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Abstract-- Digital color cameras sample scenes using a color filter array of mosaic pattern (e.g. the 

Bayer pattern). The demosaicking of the color samples is critical to the quality of digital 

photography. This paper presents a new color demosaicking technique of optimal directional 

filtering of the green-red and green-blue difference signals. Under the assumption that the primary 

difference signals (PDS) between the green and red/blue channels are low-pass, the missing green 

samples are adaptively estimated in both horizontal and vertical directions by the linear minimum 

mean square-error estimation (LMMSE) technique. These directional estimates are then optimally 

fused to further improve the green estimates. Finally, guided by the demosaicked full-resolution 

green channel, the other two color channels are reconstructed from the LMMSE filtered and fused 

PDS. The experimental results show that the presented color demosaicking technique significantly 

outperforms the existing methods both in PSNR measure and visual perception. 
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I. Introduction 

Most digital cameras capture an image with a single sensor array. At each pixel, only one of the 

three primary colors (red, green and blue) is sampled. Fig. 1 shows the commonly used Bayer color 

filter array (CFA) [5]. In order to reconstruct a full color image the missing color samples need to 

be interpolated by a process called color demosaicking. The quality of reconstructed color images 

depends on the image contents and the employed demosaicking algorithms [15]. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The Bayer pattern.  
 

The early demosaicking methods include nearest neighbor replication, bilinear interpolation 

and cubic B-spline interpolation [1,10, 15]. These methods can be simply implemented but they 

suffer from many artifacts such as blocking, blurring and zipper effect at edges. With assumption 

that images have a slowly varying hue, the smooth hue transition (SHT) methods [1, 6, 20] 

interpolate the luminance (green) channel and chrominance (red and blue) channels differently. 

After recovering the green channel by bilinear interpolation, the red and blue channels are 

recovered by bi-linearly interpolating the red hue (the ratio of red to green) and blue hue (the ratio 

of blue to green). Although the SHT methods exploit the correlation between red, blue and green 

channels, they tend to cause large interpolation errors in the red and blue channels when green 

values abruptly change.  

Since human visual systems are sensitive to the edge structures in an image, many adaptive 

demosaicking methods try to avoid interpolating across edges [2-3, 7, 11-12, 16, 18]. At each pixel 

the gradient is estimated, and the color interpolation is carried out directionally based on the 
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estimated gradient. Directional filtering is the most popular approach for color demosaicking that 

produces competitive results in the literature. The best known directional interpolation scheme is 

perhaps the second order Laplacian filter proposed by Hamilton and Adams [2-3, 11]. They used the 

second order gradients of blue and red channels as the correction terms to interpolate the green 

channel. The smaller of the two second order gradients in the horizontal and vertical directions is 

added to the average of the green samples along the chosen direction. Once the green samples are 

filled, the red and blue samples are interpolated similarly with the correction of the second order 

gradients of the green channel. Chang et al. [7] proposed a more complicated gradient-based 

demosaicking scheme. They computed a set of gradients in different directions in the 55×  

neighborhood centered at the pixel to be interpolated. A subset of these gradients is selected by 

adaptive threshold. At last the missing samples are estimated from the known samples located along 

the selected gradients. Recently, Ramanath and Snyder [18] proposed a bilateral filtering based 

scheme to denoise, sharpen and demosaick the image simultaneously. Alleysson et al. [4] wrote a 

color pixel as the sum of luminance and chrominance, and reconstructed the image by selecting the 

luminance and chrominance components in Fourier domain. 

Another class of color demosaicking techniques is iterative schemes, which can also be 

combined with gradient-based methods. Kimmel developed a two-step iterative demosaicking 

process consisting of a reconstruction step and an enhancement step [13]. He calculated eight 

directional derivatives at each pixel based on its eight neighbors. Based on these edge indicators, 

the hue values are computed and the missing green, red and blue samples are then corrected 

iteratively by the ratio rule. Finally, an inverse color diffusion process is applied to the whole image 

for enhancement. Another iterative demosaicking scheme was proposed by Gunturk et al. [9]. 

Exploiting the fact that the three color channels of a natural image are highly correlated, Gunturk et 

al. reconstructed the color images by projecting the initial estimates onto so-called constraint sets. 

They first interpolated the image using Bilinear or other demosaicking methods, and then updated 
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the green channel by the high frequency information of red and blue channels. At last a wavelet-

based iterative process was employed to update the high frequency details of the red and blue 

channels according to the green channel.  Other demosaicking methods were also proposed, such as 

minimum mean square-error estimation [19], pattern matching [21], and median filtering [8].   

In all color demosaicking techniques gradient analysis plays a central role in reconstructing 

sharp edges. However, the gradient estimate may not be robust when the input signal exceeds the 

Nyquist frequency.  This is the main cause of color artifacts in demosaicked images. The challenge 

is to use statistically valid constraints to overcome the limit of Nyquist frequency. A common 

practice in color demosaicking is to exploit the correlation between the color channels. Since the 

three color channels of a natural image are highly correlated, the difference signal between the 

green channel and the red or blue channel constitutes a smooth (low-pass) process. Furthermore, we 

observe that this color difference signal is largely uncorrelated to the interpolation errors of 

gradient-guided color demosaicking methods, which are basically band-pass processes. These 

observations provide a rationale for estimating the color difference signals by linear minimum mean 

square-error estimation (LMMSE) method, which yields a good approximation to the optimal 

estimation in mean square-error sense. The LMMSE estimates are obtained in both horizontal and 

vertical directions, and then fused optimally to remove the demosaicking noise. Finally, the full-

resolution three color channels are reconstructed from the LMMSE filtered difference signals. The 

experimental results show that the new color demosaicking technique significantly outperforms the 

state-of-the-art methods both in PSNR measure and visual perception. 

This paper is structured as follows. In Section II we introduce the notions of primary difference 

signal (PDS) and the directional demosaicing noises. Section III presents the LMMSE technique of 

estimating primary difference signals in both horizontal and vertical directions. Section IV describes 

how these two directional estimates can be optimally fused into a more robust estimate. Then in 

Section V the chrominance channels are interpolated based on the estimated PDS and luminance 
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channel.  Section VI gives the experimental results and Section VII concludes.   

 

II. Primary Difference Signal and Directional Demosaicing Noise 

 
Table 1. The correlation coefficients of all pairs of primary color channels. crg is the correlation coefficient of green and 
red channels; cbg is the correlation coefficient of green and blue channels; and crb is the correlation coefficient of red and 
blue channels.  
 

Images 1 2 3 4 5 6 7 8 9 
crg .9871 .9284 .9726 .9746 .9947 .9976 .9796 .9965 .9790 
cbg .9878 .9891 .9803 .9713 .9985 .9928 .9980 .9821 .9569 
crb .9540 .9243 .9346 .9492 .9921 .9837 .9711 .9760 .9335 

Images 10 11 12 13 14 15 16 17 18 
crg .9952 .9955 .9952 .9693 .9991 .9951 .9924 .9929 .9823 
cbg .9910 .9892 .9967 .9942 .9921 .9854 .9940 .9965 .9823 
crb .9845 .9785 .9884 .9589 .9873 .9694 .9834 .9871 .9629 

 

In order for a color demosaicking algorithm to recover high frequency features beyond the 

designed Nyquist frequency of the CFA, it has to rely on some additional statistical property or 

constraint(s) about the input color signals. A commonly exploited property is the correlation 

between the sampled primary color channels: red, green, and blue. In order to utilize this property in 

demosaicking, let us examine the relationships between the green and red channels, and between the 

green and blue channels. There are multiple reasons for why the green channel plays a key role in 

our estimation of missing color samples. First, the green channel has twice as many samples as the 

other two channels in the ubiquitous Bayer mosaic pattern, which is by far the prevailing CCD 

sensor design. Second, the sensitivity of the human visual system peaks at the green wavelength. 

Third, the green is closer to red and to blue than the difference between red and blue in wavelength. 

Table 1 lists the average correlation coefficients between all pairs of primary color channels 

measured over a set of 18 color test images shown in Fig.2. Clearly, the green-red and green-blue 

correlations are appreciably and consistently greater than the red-blue correlation.   



 6

          
(1)                                               (2)                                                 (3) 

         
 (4)                                               (5)                                                 (6) 

         
(7)                                               (8)                                                 (9) 

         
(10)                                               (11)                                                 (12) 

         
(13)                                               (14)                                                 (14) 

 

         
(15)                                               (17)                                                 (18) 

 
 

Figure 2.  Test images used in this paper. 

 

(1) 
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In the color demosaicking literature, two assumptions were made on green-red and green-blue 

relations: equal ratio [1, 6, 13, 20] and equal difference [2-3, 7, 11]. The former assumption holds 

for mosaic CCD data prior to gamma correction, while the latter assumption is closer to the reality 

for gamma corrected mosaic CCD data. In this paper, we assume the difference images between the 

green and red channels, and between the green and blue channels to be low-pass signals, which are 

referred in the sequel as primary difference signals (PDS), and denoted by (referring to Fig. 1) 

nnrg n RG)(, −=∆ ;       nnbg n BG)(, −=∆                           (2-1) 

where n is the position index of the pixels. The term is used because (2-1) represents two images 

whose pixel values are differences between corresponding green and red/blue samples.   

For all reasons above, we demosaick the green channel first and then other two channels as 

many other researchers. Namely, we estimate the missing green samples under the assumption that 

rg ,∆  and bg ,∆ are smooth signals (some power spectrum density functions of rg ,∆  and bg ,∆  are 

plotted in Section III to support this assumption). The quality of final full color reconstruction 

largely hinges on the estimation accuracy of the missing green samples in the Bayer pattern, 

because the reconstructed green channel has an anchor affect on subsequent steps of demosaicing 

the red and blue channels as we will see in Section V. We estimate PDS rg ,∆  and bg ,∆  rather than 

individual color channels directly because random processes rg ,∆ and bg ,∆  have some statistical 

properties that can be exploited to aid demosaicking. In particular, we are interested in how the 

demosaicking noise relates to rg ,∆ and bg ,∆ . 

One of the well known and most effective color demosaicking filters is the second-order 

directional Laplacian filter of Adams and Hamilton [2-3, 11], which is also based on the assumption 

that rg ,∆ and bg ,∆  are constant in either horizontal or vertical direction. The key component of most 

existing adaptive demosaicing algorithms is the selection of the direction of color interpolation. In 

this paper, however, we make two separate estimates of a missing primary color sample in both 
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horizontal and vertical directions, and then optimally combine the two estimates (the topics of 

Sections III and IV).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  A row and a column of mosaic data that intersect at a red sampling position.  
 
 

For concreteness and without loss of generality, we examine the configuration of the Bayer 

pattern as shown in Fig. 3: a column and a row of alternating green and red samples intersect at a 

red sampling position where the missing green value needs to be estimated. The results for the 

symmetric case of estimating the missing green values at the blue sampling positions of the Bayer 

pattern can be derived in the same way. We denote the red sample at the center of the window as 

0R . Its interlaced red and green neighbors in horizontal direction are labeled as h
iR , 

{ }�� ,4,2,2,4, −−∈i , and h
iG , { }�� ,3,1,1,3, −−∈i  respectively; similarly, the red and green 

neighbors of 0R  in vertical direction are v
jR , { }�� 4,2,2,4, −−∈j , and v

jG , { }�� ,3,1,1,3, −−∈j  

respectively. The sample 0R  at the intersection can be taken as h
0R  or v

0R  freely.  

To get some coarse measurements of PDS rg ,∆  and bg ,∆ , we first interpolate the missing green 

samples at red and blue pixels and then interpolate the missing red and blue samples at green 

samples. Any of the existed interpolation methods for color demosaicking [2-4, 6-9, 12-13, 16, 18] 

may be used. We adopt the second-order Laplacian interpolation filter for its easy implementation 
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and good performance. (But we stress that the following development is independent of the 

interpolation methods.) For any red original sample h
iR  or v

jR , the corresponding missing green 

sample is interpolated as 

( ) ( )h
i

h
i

h
i

h
i

h
i

h
i 2211 RRR2

4
1GG

2
1Ĝ +−+− −−⋅++=                                (2-2) 

     ( ) ( )v
j

v
j

v
j

v
j

v
j

v
j 2211 RRR2

4
1GG

2
1Ĝ +−+− −−⋅++=                               (2-3) 

Similarly, for any original green sample h
iG  or v

jG , the corresponding missing red sample is 

interpolated as 

( ) ( )h
i

h
i

h
i

h
i

h
i

h
i 2211 GGG2

4
1RR

2
1R̂ +−+− −−⋅++=                                  (2-4) 

( ) ( )v
j

v
j

v
j

v
j

v
j

v
j 2211 GGG2

4
1RR

2
1R̂ +−+− −−⋅++=                                 (2-5) 

Using the interpolated missing green and red values we obtain two estimates of the random 

process rg ,∆  in horizontal and vertical directions respectively: 





−
−=

edinterpolat is R,R̂G
edinterpolat isG ,RĜ)(ˆ

, h
i

h
i

h
i

h
ih

rg i∆   and  




−
−=

edinterpolat is R,R̂G
edinterpolat isG ,RĜ)(ˆ

, v
i

v
i

v
i

v
iv

rg i∆     (2-6) 

The estimation errors associated with h
rg ,∆̂  and v

rg ,∆̂  are  







−=
−=

v
rgrg

v
rg

h
rgrg

h
rg

,,,

,,,

ˆ
ˆ

∆∆ε
∆∆ε

                                                      (2-7) 

We regard h
rg ,∆̂  and v

rg ,∆̂  to be two observations of rg ,∆ , and accordingly h
rg ,ε  and v

rg ,ε  to be the 

corresponding directional demosaicking noises, and rewrite (2-7) as 







−=
−=

v
rgrg

v
rg

h
rgrg

h
rg

,,,

,,,

ˆ
ˆ

ε∆∆
ε∆∆

                                                      (2-8) 

Now the task is to obtain an optimal estimate of rg ,∆  from the two observation sequences { }h
rg ,∆̂  
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and { }v
rg ,∆̂ , and then consequently derive the missing green values. The estimation algorithm will be 

developed in Section III.   

To simplify the notations, we denote by x  the true PDS signal rg ,∆ , and by y  the associated 

observation h
rg ,∆̂  or v

rg ,∆̂ , and by υ  the associated demosaicking noise h
rg ,ε  or v

rg ,ε , namely 

)()()( nnxny υ+=                                                           (2-9) 

The optimal minimum mean square-error estimation (MMSE) of x  is  

∫== dxyxxpyxEx )/(]/[ˆ .           (2-10) 

However, the MMSE estimation is very difficult, if possible at all, because p(x/y) is seldom known 

in practice. Instead we use the linear minimum mean square-error estimation (LMMSE) technique 

to estimate x  from y , which is a good approximation to MMSE but more amenable to efficient 

implementation. Particularly, if )(nx  and )(nυ  are locally Gaussian processes (a reasonable 

assumption for many natural signals), then the spatially adaptive LMMSE developed in Section III 

will be equivalent to MMSE [14]. 

The LMMSE of x  is computed as 

                                                       ])[(
)(

),(][ˆ yEy
yVar

yxCovxEx −+= .                                       (2-11) 

Empirically we found that the demosaicking noises h
rg ,ε  and v

rg ,ε  are zero-mean random process, 

and they are almost uncorrelated with rg ,∆ . This can be seen in Table 2 that lists the correlation 

coefficient hc  between h
rg ,ε   and rg ,∆ , and the correlation coefficient vc  between  v

rg ,ε  and rg ,∆  for 

the test images in Fig. 2 (the mosaic data of them are simulated by subsampling with the CFA of the 

Bayer pattern), in which hc  and vc  are indeed very close to zero. Consequently, we can simplify (2-

11) to 

)(
)(

ˆ 22

2

x
x

x
x yx µ

σσ
σµ

υ

−
+

+=                                                   (2-12) 
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where ][xEx =µ , ( )xVarx =2σ , ( )υσυ Var=2 . 

 
Table 2. The lack of correlation between PDS rg ,∆  and the demosaicking noises h

rg ,ε  and v
rg ,ε .  hc  is the correlation 

coefficient between rg ,∆  and h
rg ,ε  (in horizontal direction), and vc  is the correlation coefficient between rg ,∆  and v

rg ,ε  
(in vertical direction).  
 

Images 1 2 3 4 5 6 7 8 9 
ch 0.0271 0.0654 0.0502 0.0647 0.0517 0.0410 0.0364 0.0355 0.0562 
cv 0.0390 0.0305 0.0836 0.0648 0.0340 0.0200 0.0207 0.0176 0.0562 

Images 10 11 12 13 14 15 16 17 18 
ch 0.0648 0.0298 0.0390 0.0422 0.0506 0.0274 0.0861 0.0855 0.0645 
cv 0.0173 0.0299 0.0412 0.0389 0.0531 0.0200 0.0716 0.0130 0.0512 

 

Symmetrically, we can define the difference signal bg ,∆  between the green and blue channels, 

and its two estimates h
bg ,∆̂  and v

bg ,∆̂  in horizontal and vertical directions. The corresponding 

estimation errors h
bg ,ε  and v

bg ,ε  have the same properties as those of h
rg ,ε  and v

rg ,ε . 

 

III. The Directional LMMSE of Primary Difference Signals   

Having the knowledge of the statistical properties of the directional demosaicking noises h
rg ,ε  

and v
rg ,ε , we now proceed to the LMMSE of PDS rg ,∆  by (2-12). To compute the LMMSE 

estimate )(ˆ nx , we need to estimate the three parameters xµ , xσ  and υσ  from observation data 

)(ny . And in order to make the estimate )(ˆ nx  spatially adaptive, these parameters should be 

estimated locally in the neighborhood of )(ny . 

We rely on the property that )(nx  is a low-pass process and )(nυ  is a band-pass process to 

differentiate x  from υ  in y . To verify this property let us examine the power spectrum density 

functions of )(nx  and )(nυ . The power spectrum density function of a time series S  is defined as 

the Fourier transform of the auto-correlation function of S : 

∑
∞

−∞=

−=
k

ik
rp ekff ω

π
ω )(

2
1)(                                                    (3-1) 
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where the sequence )(kfr  is the auto-correlation function of S : 

)]()([)( knSnSEkfr −⋅=                                                     (3-2) 

Since )()( kfkf rr −= , (3-1) can be written as   








 += ∑
∞

=1

)cos()(2)0(
2
1)(

k
rrp kkfff ω

π
ω                                        (3-3) 

The power spectrum density functions of x  and υ  are plotted in Fig. 4 and Fig. 5 for some 

typical natural images. In Fig. 4 the power spectrum of x  for the first four images in Fig. 2 are 

plotted, and in Fig. 5 the corresponding power spectrum of υ  are illustrated. Obviously, the power 

of x  concentrates in low frequency band, whereas the power of υ  spreads in relatively high 

frequency bands. 
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Figure 4.  (a) ~ (d) are the power spectrum functions of the green-red difference signals in horizontal direction for the 
first four images in Fig. 2.  The power spectrum functions in vertical direction are similar. It is clear that PDS is a low 
frequency dominated process. 
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Figure 5.  (a-1) ~ (a-4) are the power spectrum functions of the estimation errors for the green-red PDS signal in 
horizontal direction for the first four images in Fig. 2; (b-1) ~ (b-4) are the power spectrum functions for the 
corresponding estimation errors in vertical direction. It can be seen that the estimation errors of PDS are band-pass 
processes. 
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Since x  and υ  have distinct power spectrum, passing y  through a low-pass filter can remove 

the noises effectively.  Denote by { })(kh  the response sequence of a low-pass filter, we have 

( ) ∑
∞

−∞=
⋅−=∗=

k
s ihinynhyny )()()()(                                        (3-4) 

where “*” is the convolution operator.  In this paper, we set { })(kh  to be the Gaussian smooth filter, 

whose coefficients are 

2

2

2

2
1)( σ

σπ

k

ekh
−

=                                                          (3-5) 

where parameter σ  controls the shape of the filter response. 

Assuming that the random process )(nx is ergodic and stationary, its mean value )(nxµ  can be 

estimated by the neighboring data of )(ny . The low-pass filter output )(nys  is a weighted average 

of )(ny  and its neighbors, and it is much closer to )(nx  than )(ny . Denote by 

[ ])()()( LnynyLnyY sss
s

n +−= mm                                  (3-6) 

the 12 +L  dimensional vector centered at )(nys , we estimate )(nxµ  as 

∑
+

=+
=

12

1
)(

12
1)(

L

k

s
nx kY

L
nµ                                                      (3-7) 

and then we estimate )(2 nxσ , the variance of )(nx , by 

∑
+

=
−

+
=

12

1

22 ))()((
12

1)(
L

k
x

s
nx nkY

L
n µσ                                            (3-8) 

Denote by 

[ ])()()( LnynyLnyYn +−= mm                                      (3-9) 

the 12 +L  dimensional vector centered at )(ny . Since )(nys  is an approximation of )(nx it follows 

that )()( nyny s−  is an approximation of )(nυ ,  thus we can estimate )(2 nυσ , the variance of )(nυ , 

by 
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∑
+

=
−

+
=

12

1

22 ))()((
12

1)(
L

k
n

s
n kYkY

L
nυσ                                           (3-10) 

For each sample )(nx  to be estimated, the corresponding parameters )(nxµ , )(2 nxσ  and )(2 nυσ  

are computed and substituted into (2-12) to yield )(ˆ nx , the nearly LMMSE estimate of )(nx . Let 

)(~ nx  be the estimation error of )(nx : )(ˆ)()(~ nxnxnx −= , the variance of )(~ nx  is   

))()((
)()()](~[)( 22

2
222

~
nn

nnnxEn
x

x
xx

υσσ
σσσ

+
−==                                      (3-11) 

 

IV. Optimal Fusion of the Directional LMMSE Estimates 

Using the scheme developed in the previous section, two LMMSE estimates of a PDS signal 

)(nx  can be obtained, respectively in the horizontal and vertical directions, which are denoted by 

)(ˆ nxh  and )(ˆ nxv .   Let )(~ nxh  and )(~ nxv  be the corresponding estimation errors, then 





−=
−=

)(~)()(ˆ
)(~)()(ˆ

nxnxnx
nxnxnx

vv

hh                                                      (4-1) 

The variances of estimation errors  )(~ nxh  and )(~ nxv  are denoted by )(2
~ n

hxσ  and )(2
~ n

vxσ .  

Either )(ˆ nxh  or )(ˆ nxv  exploits the correlation of )(nx  with its neighbors in a particular 

direction. A more accurate estimate of )(nx  can be obtained by fusing the two directional LMMSE 

estimates. We employ the weighted average strategy and let the fused estimate be 

)(ˆ)()(ˆ)()(ˆ nxnwnxnwnx vvhhw ⋅+⋅=                                         (4-2) 

where 1)()( =+ nwnw vh . The weights )(nwh  and )(nwv  are determined to minimize the mean 

square-error of )(ˆ nxw : 

]))(ˆ)([()](~[)( 222
~ nxnxEnxEn wwxw

−==σ                                           (4-3) 

or 

)](~)(~[)()(2)()()()()( 2
~

22
~

22
~ nxnxEnwnwnnwnnwn vhvhxvxhx vhw

⋅⋅⋅⋅+⋅+⋅= σσσ                  (4-4) 
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Generally, the correlation between variables hx~  and vx~  is weak for a natural image, especially in 

the areas of edges and fine texture structures where the human visual system is sensitive to spatial 

resolution.  In fact, if hx~  and vx~  are highly correlated, i.e., the two estimates hx̂  and vx̂  are close to 

each other, then wx̂  varies little in hw  and vw  anyways. 

Assuming that hx~  and vx~  are approximately uncorrelated, the magnitude of the last term in the 

right side of (4-4) becomes negligible, or approximately  

)()(2)())()(()(

)()()()()(
2
~

2
~

2
~

2
~

2

2
~

22
~

22
~

nnwnnnnw

nnwnnwn

vvvh

vhw

xhxxxh

xvxhx

σσσσ

σσσ

⋅⋅−++⋅=

⋅+⋅≈
                      (4-5) 

To minimize )(2
~ n

wxσ , we let the partial differential of )(2
~ n

wxσ  with respect to )(nwh  be zero, namely 

0)(2))()(()(2
)(
)( 2

~
2
~

2
~

2
~

=⋅−+⋅⋅=
∂
∂

nnnnw
nw
n

vvh

w
xxxh

h

x σσσ
σ

                              (4-6) 

Finally we have 

)()(
)(

)( 2
~

2
~

2
~

nn
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nw
vh

v

xx

x
h σσ

σ
+

= , 
)()(

)(
)( 2

~
2
~

2
~

nn
n

nw
vh

h

xx

x
v σσ

σ
+

=                               (4-7) 

Substituting (4-7) into (4-2) yields )(ˆ nxw , the optimally weighted estimate of )(ˆ nxh  and )(ˆ nxv . The 

MSE of the optimal estimate )(ˆ nxw  is 

)()(
)()(

)( 2
~

2
~

2
~

2
~2

~
nn

nn
n

vh

vh

w
xx

xx
x σσ

σσ
σ

+
=                                                    (4-8) 

Obviously )(2
~ n

wxσ  is less than either of )(2
~ n

hxσ  and )(2
~ n

vxσ . 

Using the method described in Sections III and IV, we compute, for each red pixel position nR  

and each blue pixel position nB , the directional weighted estimates of the green-red PDS signal 

)(, nrg∆  and the green-blue PDS signal )(, nbg∆ . Then we can recover the green channel of the Bayer 

CFA image by estimating the missing green samples as 
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 )(RĜ , nrgnn ∆+=  or )(BĜ , nbgnn ∆+=                                       (4-9) 

Compared with the red and blue channels of a Bayer CFA image, the green channel preserves much 

more detail of the image and hence is more important for the human visual system. Furthermore, the 

interpolation quality of red and blue channels, which is the subject of the next section, also depends 

on the estimation accuracy of the green channel. 

 

V. The Demosaicking of the Chrominance Channels 

In the previous two sections we showed how to remove the demosaicking noise in the green 

channel by directional LMMSE filtering of PDS and optimal fusing of the resulting directional 

LMMSE estimates.  Once the robust green estimates are obtained for all pixels, they can guide, in 

conjunction with the PDS estimates, the demosaicking of the red and blue channels. This is 

accomplished in the following two steps. 

 

A. Interpolation of missing red (blue) samples at the blue (red) sample positions 

 
 
 
 
 
 
 
 

(a)                                                     (b) 
 

Figure 6. (a) A blue sample and its four nearest red neighbors. (b) A red sample and its four nearest blue neighbors. 
 

We first interpolate the missing red sample at a blue pixel nB . Referring to Fig. 6 (a), we denote 

by nw
nR , sw

nR , ne
nR  and se

nR  the four nearest red neighbors of the blue sample position nB , where 

the superscripts are directional notations for northwestern, southwestern, northeastern and 

southeastern.  Note that nw
nR , sw

nR , ne
nR  , se

nR  and nB are all original samples in the Bayer pattern. 
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The estimated green samples at these positions are denoted by nĜ , nw
nĜ , sw

nĜ , ne
nĜ  and se

nĜ  

respectively.  The available four green-red difference values are represented as nw
grn,∆ , sw

grn,∆ , ne
grn,∆  

and se
grn,∆ . The estimate nR̂  of the missing red sample is to be computed. 

We interpolate the green-red PDS signal at the blue sample position nB  as the average of the 

four available green-red differences, namely 

4
,,,,

,

sw
grn

ne
grn

se
grn

nw
grn

grn

∆∆∆∆
∆

+++
=                                             (5-1) 

Then the missing red sample is estimated as 

grnnn ,ĜR̂ ∆−=                                                          (5-2) 

Similarly, the missing blue samples at the red sample positions nR  (referring to Fig. 6 (b)) can 

be interpolated. The four green-blue difference values in the northwestern, southwestern, 

northeastern and southeastern of nR  are available, and they are averaged to interpolate the green-

blue PDS signal gbn,∆  at position nR . The missing blue sample is then estimated as 

gbnnn ,ĜB̂ ∆−= .  

 

B. Interpolation of missing red/blue samples at the green sample positions 

 
 
 
 
 
 
 
 
 

                                    (a)                                   (b)                                   (c)                                   (d) 
 

Figure 7.  (a) ~ (b) A green sample and its two original and two estimated red neighbors. (c) ~ (d) A green sample and 
its two original and two estimated blue neighbors. 

 

After the missing red/blue samples at the blue/red positions have been filled, we arrive at the 
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four cases depicted by Fig. 7.  As before, the samples are estimated ones if marked by “^”, and 

original ones otherwise.  Due to the symmetry between red and blue samples in these four cases, we 

only need to discuss case (a).  Given the green estimates n
nĜ , s

nĜ , e
nĜ  and w

nĜ  at the positions n
nR̂ , 

s
nR̂ , e

nR , and w
nR , we have the corresponding four green-red difference values, denoted by n

grn,∆ , 

s
grn,∆ , e

grn,∆  and w
grn,∆ .  As in the previous step, we compute the bilinear average of the green-red 

differences 

( )
4

,,,,
,

w
grn

e
grn

s
grn

n
grn

grn

∆∆∆∆
∆

+++
=                                         (5-3) 

Then the missing red sample at green sample position nG  is estimated to be grnnn ,GR̂ ∆−= . 

Similarly, the missing blue sample at a green position nG  is estimated as gbnnn ,GB̂ ∆−= . 

 By now we have filled in all the missing red/blue samples. The full color image is 

reconstructed. The presented demosaicking scheme first exploits the correlation between the green 

and red/blue channels to obtain good estimates of the missing green samples, and then estimates the 

missing red and blue samples by a simple and fast bilinear average operation on the green-red and 

green-blue PDS signals.   

 

VI. Experimental Results 

We implemented the proposed LMMSE color demosaicking algorithm, and tested it on a large 

number of natural color images.  In this section we present our experimental results for the eighteen 

images of Fig. 2, and compare them with the methods of Hamilton et al. [2], Chang et al. [7] and 

Gunturk et al. [9], which are among the most popular schemes. The results reported in the recent 

paper of [9] were better than the previously published algorithms, especially for the red and blue 

channels. In the implementation of our scheme, the standard deviation of the Gaussian smooth filter, 

σ  (referring to (3-5)), was set around 2, and the parameter L  (referring to (3-6) and (3-9)) was set 
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to 4.  In Table 3, the peak signal to noise ratios (PSNR) of the demosaicked images by the four 

methods are listed.  The results of the method in [9] are duplicated from that paper. They were 

originally reported by mean square error (MSE) and we transformed them into PSNR by 

)MSE/255(log10PSNR 2
10= . 

Table 3. The PSNR (dB) results of the proposed method and the other methods. 
 

Images 1 2 3 4 
channels R G B R G B R G B R G B 

Method in [2] 33.67 38.37 33.75 35.14 39.48 36.46 29.63 33.21 29.58 31.79 35.90 31.81 

Method in [7] 30.06 38.57 30.24 36.33 40.70 37.96 29.16 34.42 29.17 32.44 35.53 32.45 

Method in [9] 40.03 40.89 38.77 38.85 39.04 39.19 -- -- -- 37.93 38.75 35.66 

Proposed 41.17 42.91 39.31 37.75 43.30 41.07 34.17 39.58 33.95 37.98 40.99 36.69 

Images 5 6 7 8 
channels R G B R G B R G B R G B 

Method in [2] 37.50 41.53 37.11 35.86 39.67 35.91 30.90 34.70 30.99 27.71 30.68 27.43 

Method in [7] 36.59 41.79 36.51 34.56 40.50 34.60 29.60 36.09 29.71 29.08 32.09 28.66 

Method in [9] 42.63 42.89 39.82 42.14 43.30 40.91 37.65 39.59 37.47 34.45 36.35 33.22 

Proposed 43.70 45.45 40.49 43.57 45.84 42.41 38.01 40.84 38.45 35.60 36.91 33.85 

Images 9 10 11 12 
channels R G B R G B R G B R G B 

Method in [2] 32.31 34.88 31.28 28.78 33.48 28.69 32.39 36.07 32.40 37.53 41.37 36.90 

Method in [7] 33.59 35.93 32.37 25.98 33.97 25.80 31.44 37.09 31.58 37.63 41.80 37.25 

Method in [9] 37.41 38.05 35.68 35.47 37.57 34.53 38.62 40.58 37.61 42.32 42.50 40.59 

Proposed 38.15 39.01 35.82 35.34 39.02 35.30 40.20 42.42 38.70 43.26 45.13 40.64 

Images 13 14 15 16 
channels R G B R G B R G B R G B 

Method in [2] 33.44 37.17 33.76 36.32 39.77 35.45 32.94 36.38 32.65 34.52 37.87 34.02 

Method in [7] 33.54 38.03 33.54 36.95 40.82 35.93 32.80 37.71 32.20 34.37 38.28 32.97 

Method in [9] 39.00 40.46 38.61 41.18 39.60 38.47 39.06 40.16 37.60 36.85 38.89 36.59 

Proposed 39.20 42.23 39.98 41.69 43.82 39.08 39.45 41.78 37.73 37.55 40.97 37.40 

Images 17 18   
channels R G B R G B       

Method in [2] 38.00 42.35 37.98 38.18 42.18 38.10       

Method in [7] 37.16 42.74 37.37 38.72 42.08 38.75       

Method in [9] 42.83 43.13 41.77 42.53 42.51 39.96       

Proposed 42.30 46.43 42.79 41.86 45.34 40.98       

 

It can be seen from Table 3 that the estimates of the green channel are significantly improved 

by the proposed demosaicking algorithm. On average the improvement is 4.74dB, 4.04dB and 

2.24dB higher than those of the other three algorithms respectively in PSNR. The new algorithm 
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also outperforms the other algorithms in red and blue channels as well. The margins of 

improvement in PSNR are 5.87dB and 6.23dB over the algorithm of [2] and the algorithm of [7] for 

the red channel, and respectively 5.06dB and 5.46dB for the blue channel.  Compared with the 

algorithm of [9], the new algorithm achieves 0.46dB higher PSNR in the red channel and 0.84dB 

higher PSNR in the blue channel. One should keep in mind that the demosaicking results of [9] in 

the red and blue channels were obtained by costly eight iterations of wavelet-based filtering 

operations, while our results were obtained by simple bilinear interpolation of the primary 

difference signals. The computation and implementation complexities are considerably lower than 

[9]. 

In Fig. 8 ~ Fig. 13, some samples of the original and the demosaicked images by different 

methods ([2], [7] and the proposed) are shown for the purpose of subjective quality evaluation.  For 

the visual results of [9] the reader can refer to the original paper. The proposed LMMSE-based 

demosaicking algorithm appears to produce visually more pleasant color images with color artifacts 

greatly suppressed.  

 

VII. Conclusion 

This paper presented a new color demosaicking technique of LMMSE directional filtering of the 

green-red and green-blue PDS signals.  The missing green samples are estimated from the filtered 

PDS in both horizontal and vertical directions, and the two estimates are optimally fused. The 

resulting green channel is then used to guide the estimation of the missing red and blue samples.  

The experiments showed that the proposed color demosaicking algorithm significantly 

outperformed the current state of the art demosaicing methods both in PSNR measure and visual 

quality.  Furthermore, the proposed algorithm is non-iterative, fast, and easy to implement. 
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(a)                                                       (b) 

       
(c)                                                   (d) 

 
Figure 8. Demosaicked results of image 1 in Fig. 2:  (a) Original; (b) Method in [2]; (c) Method in [7]; (d) The proposed 
method. 
 
 

      
(a)                                                       (b) 

      
(c)                                                   (d) 

 
Figure 9. Demosaicked results of image 2 in Fig. 2:  (a) Original; (b) Method in [2]; (c) Method in [7]; (d) The proposed 
method. 
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(a)                                                       (b) 

      
(c)                                                   (d) 

 
Figure 10. Demosaicked results of image 3 in Fig. 2:   (a) Original; (b) Method in [2]; (c) Method in [7]; (d) The 
proposed method. 
 

    
(a)                                                       (b) 

    
(c)                                                   (d) 

Figure 11. Demosaicked results of image 4 in Fig. 2:  (a) Original; (b) Method in [2]; (c) Method in [7]; (d) The 
proposed method. 
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(a)                                                     (b) 

      
(c)                                                   (d) 

Figure 12. Demosaicked results of image 11 in Fig. 2:  (a) Original; (b) Method in [2]; (c) Method in [7]; (d) The 
proposed method. 
 

      
(a)                                                     (b) 

      
(c)                                                   (d) 

Figure 13. Demosaicked results of image 10 in Fig. 2: (a) Original; (b) Method in [2]; (c) Method in [7]; (d) The 
proposed method. 
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