mapped to a single SMP. In the back-projection stage of the

CT reconstruction, SMPs are assigned to different regions of

the resulting volume sequentially. This enables a mapping

where the grid-block decomposition in CUDA corresponds to

the volumetric reconstructed 3D dataset. To avoid

misunderstanding, we use block and grid in this paper only as

terms in CUDA, not for their geometry meaning.

III. METHODOLOGY

A. Straightforward implementation

Neighborhood filter CUDA kernels are similar to their CG

implementations — fragment programs. If we assume one

CUDA kernel function only computes one resulting pixel, a

neighborhood filter fragment program can be changed into its

CUDA kernel without much modification. In the SIMD

architecture, the same kernel/fragment program will replicate

itself to all different processors. These threads on different

processors have unique two-dimensional IDs (x, y) to guide

them to read neighborhood data around (x, y) and output to the

value at (x, y).

Here we list the pseudo-code for a 2D neighborhood filter

kernel:

Neighborhood_filter_2D

Obtain the current thread ID (x, y)

 Collect all pixels’ values in 2D neighborhood within the mask

Calculate output pixels value defined by filtering algorithm

Output results (x,y)at the resulting image

End

Figure 1. Pseudo-code for 2D neighborhood filter kernel.

CUDA has more sophisticated controls which are not

available in CG. CUDA’s execution configuration guides how

the parallel computations are assigned on GPU hardware on

streaming-multi-processor (SMP) level. This can be done by

dividing the 2D image into tiles and assign them to a CUDA

block. Each of the 2D tiles will be mapped into a SMP.

To achieve maximum bandwidth in reading, the output

image is stored in 2D pitched memory and the input is stored

in a read-only 2D texture. In addition, to confirm the rule that

each warp (32 threads) writes to a 128-byte segment, each

thread should output a 4-byte unit. This 4-byte unit can be 4

characters, 2 short integers or 1 single-precision floating-point

number.

B. Pre-computation

Some of neighborhood filters such as the bilateral filter or the

non-local means (NLM) filter involve 2 Gaussian weights: σx,

σy. They define the smoothing parameters in the x, y axis

respectively.

Pre-computing techniques can be applied on the filter to

reduce computational cost. Given the mask size, we can pre-

compute a discrete mask for the 2D Gaussian smooth kernel

and store it in the GPU’s constant memory. Then once cached

in SMP, these pre-computed weights will be ready to use

which will save a huge amount of exponential computations.

However, the Gaussian in the intensity domain which is

inherently different from spatial dimension since it is sampled

in a continuous domain. Although similar pre-computing

method exists, which discretize the continuous intensity

domain and lookup the pre-computed weightings, we have not

explored the speed-quality trade-off of this approximation

technique. We calculate the intensity Gaussian on the fly,

therefore let our GPU algorithm is an exact method.

We store the output volume in 2D pitched memory in order

to achieve better global memory bandwidth. The output is

decoupled from the order of the loops in the CUDA kernel

computation. Switching the order of the loops or changing the

output storage to YX will result in non-coalesced memory

writing patterns that downgrade the performance. Furthermore,

this loop order also indicates the pre-computed weights should

be organized in XY order.

C. Prefetching

We also use the prefetching method to reduce the data-transfer

cost, based on huge difference between on-chip and off-chip

memory bandwidth. Prefetching is done according to the apron

which is the image region served as input of a block of threads.

The size of the 2D preloading apron is:

)r+r+(h)r+r+(w pwbpwb 2222 (4)

where wb,and hb are width and height of a 2D CUDA block. rp

is the patch radius and rw is the windows radius in non-local

mean filler [3], while for bilateral filter [2] rp = 0.

The apron is usually larger than the output region and thus

aprons from different CUDA blocks are overlapped. Since

neighborhood filters re-use input data in an apron multiple

times, shared memory can serve as a user controllable cache to

reduce the off-chip memory access. Then a 2D prefetching

approach can yield less cache misses which will result in better

performance.

The code for loading an apron is listed in Figure 2. The

LOCAL_BLOCK_W and LOCAL_BLOCK_H are the two

dimensions of the apron defined in Equation (4). The input

data is stored in a texture reference 2d_tex. The data fetching is

3

Figure 3. An example to illustrate prefetching procedure. (a) shows the

configuration with one CUDA block (in green). (b-e) show the
neighborhood pixels are loaded into shared memory (in gray). (f) shows

the data configuration after loading all the input into the user shared

memory.

(a) (b) (c)

(d) (e) (f)

performed by tex2D(2d_tex, idx + 0.5f, idy + 0.5f) where the

current position for the thread is (idx, idy) and is offset by

(0.5f, 0.5f). Essentially, the code shows that each thread will

perform at most 4 loading operations, based on the assumption

that the neighborhood area cannot be 4 times larger than the

CUDA block area. We will illustrate the positions of these 4

preloading data later in this section. Note since all the threads

executed in parallel without orderings, we need to ensure the

local 2D apron was fully loaded into the shared memory in

current SMP before the input readings are directed to the

shared memory, The block-level synchronization should occur

immediately after the prefetching.

__shared__ float LocalBlock [LOCAL_BLOCK_W * LOCAL_BLOCK_H];

 int SharedIndex = threadIdx.y * LOCAL_BLOCK_W;

 LocalBlock [SharedIndex + threadIdx.x]

 = tex2D (2d_tex, idx - KERNEL_RADIUS_X + 0.5f,

 idy - KERNEL_RADIUS_Y + 0.5f);

 if(threadIdx.x + blockDim.x < LOCAL_BLOCK_W)

 LocalBlock [SharedIndex + threadIdx.x + blockDim.x]

 = tex2D (2d_tex, idx + (int) blockDim.x - KERNEL_RADIUS_X + 0.5f,

 idy - KERNEL_RADIUS_Y + 0.5f);

 if (threadIdx.y < KERNEL_RADIUS_Y * 2)

 {

 SharedIndex = (threadIdx.y + blockDim.y) * LOCAL_BLOCK_W;

 LocalBlock [SharedIndex + threadIdx.x]

 = tex2D(2d_tex, idx - KERNEL_RADIUS_X + 0.5f,

 idy + (int) blockDim.y - KERNEL_RADIUS_Y + 0.5f);

 if(threadIdx.x+ blockDim.x < LOCAL_BLOCK_W)

 LocalBlock [SharedIndex + threadIdx.x + blockDim.x]

 =tex2D(2d_tex, idx + (int) blockDim.x - KERNEL_RADIUS_X + 0.5f,

 idy + (int) blockDim.y - KERNEL_RADIUS_Y+ 0.5f);

 }

 __syncthreads();

Figure 2. CUDA kernel code for 2D neighborhood prefetching. The type

and built-in variables/functions in CUDA is in blue. The input texture

reference is shown in orange and the shared memory is shown in gray.

Figure 3 illustrates the prefetching scheme for the 2D

neighborhood filters. In this case a 16×16 CUDA block (in

green) needs to read 32×32 pixels in its neighborhood (all

pixels in panel (a)). Performing neighborhood filtering directly

on (a) will result in low performance. Panel (b-e) shows the

proposed prefetching method will load 4 16×16 tiles into

shared memory (in gray) in sequence. Finally in panel (f), the

CUDA threads in the green CUDA block can fast access the

input in on-chip cache (shared memory). Then applying

neighborhood filters on (f) will guarantee there will be no

cache miss afterward thus will boost the performance.

IV. RESULTS

Our experiments were conducted on an NVIDIA GTX 480

GPU, programmed with CUDA 3.2 runtime API and with an

Intel Core 2 Duo CPU @ 2.66GHz. We built the program in

32bit mode. In the experiment, the size of the CUDA block is

set to 32×32. The first dimension is chosen to be 32 to

conform to the coalescing rule. The second dimension we

choose the maximum number as 32 due to the block’s size

limit 1024 in the NVIDIA Fermi card.

We did a performance and image quality study on one slice

of a human head. We simulated 90 parallel beam projections

and added Gaussian noise SNR=25 (SNR is computed by the

ratio of the mean pixel value to the standard deviation of

Gaussian noise) into the projections. Figure 4(a) shows the

gold-standard and Figure 4(b) shows the iterative

reconstruction results from noisy projections.

Figure 5 shows images restored bilateral filtering. The

image quality of the bilateral filtering depends on smoothing

parameters and window sizes. Here σx and σy control the spatial

Gaussian, σr controls the range Gaussian and rw is the window

radius. The window size is 2rw+1. Here we show

approximately the best parameters for each window size. The

large window size case (17×17 in Figure 5(a)) generated better

results than 11×11 (Figure 5(b)) and 7×7 (Figure 5(c)).

We extend the performance test of bilateral filter on larger

image sizes. The computation time is listed in Table I (in ms).

Figure 4. Testing image with size 2562. (a) shows the gold-standard. (b)

shows iterative reconstruction from 90 noisy projections.

(a) (b)

Figure 5. Bilateral filtering result.

(a) σx = σy = 30
σr = 19 rw = 8

(b) σx = σy = 38
σr = 19 rw = 5

(c) σx = σy = 40
σr = 20 rw = 3

4

Besides the computation timing, we note that the memory

transfer time from CPU and GPU is 0.7 ms for 256
2
 data, 2.0

ms for 512
2
 data, 7.5 ms for 1024

2
 data. By using the

prefetching scheme, a speedup ratio of 20% is achieved for the

bilateral filter.

Next, the NLM filter is applied to the test dataset. Figure 6

demonstrates the image quality of the NLM filter with

different window sizes. In the NLM filter, there is a parameter

h that controls the noise reduction effect. We also find the

approximately best parameters for different windows sizes.

The large neighborhood size ((11+17)
2
 in Figure 6(a)) resulted

better quality than in the smaller neighborhood case ((11+11)
2

in Figure 6(b) and (11+7)
2
 in Figure 6(c)).

TABLE I

PERFORMANCE IN BILATERAL FILTER (IN MILLISECONDS)

Image size
Neighborhood

Size
Bilateral Optimized Bilateral Speedup

2562 72 0.192 0.131 1.46

 112 0.309 0.246 1.25

 172 0.650 0.539 1.21

5122 72 0.411 0.326 1.26
 112 0.927 0.705 1.31

 172 2.150 1.760 1.22

10242 72 1.446 1.120 1.29
 112 3.374 2.473 1.36

 172 8.080 6.545 1.23

The NLM filter’s performance is shown in Table II. The

prefetching method resulted up to 4× speedup in this filter.

This is because the NLM filter has one order of magnitude

more neighborhood searching to do than the bilateral filter,

which make them clearly a memory bounded problem. Our

optimized filters outperformed the bilateral filter and the NLM

filter implemented in the CUDA SDK [7] by similar speedups.

The performance shows the more neighborhood lookups, the

more effective the shared-memory acceleration will be. Based

on the fact that the NLM filter is usually one order of

magnitude slower than bilateral filter but has better denoising

quality, our proposed method would make expensive

neighborhood filters more practical while enjoying the superior

image quality.

By using single precision floating point data, the largest

amount of required shared memory is (32+2×(8))
2
×4 = 9216

byte for the bilateral and the NLM filter. They are below 48KB

as the limit of shared memory per SMP in NVIDIA’s Fermi

card. With the development of more advanced GPU hardware,

we can expect that larger preloads such as 64×64 in 32bit

floating point data will be supported in the future.

TABLE II

PERFORMANCE IN NON-LOCAL MEANS FILTER (IN MILLISECONDS)

Image

size

Neighborhood

Size
NLM

Optimized

NLM
Speedup

2562 (7+7)2 8.708 2.097 4.15

 (7+11)2 23.927 5.034 4.75

 (7+17)2 51.095 12.703 4.02

5122 (7+7)2 31.026 7.339 4.23

 (7+11)2 76.494 17.756 4.31
 (7+17)2 182.497 42.066 4.34

10242 (7+7)2 118.831 28.041 4.24

 (7+11)2 292.970 67.727 4.33

 (7+17)2 699.231 161 4.34

V. CONCLUSION

In this paper, we showed that advanced acceleration techniques

(such as pre-computation, prefetching) can further speedup

straightforward GPU implementations of nearest neighborhood

filters. The speedup can be up to 4 times for the large window

size case, which can bring high-quality denoising filters real-

time performance. Our optimized filter lends itself as an

independent component which can be plugged into any

iterative reconstruction frameworks and boost the performance

of the entire pipeline. While we have only shown 2D filtering

results here (it appeared to yield better results for our

reconstructions) similar techniques will also apply to 3D

filtering.

Finally, although the quality that can be achieved with BLF

and NLM appears rather similar in the results presented here,

this is mainly due to the relatively low level of noise we

experimented with (the main objective of this paper was the

GPU acceleration scheme). Companion work [8] presented

elsewhere shows that the NLM scheme does significantly

better with higher noise and streak artifact levels. Thus, when

artifact levels are low, the BLF is preferred due to its higher

speed, but with greater artifacts the NLM is a better choice.

REFERENCES

[1] W. Xu, K. Mueller, ―A performance-driven study of regularization

methods for GPU-accelerated iterative CT,‖ In Workshop on High

Performance Image Reconstruction, 2009.

[2] C. Tomasi, R. Manduchi, ―Bilateral filtering for gray and color images,‖

IEEE International Conference on Computer Vision, pp. 839-846, 1998.
[3] A. Buades, B. Coll, , J.M. Morel, ―A non-local algorithm for image

denoising,‖ Computer Vision and Pattern Recognition, pp. 60-65, 2005.

[4] T. Pham and L. van Vliet. ―Separable bilateral filtering for fast video
preprocessing,‖ IEEE International Conference on Multimedia and

Expo, pp. 4, 2005.

[5] S. Paris, F. Durand. ―A fast approximation of the bilateral filter using a
signal processing approach,‖ International Journal of Computer Vision,

vol. 81, no. 1, pp. 24-52, 2009
[6] M. Howison. ―Comparing GPU implementations of bilateral and

anisotropic diffusion filters for 3D biomedical datasets,‖ SIAM

Conference on Imaging Science, 2010.
[7] A. Kharlamov, V. Podlozhnyuk, ―Image Denoising,‖

http://developer.download.nvidia.com/compute/cuda/1_1/Website/projec

ts/imageDenoising/doc/imageDenoising.pdf, 2007.
[8] W. Xu, K. Mueller, ―Evaluating popular non-linear image processing

filters for their use in regularized iterative CT,‖ Conference Record IEEE

Medical Imaging Conference (MIC), Knoxville, TN, 2010.

Figure 6. NLM filtering results.

(a) h = 17

rp = 5 rw = 8
(a) h = 17

rp = 5 rw = 5

(c) h = 18

rp = 5 rw = 3

http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/imageDenoising/doc/imageDenoising.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/imageDenoising/doc/imageDenoising.pdf

