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Image Analysis and P.D.E.'s

Fr�ed�eric Guichard and Jean-Michel Morel

Abstract.

It is well known that a conveniently rescaled iterated convolution of a linear positive kernel converges

to a gaussian. As a consequence, all iterative linear smoothing methods of a signal or an image boil down

to the application to the signal of the heat equation. This book explains how a similar analysis can be

performed for image iterative smoothing by a wide class of nonlinear operators, the contrast invariant op-

erators. These monotone operators have a property which makes them suitable for image analysis: they

commute with contrast changes of the images. Among them, the median operator which computes a local

\mean value" independent of constrast changes. We prove that all monotone and contrast invariant op-

erators, are asymptotically equivalent (when they become more and more local) to a motion of the image

by its curvature. The iteration of these �lters is equivalent to the application to the image of a nonlinear

heat equation. We give in parallel a classi�cation of all image multiscale smoothing methods (the so called

\scale space" methods in Computer Vision). It is shown that both approaches (classi�cation of iterative

�ltering methods or of \scale spaces") yield the same, recently discovered, partial di�erential equations. Ex-

periments are presented with both classical and new, contrast invariant and monotone numerical schemes.

Figure 1: Zoom on Noise.
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Chapter 1

Introduction

This book adresses a possible theory of image low level analysis. Image \low level" analysis aims at ex-

tracting reliable, local geometric informations from a digital image. Such informations are often called

\features" and they are used in order to compare an image to other images. For instance, these features

can be used for motion estimation, or to retrieve shapes, or to build the still hypothetic \high level" vision.

The observed image is the result of a smoothing of the original photon 
ux and is therefore continuous.

It is nontheless well admitted that the subjacent \real image", namely the focused photon 
ux, is either

a measure or, for more optimistic authors, a function which presents strong discontinuities. Rudin and

de Giorgi proposed independently in 1984 the space BV of functions with bounded variation as the right

function space for \real" images. More recently (1999), however, Gousseau and Alvarez used a statistical

device on digital images to estimate how their real subjacent images oscillate. They deduced, by geometric

measure arguments, that the \real" physical images have in fact unbounded variation. We may therefore

accept the idea that the subjacent high resolution image behaves in a strongly oscillatory way. Although

the digital images present a averaging of this oscillatory phenomenon, common sense tells us that they

must have anyway strong discontinuities at transitions between di�erent observed objects, i.e. on the

apparent contours of physical objects. The BV space looked at �rst well adapted to that aim because it

contains functions having step discontinuities.

One of the goals of image analysis has ever been to �nd such discontinuities in an image. This search

is called \edge detection" because early vision research played with images of cubes. Along the edges of

the cubes, the light intensity behaved, in a �rst approximation, as a step function. Unfortunately, the

early research in vision led to the sad discovery that one could �nd edges \everywhere" in a digital image

(Marr, Vision), due to the oscillations remaining in the digital image after the digitization problem. As

a consequence, the image analysis process was conceived as a smoothing process, permitting to decluster

the true \edges" from the inherent noise. As in Distribution theory, a smoothing was necessary before

computing any derivative. This is why the heat equation was proposed and a new doctrine proposed :

the \scale space". Scale space means that, instead of talking of features of an image at a given location,

we talk of them at a given location and at a given scale. The scale quanti�es the amount of smoothing

performed on the image before computing the feature. We shall therefore see in experiments \edges at

scale 4" and \edges at scale 7" as di�erent outcomes of an edge detector.

Which kind of smoothing should be performed ? Three terms associated with image analysis opera-

F. Guichard, J-M. Morel, Image Analysis and PDE's 9



CHAPTER 1. INTRODUCTION

tors arise here, to which we will give a more and more precise meaning.

The �rst one, \locality", is related to the occlusion problem : Most optical images are made of a super-

position of di�erent objects partly hiding each other. It is plain that we must avoid mixing them in the

analysis, as would do e.g. a wide convolution. Thus, the analysis must be made as local as possible. As

we shall see, the heat equation is the worst candidate to the task, since it makes a wide-range m�elange of

grey levels.

The second key word is \iteration". Indeed, we shall see that it is generally better, from the locality

viewpoint, to iterate a very local smoothing operator than to apply it directly at a large scale. This is

precisely not true for the heat equation ! Iterating the convolution of small gaussian kernels is stricly the

same as convolving directly the image with a big gaussian. Now, iteration of very local �lters will bring

a signi�cant improvement for some of the most relevant nonlinear �lters which we shall consider, namely

the median �lter and the aÆne erosion-dilations. At this point, it must be immediately announced that

the combination of smoothing, locality and iteration implies that we are talking about parabolic partial

di�erential equations. This announcement is heuristic and the object of the book is precisely to formalize

the necessity and the role of several P.D.E.'s in image analysis.

Our last key word is \invariance". The invariance requirements play a central role in image analysis be-

cause the objects to be recognized have to be recognized under varying conditions of illumination (contrast

invariance) and from di�erent points of view (projective invariance). Contrast invariance is one of the key

requirements of a famous image analysis theory, the Mathematical Morphology (Matheron, Serra). This

theory proposed a list of contrast invariant image analysis operators (dilations, erosions, median �lters,

openings, closings,...) We shall involve this theory, as we shall attempt to localize as much as possible the

\morphomath" operators to extract their behaviour at small scale, and then iterate them. As an outcome,

we shall prove that several geometric partial di�erential equations, namely the curvature motions, can be

considered as the common asymptotic denominators to many \morphomath" operators. These P.D.E.'s

permit therefore to fuse the Scale Space doctrine and Mathematical Morphology. In particular, aÆne

invariant morphomath operators, which looked unpractical, turn out to yield in their local iterated version

a very a�ordable P.D.E., the so called \aÆne morphological scale space" (A.M.S.S.).

In the next section, we shall make a survey of most P.D.E.'s which have been proposed for image analysis

(Section 1) and thereafter give a detailed mathematical account of how this book is organized.

We would like to end this short foreword with a light warning to the reader. We do not claim that

what will be developped here is a necessary future for image analysis. What the mathematical analysis

can provide is more hypothetical, as noticed Von Neumann and Morgenstern in their book on game theory.

We would say, by imitation : \If Image Analysis requires a smoothing theory, then here is how it should

be done, and here is the proof that there is no other way to do it." This statement does not exclude the

possibility of other theories, based on di�erent principles, or even the impossibility of making any theory.

We have tried to prove every single mathematical statements, assuming only a two or three years mathe-

matical training. Thus, most of the P.D.E's adressed, and all of the relevant ones, will be proved existence,

uniqueness and given invariant monotone approximation schemes. This has been technically possible by

combining tools from the recent and remarkbly simple theory of viscosity solutions on the one side, and of

the Matheron formalism for monotone set and function operators. Thus, the really necessary mathematical

knowledge amounts to elementary di�erential calculus, linear algebra, and some notions of integration in

Working version subject to errors, only for personal use. No di�usion authorized. All rights reserved. (Version: 15/07/2000)



1.1. THE WHEN, WHY AND HOW OF P.D.E. MODELS IN IMAGE PROCESSING

the chapter on the heat equation. We nether put mathematical statements pour l'amour de l'art ; all of

them are directed at proving the rightfulness of a model, of its properties and of the associated numerical

schemes. Many experiments are spread out in the text, with detailed comments. They can provide an

independent, parallel, reading to the mainstream of the text. There are no direct industrial applications

treated. Now, many of the image representation tools commented in the text are being used in the pub-

lic software MegaWave (http://www.cmla.ens-cachan.fr) developped jointly by several university research

groups in France and Spain. They are also extensively used in the industrial video and image processing

software Investigator, sold by Cognitech, Inc., Pasadena, California.

1.1 The when, why and how of P.D.E. models in image process-
ing

Image processing is divided in three parts, corresponding to as many di�erent goals. The �rst one derives

from the discrete nature of images and the search of their minimal representation in terms of digital mem-

ory. This discipline is called image compression (see Figure 1.1). The second goal is the restoration of

Figure 1.1: Compression. From left to right : An original image and its more and more compressed versions : compression
factor 7, 10 and 25 respectively. One of the �rst goals of image processing is the de�nition of algorithms permitting high
compression factors without visible alteration. Compression may, however alter the image.

a better version of an image, given a generation model with noise and blur, or other perturbations. This

is illustrated in Figure 1.2. The image on the right is apparently destroyed: more than 75% of its pixels

Figure 1.2: Denoising. A second goal of image processing : the restoration. Left: original noisy image (simulated salt and
pepper noise up to 75%), right: denoised version

have been put at a random value. We can nontheless restore it signi�cantly: here is, on the right, such

a restored version. The third goal is analysis , which means in Greek \breaking into parts". Look at the

F. Guichard, J-M. Morel, Image Analysis and PDE's 11



CHAPTER 1. INTRODUCTION

level curve of Figure 1.3, extracted from a hand image: it is full with a mix of details and noise. What

if we ask for a sketchy version, where, however, all essential details are kept ? The curve on the right

is such a sketchy version, where most of the spurious details have disappeared, but the main structures

are maintained. This is what we shall call image analysis . The aim is not denoising or compression : it

is to construct an invariant code putting in evidence the main parts (here, for instance, the �ngers) and

permitting a fast recognition in a large database of shapes.

Figure 1.3: Analysis of a shape. Left : Original scanned shape, then some simpli�ed versions : the aim here is not
restoration, but analysis, that is, to de�ne more and more sketchy versions of the shape. Those sketchy versions may permit
a very short and invariant encoding of the shape. Notice how the number of in
exion points of the shape has decreased in
the simpli�cation process (Chapter 22).

The heat equation arises naturally in the image generation process. Indeed, according to Shannon's

theory, an image can be correctly represented by a discrete set of values, the \samples", only if it has been

previously smoothed. This is illustrated in Figure 1.4 : Let us call the original baby image \Victor". If

we attempt to reduce the size of Victor by a mere subsampling, that is by taking a point of each sixteen,

we obtain a new and smaller image, in which the subsampling has created new and unstable patterns :

see how new stripes have been created, with a frequency an direction which has nothing to do with the

original ! If, instead of being steady, the camera moved, those newly created patterns would move and


icker in a totally uncontrolled way. This kind of moving pattern appears often in recent commercial

DVD's. They have simply been subssampled against the Shannon rule. Let us now comment brie
y how

the subsampling should be done. According to Shannon's theory, a previous smoothing must to be done

before the subsampling. We start with u0, the original image. Then a blur kernel k is applied, i.e. we

convolve u0 with k to obtain a new image k � u0. A subsequent subsampling is thereafter possible, where

the distance between samples is related to the band-width of the blur kernel by the Nyquist rule. Stability

of the image representation is maintained.

This simple remark, that smoothing is a necessary part of image formation, leads us to our �rst PDE's.

Gabor remarked in 1960 that the di�erence between the original and the blurred image is roughly propor-

tional to its laplacian. In order to formalize this remark, we have to notice that k is spatially concentrated,

and that we may introduce a scale parameter for k, namely kh(x) =
1
hk(

x
h
1
2
). Then

u0 � kh(x)� u0(x)

h
! �u0(x);

so that when h gets smaller, the blur process looks more and more like the heat equation

@u

@t
= �u; u(0) = u0:

Conversely, Gabor deduced that we can, in some extent, deblur an image by reversing time in the heat
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Figure 1.4: Shannon theory and subsampling. From left to right: original image, smoothed image, subsampling of the
original image and subsampling of the smoothed image. In the subsampling, one point of each 4 is taken in the horizontal
and vertical directions. In order to make the reduced image still visible, we have zoomed back the subsampled versions by a
zoom factor 4. We clearly see that subsampling an image without previous smoothing creates aliasing : high frequencies are
projected onto lower frequencies and therefore generate new patterns. Shannon theory tells us how to remove those potentially
parasite high frequencies before subsampling. This results in the necessity of smoothing the image before subsampling.

Figure 1.5: Heat equation and blur. Left : original image, right : the heat equation has been applied to some scale and
the resulting image is blurred (Chapter 2).

equation :
@u

@t
= ��u; u(0) = uobserved:

Numerically, this amounts to substracting its laplacian from the observed image :

urestored = uobserved � h�uobserved:

This operation can be repeated several times with some small values of h, until it... blows up. Indeed,

the reverse heat equation is extremely ill-posed. All the same, this Gabor method is eÆcient and can be

applied with some success to most digital images obtained from an optical device. Let us examine what

happens with Victor (Figure 1.6). We see that the method yields some improvement at the beginning

and then blows up. We can also simulate a blur on Victor and try to go back : again, the process blows

up but yields a signi�cant improvement at some scale.

We therefore see two directions. One is to improve, to stabilize, the reverse heat equation. We shall

see that this is doable by nonlinear models. The second direction is to go on with the heat equation :

we can numerically simulate a further blurring of the image. Why should we do so ? Because, �rst, this

leads to the wavelet theory and its applications to optimal multiscale sampling and compression. Second,
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Figure 1.6: Gabor's deblurring. Gabor proposed in 1960 to deblur an image by substracting its laplacian : this means
inverting the heat equation ! Left : original image, middle : three iterations of Gabor's algorithm, right : ten iterations. As
is well known, and can be observed in the right image, the inverse heat equation blows up. A few iterations can, as we see
in the middle, nicely enhance the image.

Figure 1.7: Gabor's deblurring again. Same deblurring experiment as in Figure 1.6, but applied on a much more blurred
image

iterated linear and nonlinear smoothing (that is, nonlinear PDE's) will be relevant to our main goal :

image analysis.

We can indeed improve the time-reverse heat equation. The �rst example, due to Rudin and Osher

in 87 and 92 proposes an pseudoinverse, where the propagation term |Du| is tuned by the sign of the

laplacian.
@u

@t
= �sign�ujDuj:

The equation is called \shock �lter". As we shall see, this equation propagates, with a constant speed, the

level lines of the image in the same direction as the reverse heat equation would do. It therefore enhances

the image. The equation is more or less equivalent to a good old nonlinear �lter due to Kramer in the

seventies. Kramer's �lter can be interpreted as a partial di�erential equation, by the same kind of heuristic

arguments which Gabor developed to derive the heat equation. This equation is

@u

@t
= �signD2u(Du;Du)jDuj:

Thus, the laplacian is replaced by a directional second derivative of the image, D2u(Du;Du). We shall

later on interpret this di�erential operator as an \edge detector". Kramer's equation yields a slightly

better version of shock �lter as is illustrated in Figure 1.8. Both deblurring equations work... to some

extent. They experimentally do not blow up and attain steady states ! The third deblurring method we
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Figure 1.8: Image deblurring by shock �lters and by a variational method. From left to right : blurred image, Rudin-Osher
shock �lter which is a pseudoinverse of the heat equation attaining a steady state, Kramer's improved shock �lter, also
attaining a steady state and the Rudin, Osher, Fatemi restoration method, obtained by deblurring with a controlled image
total variation. This last method is very eÆcient when the noise and blur models are known. It is currently being used by
the French Space Agency (CNES) for satellite image restoration (Chapter 16).

can mention here is, to our knowledge, the best version. It poses the deblurring problem as an inverse

problem. Given the observed image u0, we try to �nd a restored version u such that k � u is as close as

possible to u0 and the oscillation of u is nontheless bounded :

urestored = Argmin(

Z
jDuj+ �(k � u� u0)

2:

The parameter � tunes the oscillation we allow for the restored version. If � is large, the restored version

will satisfy accurately the equation k � u = u0, but may be very oscillatory. If instead � is small, we get a

smooth but unaccurate solution. This parameter can be computed in principle as a Lagrange multiplier.

The obtained restoration can be remarkable. We display the best result we can obtain with the blurred

Victor in Figure 1.8-right. This total variation restoration method also has fast wavelet packets versions.

It recently won a benchmark in satellite image deblurring organised by the French Space Agency (CNES).

The original remark of Gabor, about image generation being related to the Laplacian of the image,

leads to the wavelet theory as well. Here is how it works : if we convolve the image with some smoothing

kernel and thereafter make the di�erence, we obtain a new image, actually a laplacian, which turns out

to be faded with respect to the original. In Figure 1.9, the last image on the right shows in black the

values of this laplacian image of Victor which di�er signi�cantly from zero : In most natural images,

as here, this representation is sparse and adapted to compression. This is why one of the �rst wavelet

representations, due to Burt and Adelson in 83, was called \Laplacian pyramid". It boils down to the

iteration of a convolution followed by subsampling. We only keep the di�erences between images smoothed

at di�erent scales, i.e. their laplacians. The objective is a compressed representation, but to the price of

a loss of invariance due to the multiscale subsampling.

In image analysis, the heat equation has had a very di�erent use: Marr, Hildreth, Canny, Witkin,

Koenderink proposed in the eighties to analyse an image by applying the heat equation. As Rudin and

Florack noticed, this is related to distribution theory. Indeed, details of the images, like boundaries, corners

and other singularities cannot be computed without some previous smoothing because they are derivatives

of a nonsmooth function. And this smoothing has to be multiscale because the image is multiscale !

The heat equation is easily proved to be the only good candidate to the task if image analysis has to

be linear. What derivatives should be computed in an image ? The early research in computer vision
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Figure 1.9: The \laplacian pyramid" of Burt and Adelson. From left to right : original image, image blurred by gaussian
convolution, then di�erence between the original image and the blurred version, which simulates the laplacian of the original
image. In black in the last image, points where this laplacian image is large. This experiment simulates the �rst step of
the laplacian pyramid. The laplacian image is, for most digital images, a sparse representation, therefore well adapted to
compression.

proposed \edge detection" as a main tool : it is assumed that the apparent contours of the objects and

also the boundaries of the facets of objects, result in step discontinuities in the image, while, inside those

boundaries, the image oscillates mildly. The apparent contour points, or \edges points" will be computed

as points where the gradient is is some sense largest. Two ways to do so : Hildreth and Marr proposed the

points where �u crosses zero. A signi�cant improvement was done by Canny, who proposed to compute

the points where Du is maximal on the gradient lines. Such points satisfy D2u(Du;Du) = 0. Figure

1.10 displays what happens when we smooth the image with the heat equation and compute the points

where D2u(Du;Du) = 0 and jDuj is large enough. At �rst, everything in the image is boundary : the

image, being a very oscillatory function, has in
exion points everywhere ! After some evolution of the heat

equation, we can see what happens : we are able to extract some structure.

Figure 1.10: Heat equation and Canny's edge detector. Boundaries, or \edges" of the image can be de�ned as points where
the gradient attains a maximal and large value along the gradient lines. This amounts to say that edge points are points
where D2u(Du;Du) crosses zero and jDuj is large. Canny's edge detector computes those points. On the left, the original
image, followed by the edge points found. They make a very dense set, because of the oscillatory character of the image.
Next, the image blurred by the Gauss kernel (heat equation) and the Canny edges found. The heat equation has removed
the \irrelevant" edges (Chapter 3)

If the heat equation is, under sound invariance requirements, the only good linear smoother, there are

instead many nonlinear ways to smooth an image. The �rst one was proposed by Perona and Malik in

87. The idea is roughly to smooth out what has to be smoothed, the irrelevant, homogeneous, regions and

to enhance instead the boundaries. Thus, the di�usion should look like the heat equation when jDuj is
small and an inverse heat equation should instead be applied when jDuj is large. Here is the equation in
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divergence form.
@u

@t
= div(g(jDuj2));

where g(s) = 1
1+�s2 decreases when s increases. It is easily checked that we have a di�usion equation when

jDuj � � and an inverse di�usion equation when jDuj > �. In order to do so, we rewrite the equation in

the following way. We consider the second derivative of u in the direction of Du,

u�� = D2u(
Du

jDuj ;
Du

jDuj )

and the second derivative in the orthogonal direction,

u�� = D2u(
Du ?
jDuj ;

Du?

jDuj );

where Du = (ux; uy) and Du
? = (�uy; ux): The laplacian can be rewritten in the intrinsic coordinates

(�; �) as �u = u�� + u��: The Perona-Malik equation rewrites

@u

@t
=

u��
1 + �2jDuj2 +

(1� �2jDuj2)u��
(1 + �2jDuj2)2 :

So the �rst term always appears as a one-dimensional heat equation in the direction orthogonal to the

Figure 1.11: Perona-Malik equation and edge detection : same experiment as in Figure ??, but the heat equation has been
replaced by the Perona-Malik equation. Notice that the edge map looks slightly better localized as with the heat equation.

gradient, tuned by the size of the gradient though. The second term can be a directional heat equation, or

reverse heat equation in the direction of the gradient. So we indeed mix in this model the heat equation

and the reverse heat equation ! We compare in Figure 1.11 the Perona-Malik with the classical heat equa-

tion in terms of accuracy on the boundaries obtained by Canny's edge detector : at a comparable scale of

smoothing, we clearly gain some accuracy in the boundaries and get rid of more \spurious" boundaries.

The representation is both more sparse and more accurate.

Now, this ambitious model attempts to put in a single operator two very di�erent goals which we

already mentionned, namely restoration and analysis. This has a cost : the model contains a \constrast

threshold" which can only be �xed manually. Mathematical existence and uniqueness are not guaranteed,

despite some attempts by Kichenassamy and Weickert. Let us summarize the involved parameters : we

need to �x both � and the smoothing scale(s) t and the threshold on the gradient in Canny's detector as
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well. We obviously must take the same gradient threshold � in Canny's detector and in the Perona-Malik

equation. All the same, we have a two parameters game : how will this be dealt with in automatic image

analysis ? This question seems to have no general answer for the time being. An interesting attempt based

on statistical arguments is made, however, in Black, Sapiro.

If any nonlinear di�usion can be an image analysis model, why not trying them all ? This is exactly

what has happened in the past ten years. We can claim that almost all possible nonlinear parabolic

equations have been proposed. The logic in this proliferation of models is this : each attempt �xes one

intrinsic di�usion direction and tunes the di�usion by the size of the gradient or by the size of a nonlinear

estimate of the gradient. Sometimes, the proposed models are even systems of PDE's, but in order not

to blow up this preface, we shall focus on the simplest proposed examples. We can start with Rudin-

Osher-Fatemi's model, which consists, for the smoothing term, of minimizing the total variation of u. The

gradient descent for
R jDuj writes

@u

@t
= div(

Du

jDuj ) =
1

jDuju��:

Written in that way, the method appears as di�usion in the direction orthogonal to the gradient, tuned

by the magnitude of the gradient. Caselles, ? ? and ? ? proved that this equation is indeed well posed in

the space of bounded variation. A variant was proposed independently by Alvarez and al.,

@u

@t
=

jDuj
jk �Dujdiv(

Du

jDuj ) =
1

jk �Duju��;

where the tuning of the gradient is nonlocal. Kimia, Tannenbaum and Zucker proposed, endowed in a

more general shape analysis framework, the simplest equation of the list,

@u

@t
= jDujdiv( DujDuj ) = D2u(

Du ?
jDuj ;

Du?

jDuj ) = u��:

This equation had been proposed some time before in another context by Sethian as a tool for front

propagation algorithms. This equation, which we call in continuation \curvature equation", is a \pure"

di�usion in the direction orthogonal to the gradient. The Weickert equation is a variant of the curvature

equation, with nonlocal estimate of the direction orthogonal to the gradient : the di�usion direction

d = SEigen(k � (Du
Du)) is computed as the eigenvector of the least eigenvalue of k � (Du
Du) : if

the convolution kernel is removed, this eigenvector simply is Du?. The three mentionned models can be

interpreted as di�usions in a direction orthogonal to (an estimate of) the gradient, tuned by the magnitude

of the gradient (Figure 1.14). Other di�usions have been considered as well : For interpolation goals,

Caselles et al. proposed a di�usion which may be interpreted as the strongest possible image smoothing,

@u

@t
= D2u(Du;Du):

This equation is not used as the other ones as a preprocessing of the image, but a way to interpolate

between the level lines an image with sparse level lines (Figure 1.13). Zhong and Carmona proposed

a di�usion in the direction d = SEigen(D2u) of the eigenvector with least eigenvalue of D2u (Figure

1.12). Sochen, Kimmel and Malladi propose instead a nondegenerate di�usion, associated with a minimal
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Figure 1.12: A proliferation of di�usion models. From left to right: Original image, Perona and Malik equation 1987,
Zhong, Carmona 1998 (di�usion along the least eigenvector of D2u) and Sochen, Kimmel and Malladi, 1998 (minimization
of the image graph area.

Figure 1.13: A proliferation of di�usion models (III) Here, the di�usion is made in the direction of the gradient and the
model is applied for image interpolation when level lines are sparse. From left to right : original image, quantized image
(only 10 levels are kept - 3.32 bits/pixel) and reinterpolated image by the Caselles and Sbert (1998)algorithm. They apply a
di�usion on the quantized image, with values on the remaining level lines as boundary conditions.

Figure 1.14: A proliferation of di�usion models (II). From left to right: Osher, Sethian 1988: curvature equation, Rudin,
Osher and Fatemi 1992: minimization of the image total variation, Alvarez, Lions et al. : nonlocal variant of the preceding,
1992, Weickert 1994 : nonlocal variant of the curvature equation. All of these models only di�use in the direction orthogonal
to the gradient, with a more or less local estimate of this direction.

surface variational formulation : their idea was to make a gradient descent for the area of the graph of u,R p
1 + jDuj2, which leads to the di�usion equation (Figure 1.12).

@u

@t
= div(

Dup
1 + jDuj2 ):

Among the mentionned models, only the curvature motion was explicitly proposed by Kimia, Tannen-

baum and Zucker as shape analysis tool. We shall now explain why.

In order to do so, we have to give a de�nition of image analysis. There might be as many ways to de�ne
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this discipline as they are applicational goals involving digital images. Now, the range of applications is

as wide as the human activity, since most of the scienti�c and technical human activity, including even

sound analysis (visual sonagrams), involves the perceptual analysis of images. Fortunately, we have at

hand a mathematical shortcut to avoid an endless list of partial and speci�c requirements : This shortcut,

well known in Mechanics, consists of stating invariance requirements. Invariance requirements will be a

short list and they will, as we shall see, give a possible classi�cation of models and point out the ones

which are the most adequate for all purposes image analysis tools. The �rst invariance requirement is the

Wertheimer principle according to which visual perception (and therefore, may we add, image analysis)

should be independent of the image contrast. We state this in the following way :

Contrast invariant classes

u and v are said to be (perceptually) equivalent if there is a continuous increasing function g such that

v = g(u).

Contrast invariance requirement : An image analysis operator T must act directly on the equiva-

lence class. As a consequence, we may ask that T (g(u)) = g(Tu), i.e. a commutation of the image analysis

operator with contrast changes.

newline

The contrast invariance requirement rules out the heat equation and all models stated before, except

the curvature motion. Contrast invariance led Matheron in seventy-�ve to reduce image analysis to a set

analysis, namely the analysis of level sets. We call upper level set with level � of an image u the set

X�u = fx; u(x) � �g:

We can de�ne in exactly the same way the lower level sets, by changing \�" into \�". The main point

to retain here is the global invariance of level sets under contrast changes, namely, if g is a continuous

increasing contrast change, then,

Xg(�)g(u) = X�u:

According to Mathematical Morphology, this image analysis doctrine founded by Matheron, all of the

image shape information is therefore contained in the level sets : it can be proved that an image can be

reconstructed, up to a contrast change, from its set of level sets (Figure 1.15 : an image and some of its

level sets).

The contrast invariance requirement yields powerful and simple denoising operators as the so called

\Extrema killer" de�ned by Vincent and Serra in 1993. This image operator simply removes all connected

components of upper and lower level sets with area smaller than some �xed scale. This is not a PDE,

actually it's much simpler ! Now, its e�ect is amazingly good for impulse noise i.e. local destructions of the

image, spots. In Figure 1.16, we see a image degraded up to 75%. Below, its restoration by the extrema

killer. Left, result of the same operator applied to the original.

Caselles and Coll localized farther in 1996 the contrast invariance requirement in image analysis. They

proposed as the main object of analysis the level lines of the images, that is, the boundaries of level sets.
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Figure 1.15: An image and one of its level sets. Right : level set 140 of the left image. This experiment illustrates Matheron's
thesis that the main shape information is contained in the level sets of the image. Level sets are contrast invariant (Chapter
4).

Figure 1.16: The "extrema killer" �lter : all connected components of the upper or lower level sets with small area are
removed from the image. From left to right : original image, extrema killer applied with area 80 pixels, then 75% salt and
pepper noise added to the original image and the same �lter applied (Chapter 7).

This proposition makes sense for a digital image, which is assumed to be a sampling of a very smooth func-

tion as the result of the optical smoothing. We can therefore de�ne the level lines if, e.g., the interpolated

image is C1 as is guaranteed by the canonical Shannon interpolation. There may be other interpolation

methods, and even interpolations into a discontinuous functions : this is the case if, e.g., we consider the

digital image as constant on each pixel. We must then for each interpolation method make clear how the

level lines are computed and what their structure is. Two properties are desirable : that the level curves

indeed are curves in some a�ordable sense (Jordan recti�able curves) and that they are nested, i.e. never

cross, so that they make an inclusion tree. A study of Kronrod (1950) shows that if the function u is

continuous, then the isolevels sets fx; u(x) = �g are nested : they build a tree ordered by inclusion. Now,

these isolevel sets need not be really curves. Monasse (2000) generalized recently the preceding result to

lower semicontinuous or upper semicontinous functions. His result implies that the simplest, piecewise

constant, interpolation of an image yields a nested set of Jordan curves bounding the pixels. Thus, we

have two good ways to associate with the digital image a set of nested Jordan curves. We call this set

\topographic map". 1 We display in Figure 1.17 the level lines of a digital image at some �xed level. By

the introduction of the topographic map, the search for image smoothing, which we had already reduced

to set smoothing, is further reduced to curve smoothing, provided of course this smoothing preserves curve

1This point of view also is coherent with the \BV assumption" which we mentionned at the beginning of the introduction,
according to which the right function space for images should be the space BV of functions with bounded variation. By
coarea formula, we can then describe the image by a bunch of Jordan level curves (see Ambrosio et al.) Now, it is in general
false for BV functions that boundaries of lower and upper level sets make a nested set of curves : these curves may cross.

F. Guichard, J-M. Morel, Image Analysis and PDE's 21



CHAPTER 1. INTRODUCTION

inclusion.

Figure 1.17: Level lines of an image. Level lines, de�ned as the boundaries of level sets, can be de�ned to be a nested set
of Jordan curves. They give a contrast invariant representation of the image. Right : level lines with level 183 of the left
image (Chapter 5).

Chen, Giga and Goto and Alvarez, et al. proved that, under the usual invariance requirements for ima-

ge processing, including the contrast invariance, all image multiscale analyses should have the form of a

curvature motion, namely
@u

@t
= F (curv(u); t)jDuj;

where F is increasing with respect to its �rst argument. This equation can be interpreted as this : we

consider a point x on a given level curve of u(t), at time t. We call n(x) the normal vector to the level

curve and curv(x) its curvature. Then the preceding equation turns out to be associated with the curve

motion equation
@x

@t
= F (curv(x))n(x);

which describes how the point x moves in the direction of the normal. Not much more can be said at

this level of generality on F . Now, two particular cases happen to play a prominent role. First, the case

F (curv(u); t) = curv(u), the so called curvature equation which we already met, and second the case

F (curv(u); t) = curv(u)
1
3 :

This particular form for the curvature dependence, the power one third, permits to get a very relevant ad-

ditional invariance, the aÆne invariance. We would like to have a full projective invariance, but a theorem

proved by Alvarez et al. shows that this is impossible. The best we can have is invariance with respect

to the so called chinese perspective, which preserves parallelism. Most of the mentionned equations, par-

ticularly when F is a power of curvature, have a viscosity solution in the sense of Crandall and Lions, as

shown by recent works of Ishii and Souganidis.

As we already mentionned, contrast invariant processing boils down to level set, and �nally level curve

processing. The above mentionned equations indeed are equivalent to curve evolution models, provided

strong existence results are at hand. This is the case for the most important cases, namely the power 1, the

so called \curve shortening" and the power 1/3, known as \aÆne shortening". Grayson proved existence,

uniqueness and analycity for the �rst equation,

@x

@t
= curv(x)n(x)
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and Angenent, Sapiro and Tannenbaum for the aÆne shortening

@x

@t
= curv(x)

1
3n(x):

Those results are very relevant to image analysis as they ensure that the di�usion process indeed reduces

Figure 1.18: The AÆne and Morphological Scale Space (AMSS model). From left to right : original image, level lines of
the images (16 levels only), smoothed image by using the aÆne and morphological scale space, and its level lines (Chapter
6).

the curve to a more and more sketchy version. We check the aÆne invariance in Figure 1.19 . The numer-

ical test we shall make here is as follows : we apply a very fast and fully aÆne invariant numerical scheme

designed by Lionel Moisan. In the middle, the initial shape is an aÆne transform of the �rst one ; the

shape on the right will be an inverse aÆne transform of the middle shape. If everything is correct, we can

expect that, after processing, the shape on the right will be identical to the shape on the left. We make

the experiment with both the the curve shortening and the aÆne shortening. So, it works !

Evans-Spruck and Chen-Giga-Goto proved in 1991 that a continuous function moves by curvature mo-

Figure 1.19: Experimental check of the aÆne invariance of the aÆne shortening (AMSS). We display on the left image
three shapes. The second one is an aÆne transform AS of the �rst shape S. The third one is obtained from the second by
the inverse aÆne transform. It therefore initially is A�1AS = S. On the right image : result after application of AMSS to
the two �rst shapes : are viewed S(t);, (AS)(t) and A�1((AS)(t)). If the numerical scheme is aÆne invariant, this third
shape must coincide with S(t), which is indeed the case. Middle : the same procedure applied with the curvature equation,
which proves not to be aÆne invariant, as expected (Chapter 24).

tion if and only almost all of its level curves move by curve shortening. This yields, in that case, a

mathematical justi�cation of the now classical Osher-Sethian numerical method for moving fronts by mov-

ing a distance function to the front. The same result is true for the aÆne invariant curve evolution. The

Osher-Sethian point of view is just converse to the point of view adopted here : they associate with some
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curve C or surface its signed distance function u , so that the curve or surface is handled indirectly as the

zero isolevel set of u. Then u is evolved by, say, the curvature motion with a classical numerical di�erence

scheme. In that way, the curve evolution is dealt with eÆciently and accurately. From our point view, the

image can be viewed as a distance function to all and each of its level sets, since we are interested in all

of them.

We show in Figure 1.18 an application of this numerical method, with both curvature and aÆne invariant

Figure 1.20: Computation of the curvature of the original sea bird image after it has been smoothed by curvature motion
at calibrated scale 1. The �rst image displays the smoothed version of the sea bird at a small scale. The second image
displays the absolute value of the curvature, with the convention that the darkest points have the largest curvature. We
have displayed the curvature only at points where the gradient of the image was larger than 6. (The image grey levels range
from 0 to 255). In continuation, we display on separate images the positive part of the curvature and the negative part. The
curvature motion can be used as a nonlinear means to compute a "multiscale" curvature of the original image. Compare with
Figure 1.21, where the calibrated scale of smoothing is 4. (A calibrated scale t means that at this scale a disk with radius t
disappears)

curvature motions. In order to gain visibility, we do not display all level curves, but only for about eigh-

teen levels. Notice that the aim is not here subsampling ; we keep the same resolution. It is not either

restoration : the processed image is clearly worse than the original. The aim is invariant simpli�cation

leading to shape recognition.

Before proceeding to shape recognition, let us mention that a well adapted variant of curvature equation

can be used for shape detection. It's a by now famous method of contour detection in an image, initially

proposed by Kass, Witkin and Terzopoulos. This method was very unstable and the winning method

turns out to be a variant of curvature motion proposed by Caselles, Catt, Coll, Dibos and improved

simultaneously by Caselles, Kimmel, Sapiro, and Malladi, Sethian. Here is how it works. The user draws

roughly what are the contours he wants in the image and the algorithm then �nds the best possible contour

in terms of some variational criterion. This turns out to be very useful in medical imaging. The motion of

the contour is a tuned curvature motion which tends to minimize the energy E which we will now explain.

Given an original image u0 containing some circular contours which we wish to approximate, we start with

an \edge map"

g(x) =
1

1 + jDu0(x)j2 ;
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Figure 1.21: Computation of the curvature of the original sea bird image after it has been smoothed by curvature motion.
The �rst image displays the smoothed version of the sea bird at calibrated scale 4. The second image displays the absolute
value of the curvature, with the convention that the darkest points have the largest curvature. We have displayed the
curvature only at points where the gradient of the image was larger than 6. (The image grey levels range from 0 to 255). In
continuation, we display on separate images the positive part of the curvature and the negative part. The curvature motion
can be used as a nonlinear means to compute a "multiscale" curvature of the original image. Compare with Figure 1.20,
where the calibrated scale of smoothing is 1.

that is, a function which vanished on the edges of the image. The user then points out the contour he

is interested in, by drawing a polygon 
0 surrounding roughly the desired contour. The \geodesic snake"

algorithm then builds a distance function v0 to this initial contour, so that 
0 is the zero level set of v0.

The energy to be minimized is

E(
) =

Z



g(x(s))ds;

where g is the edge map associated with the original image u0 and s denotes the length parameter on 
.

The motion of the \analysing image" v is governed by

@v

@t
= gjDvjcurv(v)�Dv:Dg:

We display an example in Figure 1.22.

Figure 1.22: Active contour, or "snake" From left to right : original image, initial contour, evolved distance function, �nal
contour (Chapter 19).
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The main obvious application of invariant PDE's seems to be shape retrieval in large databases. There are

thousands of di�erent de�nitions of shapes, and of shape recognition algorithms. Now, the real bottleneck

has ever been extraction of the relevant shapes. The discussion above points to a brute force strategy

: all contrast invariant local elements, are are the level lines of the image, are candidates to be \shape

elements". Of course, this name of shape element suggests the contours of some object, but there is no way

to give a simple geometric de�nition of objects. We must give up the hope of jumping from the geometry

to the common sense world. We may instead simply ask the question : given two images, can we retrieve

all level lines similar in both ? This would give a factual, a posteriori de�nition of shapes : they would

be de�ned as pieces of level lines common to two di�erent images, no matter what their relationships to

real physical objects are. Of course, this brute force strategy would be impossible without the previous

Figure 1.23: Level lines based shape parser. Shape extraction has ever been the bottleneck of shape recognition algorithms.
With the presented algorithm, this problem is solved by a brute force method : it compares all level lines of the images to
be compared. Left pair of images : two images of a desk taken from di�erent angles. In the left hand desk image, one level
line has been put in white. We display, also in white, in the right image of the pair, the matching level lines. The match is
ambiguous, as must be expected when the same object is repeated twice in the scene ! In the right pair of images, we display
in white all matching pairs of level lines. (Experiment : J.-L. Lisani).

invariant �ltering (AMSS). It is instead doable if the level lines have been signi�cantly simpli�ed. This

simpli�cation entails the possibility of compressed invariant encoding. In Figure 1.23, we present an exper-

iment due to Lisani et al.. Two images of a desk are taken from di�erent angles, and then, in white, all of

the pieces of level lines in Image 1 and in Image 2 which found a match in the other image. In continuation,

we present some of the matches. We notice that several of these matches are doubled : indeed, there are

two similar chairs in each images ! A Gestalt law comes immediately to mind. This law states that human

perception tends to group similar shapes. We now see the numerical necessity of this perceptual grouping

: a previous self-matching of each image, with grouping of similar shapes, must be performed before we

can compare it to other images !

1.2 The mathematical organisation

The mathematical organisation of this book derives from the above discussion of PDE models. We chose

to focus on image analysis models, so that invariance requirements will lead the mathematical analysis.

Most chapters include numerical experiments and indications on the right way to make them.

Chapter 2 We extensively analyse the heat equation, because it is a useful mathematical and algorithmic

tool throughout the book. We �rst prove existence and uniqueness results for the heat equation and

then prove that iterated linear smoothing �lters are asymptotically equivalent to the heat equation.

This is a �rst way to show its uniqueness as a linear smoothing �lter.

Chapter 3 We then use the heat equation as a tool to :
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� edge detection (Hildreth-Marr, Witkin)

� set smoothing (Koenderink-Van Dorn, Bence-Merriman-Osher)

� curve smoothing (Mackworth-Mokhtarian)

Chapter 4 We prove one of the main principles of mathematical morphology : a contrast invariant class

of images is completely described by its set of level sets. Thus, contrast invariance reduces image

analysis to set analysis.

Chapter 5 Level lines and level surfaces are introduced and the de�nitions and main formulae of curvature

of level lines and, in higher dimension, of the principal curvatures of an isolevel surface given and

proved. We also give a de�nition of level lines for discontinuous digital images and adress their

visualization.

Chapter 7 We prove that monotone image operators that are contrast invariant boil down to set monotone

operators. We explain how to de�ne the set operator from the image operator and, conversely, how

to construct a contrast invariant image operator from a set operator. Commutation of the monotone

contrast invariant operators with thresholds is proved. As a �rst application, the Vincent-Serra

\extrema killer" is formally de�ned.

Chapter 8 An analytic form is given to monotone contrast invariant and translation invariant image

operators : If T is such an operator, it has a canonical \sup-inf" form,

Tu(x) = sup
B2IB

inf
y2B

u(x+ y);

where IB is a set of subsets of IR2 called \set of structuring elements". Conversely, every image

operator in the sup-inf form is monotone and contrast invariant. This theorem is a nonlinear version

of the Riesz theorem, according to which a linear, continuous, translation invariant operator can be

associated a convolution kernel k, so that

Tu(x) =

Z
k(y)u(x� y)dy:

The kernel k is called \impulse response". In the same way, IB is an impulse response for the

nonlinear operator.

Chapter 9 The simplest sup-inf operators of mathematical morphology, the so called \dilations (only

sup)" and \erosions (only inf)" are presented and analysed. Their subjacent PDE are identi�ed as

propagation equations

@u

@t
= cjDuj;

where c = 1 for dilations and c = �1 for erosions.

Chapter 10 The median �lter is one of the most emblematic and eÆcient contrast invariant monotone

operator. It is de�ned and its numerical implementation discussed.
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Chapter 11 This chapter focuses on the asymptotic expansion of contrast invariant operators when their

scale tends to zero. We associate with each operator T its scaled version Th associated with the

shrinked set of structuring elements IBh = fhB;B 2 IBg: It is then proved roughly that

Thu(x)� u(x) = chjDuj+ hH(hcurv(u))jDuj;

where c is a constant and H a nondecreasing function, both associated with T by simple formulas.

In the case of the median �lter it is proved that c = 0 and H(s) = s. We therefore have two main

classes of contrast invariant operators :

� c 6= 0 :the operator has the same asymptotic behaviour as a dilation if c > 0 and an erosion if

c < 0.

� c = 0 : the operator corresponds to a curvature dependent motion. The overall conclusion of

this chapter is that all contrast invariant monotone operators boil down to erosions, dilations,

and curvature motions.

Chapter 12 : performs the same analysis in arbitrary dimension.

Chapter 13 Because of the aÆne invariance requirement, a special attention is paid to aÆne invariant

operators : an aÆne invariant distance of a point to a set is de�ned. In continuation, aÆne dilation

and erosion operators are deduced and their set of structuring elements identi�ed.

Chapter 14 AÆne invariant families of structuring elements are not bounded, since by an aÆne map

with determinant 1 we can arbitrarily stretch any set of the family. It is shown that the asymptotic

behaviour of the aÆne invariant operator is not altered if we impose adequate bounds on the aÆne

structuring elements.

Chapter 15 It is shown that if T is an aÆne invariant operator such that T (�u) = �T (u), then its

asymptotic behaviour is

Thu(x)� u(x) = ch
4
3 jDujcurv(u) 13 :

In summary, all aÆne invariant contrast invariant operators are asymptotically equivalent to the

aÆne PDE,
@u

@t
= jDujcurv(u) 13 :

Chapter 16 : adresses the extension of the preceding theory to the so called \non
at" mathematical

morphology, i.e. when the operators are no more contrast invariant, but only monotone. It is shown

that an asymptotic expansion of a monotone operator can lead either to any of the Hamilton-Jacobi

equations
@u

@t
= H(Du)

or to parabolic equations (e.g. the heat equation). Actually, all of the intrinsic parabolic equations

can derived from the Mathematical Morphology framework ! As applications, we analyse Rudin-

Osher and Kramer's shock �lters.
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Chapter 17 The curvature equations are not smooth enough to be given classical solutions : we have

a need for a concept of solutions compatible with contrast changes. Now, if u is a solution of the

curvature equation and g a continuous increasing nondi�erentiable contrast change, g(u) should be

another solution and is clearly not more than continuous ! The concept of viscosity solutions in the

framework of Crandall-Lions, permits to solve this diÆculty. We de�ne this concept of solution and

prove the main needed properties. In particular, we check that the erosions are dilations are viscosity

solutions of the propagation equations
@u

@t
= cjDuj

. We also prove a theorem, due to Barles and Souganidis, which permits to prove that the iteration of

a contrast invariant operators Th yields a discrete approximation of the subjacent curvature equation.

We also give a brief account of the uniqueness theory for viscosity solutions.

Chapter 18 is devoted to the application of the mathematical techniques developped in the former chap-

ter. We consider the main relevant contrast invariant operators, namely the median �lter and the

aÆne invariant erosion-dilation. We consider adequate rescaled versions of both, which we denote

generically by Th. Then we prove that (Th)
nu0 ! u(t) when nh! t and u(t) is a viscosity solution

of the associated PDE, @u
@t = jDujcurv(u) 13 with u(0) = u0, when T is an aÆne contrast invariant

operator and @u
@t = jDujcurv(u) when T is a median �lter. Since the viscosity solution of these

equations has been proved to be unique, we have both constructed this unique solution and proved

that the considered iterated �lter converges towards this unique solution !

Chapter 19 is an application of the results and techniques of the former chapters to the classical \active

contour" or \geodesic snakes" method. We explain this method, show its structural properties and

prove existence, uniqueness and contrast invariance of the motion of the analysing function v.

Chapters 20 and 21 : image scale space theory introduces a di�erent point of view on image analysis,

namely the Scale Space theory. A scale space is family of smoothing operators Tt, depending upon

a scale parameter t, which associate with the original image u0 more and more sketchy images u(t).

The original scale space theory proposes to compute u(t) as the solution of the heat equation with

u0 as initial condition. Clearly, the viscosity solutions u(t) of curvature equations give other scale

space theories, more invariant. Now, aren't we missing other possibilities ? The axiomatic analysis

performed in Chapters 18 and 19 permits �rst to explain which requirements (locality, invariance,

comparison principle...) lead to a parabolic P.D.E. and then to classify all possible P.D.E.'s according

to their invariance properties. The aÆne invariant equations are given in any dimension ; in dimension

2, the AMSS model (power 1=3 is proved to be the only possibility.

Chapter 22 A similar axiomatics analysis is performed on shape Scale Spaces. Here are also stated

(without proof for once) the existence, uniqueness and regularity results for the curve evolutions to

the powers 1 and 1=3. This shape analysis axiomatics turns out to be simpler than the general image

scale space axiomatics, because it is based on the shape inclusion principle. It gives also a formal

justi�cation of the algorithm which, instead of moving the image by a curvature P.D.E., moves all

level lines by the corresponding curve evolution equation. It is shown that the viscosity solution for

the �rst equation indeed is obtained by moving all level lines with the second
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Chapter 23 : Scale Space of movies. Here, a new axiom is introduced, the galilean invariance, which

permits to single out a single most invariant P.D.E. for movies.

Chapter 24 is devoted to several di�erent numerical strategies with �nite di�erence schemes to implement

image evolution by a curvature motion.
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Chapter 2

The Heat Equation

2.1 Image linear smoothing and the Laplacian

We note x = (x1; :::; xN ) a point of IRN , x = (x; y) if N = 2 and jxj = (x21 + :::+ x2N )
1
2 . If x;y 2 IRN ;

we denote by x:y = x1y1 + ::: + xNyN their scalar product. Consider a bounded function u0(x), which

we interpret as an image : u0(x) is the observed \grey level" at x. We write, when u(x; y) is a smooth

enough function,

ux =
@u

@x
; uy =

@u

@y
; uxy =

@2u

@x@y

and, in the same way, if u0(x) = u0(x1; :::; xN ),

ui =
@u

@xi
; uij =

@2u

@xi@xj
; etc.

We denote the gradient of u by

Du = (ux; uy)

when u(x) = u(x; y) and

Du = (u1; :::; uN)

when u(x) = u(x1; :::; xN ). The Laplacian of u is denoted by

�u = uxx + uyy

if N = 2 and

�u = u11 + :::+ uNN

in general.

Assume we wish to establish a more reliable value Mhu0(x) of u0(x) as a mean value of u0 over a

neighborhood of x with size h. As for an obvious (but useful) example, let us mention the case where

Tu0(x) = (Mhu0)(x) is obtained as the mean value of u0 in a neighborhood of x and let us take N = 2.

We set

Mhu0(x) =
1

�h2

Z
D(x;h)

u0(y)dy; (2.1)
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In this case, the locality means that only values of u0 inside a disk D(x; h) around x matter. When h tends

to zero, we get a more and more local estimate of the value of u0 at x. The parameter h characterizes

the \locality" of the considered operator, that is, the size of the neighborhood involved in the �ltering

operation. The question arises of whether such an operation can be made independent of h. A �rst answer

is to analyze the asymptotic expansion of Mhu0(x) as h tends to zero. Clearly, if u0 is continuous at x,

we have Mhu0(x)! u0(x). If we assume that u0 is twice continuously di�erentiable (C2) at x, then it is

easily seen that in fact 1

Figure 2.1: Local averaging algorithm. Left : original image, right : result of replacing the grey level at each pixel by the
average grey level over the neighboring pixels. The shape of the neighborhood is de�ned by the black spot displayed up-right.

Mhu0(x)� u0(x)

h2
=

1

8
�u0(x) + "(h) (2.2)

In order to prove this formula, let us set, without loss of generality, x = 0. Then for y = (x; y) in D(0; h),

we have by Taylor formula

u0(y) = u0(0) +Du0(0):y+
1

2
((u0)xxx

2 + (u0)yyy
2 + 2(u0)xyxy) + o(h2):

Taking the mean value over D(0; h), that is, applying Mh, we obtain

(Mhu0)(0) = u0(0) +
1

2�h2
((u0)xx(0)

Z
D(0;h)

x2dxdy + (u0)yy(0)

Z
D(0;h)

y2dxdy) + o(h2):

Since
1

2�h2

Z
D(0;h)

x2dxdy =
1

4�h2

Z
D(0;h)

(x2 + y2)dxdy

=
1

4�h2

Z h

0

2�r3dr =
h2

8
;

we obtain the announced formula (2.2). This formula suggests the following result : consider for any t a

sequence of real numbers h and integers n such that nh2 ! t. Set un =Mn
hu0. Then it is to be expected

that un(x)! u(t;x) where u(t;x) satis�es the heat equation associated with (2.2),

1We always denote in this text by o(h) a function of h which tends to zero faster than h, by O(h) a function such that,
for some constant C, jO(h)j � Cjhj, and by "(h) a function tending to zero as h tends to zero. Thus an o(h) function can
also be written : h"(h).
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@u

@t
(t;x) =

1

8
�u(t;x); u(0) = u0: (2.3)

This convergence result will be obtained in Section 3.1. We need some preliminaries on the heat equation.

In Section 2.2 below, we shall prove that the heat equation has a unique solution for a given initial datum

u0 and is equivalent to the convolution of u0 with Gaussian kernels of increasing width.

Figure 2.2: The Gauss kernel in two dimensions.

2.2 Existence and uniqueness of solutions of the heat equation

De�ne an image u0(x), x 2 IRN , as a real function which is primarily de�ned on the hypercube [0; 1]N , and

subsequently extended to C = [�1; 1]N by symmetry across the coordinate hyper-planes. This extension

satis�es for every x = (x1; :::; xN ) in C,

u("1x1; :::; "NxN ) = u(x1; :::; xN ) (2.4)

where ("1; :::; "N ) takes all possible values in f�1; 1gN . We then extend u(x) by periodization into a

function on all of IRN which is 2-periodic with respect to all variables, so that

u(x1 + 2n1; :::; xN + 2nN) = u(x1; :::; xN ) (2.5)

for all (n1; :::; nN ) 2 IZN .

The aim of these successive extensions is �rst to preserve the continuity properties of u across the

boundary of [0; 1]N and second to have u de�ned on all of IRN , so that (e.g.) convolutions of u with

another function can be de�ned easily. This way of extending u is classical in image processing and used

in most compression and transmission standards. It is easily checked that if u is continuous on [0; 1], its

extension to IRN de�ned in the preceding way also is continuous.

De�nition 2.1 Whenever a function u0 de�ned on IRN satis�es the periodicity condition (2.5), we shall

say that u0 belongs to LC. If it is bounded, we say that it belongs to L1C . If it is integrable, that is,
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Figure 2.3: Image extension by symmetry and then periodization.

R
C
ju0(x)jdx <1, we say that u0 belongs to L

1
C . We endow theses spaces with norms, which we shall use

alternatively in the statements to come.

The L1C norm : jjujj1 = sup
x2C

ju(x)j

and the L1
C norm : jjujjL1(C) =

Z
C

ju(x)jdx:

If in addition the function satisfy the symmetries (2.4), we say that it is symmetric.

When jju � vjj1 ! 0, we say that u converges to v uniformly. When jju � vjjL1(C) ! 0, we say that

u converges to v in L1
C . When we assume that a function u 2 L1C is continuous, or Cm, or C1,

this means that u has such properties on all of IRN and not only on C. If u is continuous, then it is

uniformly continuous. Indeed, by periodicity, supx2IRN ju(x+ h)� u(x)j = supx2C ju(x+ h)� u(x)j and
by the compactness of C, supx2C ju(x + h) � u(x)j = o(1). In the same way, if u is C1, notice that

supx2IRN jDuj(x) = supx2C jDuj(x), etc.
We shall also consider functions g integrable on all of IRN ; in such a case, we write

jjgjjL1 = jjgjjL1(IRN ) =

Z
IRN

jg(x)jdx:
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We recall a classical density result in L1 : (See e.g. [360])

Proposition 2.2 If g 2 L1(IRN ), then there exists a sequence gn of continuous functions which are zero

outside a compact set such that gn ! g in L1(IRN ), that is,
R
IRN jgn(x)� g(x)jdx! 0 as n! +1.

If u 2 L1
C , there exists a sequence of continuous functions un 2 L1

C such that jjun � ujjL1(C) ! 0.

Figure 2.4: Convolution by gaussian kernels (heat equation). From top-left to bottom-right, we display the original image,
and the results of the convolutions with gaussians of increasing variance. A grey level representation of the convolution kernel
is put on the right of each convolved image ; it gives an idea of the size of the involved neighborhood. The resulting image
is more and more blurry.

A consequence of the density result, also classical is :

Proposition 2.3 If u 2 L1
C, then Z

C

ju(x� y)� u(x)jdx = "(jyj):

If u 2 L(IRN ), then u 2 L1
C , then Z

IRN

ju(x� y)� u(x)jdx = "(jyj):

Proof Fix " > 0. By Proposition 2.2, we can �nd v 2 L1C , continuous, such that jju�vjjL1(C) � ". Since

v is uniformly continuous, we have supx2IRN jv(x � y)� v(x)j � " for jyj < � small enough. Thus

Z
C

ju(x� y)� u(x)jdx �
Z
C

ju(x� y)� v(x � y)jdx+
Z
C

jv(x � y)� v(x)jdx+
Z
C

jv(x)� u(x)jdx � 3":

The proof of the second statement is an obvious adaptation of the �rst. 2
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We shall use multi-indices for derivation, which we denote by � = (�1; :::; �N ) 2 INN , or � =

(�1; :::; �N ) 2 INN . We write x� and jxj� for

x�11 x�22 :::x�NN and jx1j�1 jx2j�2 :::jxN j�N

respectively. We shall abbreviate the partial derivatives of a function g by setting

@�g =
@�1+:::+�N

@x�11 :::@x�NN
g:

We write g 2 C1 if g is di�erentiable of any order.

De�nition 2.4 We say that a function g de�ned on IRN belongs to the Schwartz class S if g 2 C1 and

for each pair of multi-indices �, � there is a constant C such that

jxj� j@�g(x)j � C:

Proposition 2.5 If g 2 S, then g is integrable on IRN :
R
IRN jg(x)jdx < 1. For all multi-indices �; �

the function x�@�g also belongs to S. In addition, for all �, @�g is uniformly continuous on IRN .

Proof The second statement immediately follows from the Leibnitz rule for di�erentiating a product.

The �rst one follows from the fact that we can write jg(x)j � C
1+jxjN+2 , which is an integrable function on

IRN . Finally, every continuous function on IRN tending to zero at in�nity also is uniformly continuous, so

that the last statement is valid. 2

Proposition 2.6 (The Gaussian and the heat equation )

For all t > 0, the function x! Gt(x) =
1

(4�t)
N
2
e�

jxj2
4t belongs to S and satis�es the heat equation

@Gt

@t
��Gt = 0:

Proof It is enough to prove the �rst statement for the function g(x) = e�jxj
2

. An easy induction ar-

gument shows that @�g(x) = P�(x)e
�jxj2 , where P� is a n-variable polynomial. Using the fact that for

every k, xke�x
2 ! 0 as x ! 1 concludes the argument. An easy calculation shows that Gt satis�es the

heat equation. 2

The main operation in linear image �ltering is the convolution of the image with positive integrable

functions. (The prototype of such a \convolution kernel", is the Gauss function).

Proposition 2.7 (and de�nition of the convolution) Let u be a function in L1
C and g 2 L1(IRN ).

Set (g � u)(x) = RIRN u(x� y)g(y)dy. Then (g � u)(x) is de�ned for almost every x 2 C. The convolution

function g � u belongs to L1
C and we have

jjg � ujjL1(C) � jjgjjL1(IRN )jjujjL1(C): (2.6)

If in addition u is bounded, then g � u is also bounded and

jjg � ujjL1(C) � jjgjjL1(IRN )jjujjL1(IRN ): (2.7)
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2.2. EXISTENCE AND UNIQUENESS OF SOLUTIONS OF THE HEAT EQUATION

Proof Let us start by proving that g � u is well de�ned and belongs to L1C and that (2.6) holds. This is

an direct consequence of Fubini Theorem ([?]), which yields

jjg � ujjL1(C) �
Z
C

(

Z
IRN

ju(x� y)g(y)jdy)dx =

Z
IRN

(

Z
C

ju(x� y)g(y)jdx)dy:

Using the periodicity of u, this last integral is equal toZ
IRN

Z
C

ju(x)jdx)jg(y)jdy = jjujjL1(C)jjgjjL1(IRN ):

Relation (2.7) is an obvious consequence of the de�nition of g � u and the 2-periodicity is easily checked.

2

Exercise 2.1 Check that g � u is 2-periodic. Show that if, in addition to the assumptions of Proposition

2.7, g is even and u is symmetric, i.e. satis�es the symmetry relations (2.4), then g �u also is symmetric.

We shall also be led to consider the convolution of a function in L1
C with an integrable function g 2 L1(IRN ).

The next lemma gives a useful general condition on g in order that the convolution of a function u in L1
C

with g 2 L1(IRN ) be bounded.

Lemma 2.8 Let g 2 L1(IRN ) be an integrable and locally bounded function such that for any R > 0,

gR(x) = supy2B(x;R) g(y) also belongs to L1(IRN ). Then there exists a constant C(g) such that for any

u 2 L1
C , g � u is in L1C and

jjg � ujjL1(C) � C(g)jjujjL1(C): (2.8)

Proof We set z = (z1; :::; zN) 2 (2ZQ)N . The hypercubes z + C cover IRN and for every y 2 z+ C, we

have jy� zj � diam(C), where

diam(C) = sup
y;z2C

jy� zj = 2
p
N:

Thus, using the 2-periodicity of u,

j(g � u)(x)j �
Z
IRN

ju(x� y)g(y)jdy =
X

z2(2ZQ)N

Z
z+C

ju(x� y)g(y)jdy �

� (

Z
C

ju(y)jdy)
X

z2(2ZQ)N

sup
y2z+C

jg(y)j;

which implies

j(g � u)(x)j � (

Z
C

ju(y)jdy)
Z
IRN

jgdiam(C)(y)jdy = C(g)jjujjL1(C):

2

Let us now focus on the case where the convolution kernel, like the Gauss function, belongs to S.

Proposition 2.9 If u 2 L1
C and g 2 S, then g � u 2 C1(IRN ) \ L1C and

@�(g � u) = (@�g) � u (2.9)

for every multi-index �.
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Proof By Proposition 2.5, jjgjjL1 =
R
IRN jg(x)jdx < 1. Thus by Proposition 2.7, g � u belongs to L1

C .

In order to prove (2.9), we notice that it is enough to prove it for � = (1; 0; :::0). Indeed, we know by

Proposition 2.5 that @�g is in S if g is, so that the general case for (2.9) follows from the case � = (1; 0; :::0)

by an obvious induction. Using the Taylor expansion formula and setting e1 = (1; 0; :::; 0),

(g � u)(x+ he1)� (g � u)(x) =
Z
IRN

(g(x+ he1 � y)� g(x� y))u(y)dy =

= h

Z
IRN

@g

@x1
(x � y)u(y)dy +

h2

2

Z
IRN

@2g

@x21
(x+ �he1 � y)u(y)dy;

where 0 � � = �(y) � 1. Since g 2 S, j @2g
@x21

(x)j � C
1+jxjN+2 and therefore, for jhj � 1 :

h2

2
j
Z
IRN

@2g

@x21
(x + �he1 � y)u(y)dyj � h2

2

Z
IRN

Cju(y)jdy
1 + ((jx � yj � 1)+)N+2

= Ch2:

(We note r+ = sup(r; 0).) Indeed, the last integral is �nite, being the convolution of u 2 L1
C with an

integrable function satisfying the assumptions of Lemma 2.8. So we deduce that g � u is di�erentiable in

x1 and
@(g�u)
@x1

= ( @g@x1 ) � u: 2

Proposition 2.10 Let g 2 S, g � 0,
R
IRN g(x)dx = 1 and set gt =

1
tN g(

x
t ) for t > 0.

i) If u0 2 L1C is continuous, gt � u0 converges uniformly to u0, when t ! 0. In addition, we have a

maximum principle :

inf
x2C

u0(x) � gt � u0 � sup
x2C

u0(x) (2.10)

ii) If we only know u0 2 L1
C, thenZ

C

j(gt � u0)(x)� u0(x)jdx = jjgt � u0 � u0jjL1(C) ! 0 as t! 0:

Proof of i) We remark that Z
IRN

gt(y)dy = 1 (2.11)

and

8� > 0;

Z
y2IRN ; jyj��

gt(y)dy! 0 as t! 0: (2.12)

Using (2.11), we have

gt � u0(x)� u0(x) =

Z
gt(y)(u0(x � y)� u0(x))dy:

Now, as already mentionned, since u0 is continuous on the compact C and periodic, it is in fact uniformly

continuous, so that for jyj � �(") we have ju0(x � y) � u0(x))j � ". Using this inequality and (2.12) we

obtain

jgt � u0(x)� u0(x)j �
Z
jyj��

jgt(y)(u0(x � y)� u0(x))jdy +
Z
jyj��

jgt(y)(u0(x� y)� u0(x))jdy

� "+ 2jju0jjL1(C)

Z
jyj��

gt(y)dy � 2" for t small enough.

Working version subject to errors, only for personal use. No di�usion authorized. All rights reserved. (Version: 15/07/2000)



2.2. EXISTENCE AND UNIQUENESS OF SOLUTIONS OF THE HEAT EQUATION

Relation (2.10) immediately follows from the assumptions gt � 0,
R
gt = 1.

Proof of ii) By Proposition 2.3, if u 2 L1(C), then we can �nd for every " a real number �(") such that

Z
C

ju(x� y)� u(x)jdx � " for jyj � �("):

Thus, by Fubini Theorem again, using
R
IRN gt(y)dy = 1 and (2.12):

Z
C

(

Z
IRN

jgt(y)(u(x� y)� u(x))jdy)dx �
Z
jyj��(")

gt(y)(

Z
C

ju(x� y)� u(x)jdx)dy+
Z
jyj>�(")

gt(y)(2

Z
C

ju(x)jdx)dy � 2"

for t small enough. 2

We now have all tools at hand to prove the main theorem of this section.

Theorem 2.11 (Existence and Uniqueness of solutions for the heat equation)

Let u0 2 L1
C. Then

i) u(t) = Gt � u0 satis�es, for all t > 0 and x 2 IRN , the heat equation with initial value u0, that is

@u

@t
= �u and

Z
C

ju(t;x)� u0(x)jdx! 0 as t! 0: (2.13)

In addition, u(t;x) is C1 for t > 0 and x 2 IRN , it belongs for every t > 0 to L1
C and is uniformly bounded

for t 2 [t1;+1[ where t1 is any positive real number:

sup
x2IRN ;t�t1

ju(t;x)j � C(t1)jju0jjL1(C): (2.14)

ii) Conversely, given u0 as above, there is a unique solution u(t;x) of (2.13) belonging to L1C for each

t > 0, bounded on [t1;+1[ for each t1 > 0 and C3 on ]0;+1[�IRN .

Proof i) By Propositions 2.5 and 2.6, Gt and its derivatives belong to S. By Proposition 2.9, we have

@u

@t
��u = u � (@Gt

@t
��Gt);

which is zero by Proposition 2.6. Relation (2.14) follows from Lemma 2.8 applied to u and g = Gt. It is

easily seen that C(Gt) � C(t1) is a bounded function for t � t1.

ii) Let us now show the uniqueness. Let v and w be two solutions of the heat equation (2.13) with the same

initial datum u0 2 L1
C and bounded for t � t1 > 0. Thus u = v�w satis�es the heat equation with initial

datum u0 = 0 and is bounded again on each interval [t1;+1[, t1 > 0. Let us assume by contradiction that

u(t;x) 6= 0, denote by u(t) the partial function x ! u(t;x) and set uh(t;x) = (Gh � u(t))(x). Then, by

Propositions 2.7 and 2.9, uh satis�es the same properties as u, is again solution of the heat equation and

we have by Lemma 2.8 the additional property that uh(t;x) ! 0 uniformly as t ! 0. Indeed, using the

initial value condition in (2.13),

jjuh(t)jjL1(C) = jjGh � u(t)jjL1(C) � C(Gh)jju(t)jjL1(C) ! 0 as t! 0:
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Figure 2.5: Level lines and the heat equation. On the �rst row, we display on the left a 410�270 grey level image,
photograph of a sea bird and on the right : its level lines for levels multiple of 12. On the second row, the heat equation, i.e.
a convolution with a gaussian, has been applied to the original image. The standard deviation of the gaussian is 4, which
means that its spatial range is comparable to a disk with radius 4. The image gets blurred by the convolution, which mixes
grey level values and removes all sharp edges. This can be appreciated on the right, where we have displayed all level lines
for levels multiple of 12. We can see how the level lines on the boundaries of the image have split into parallel level lines
which have gone away from each other. The image has become smooth, but is losing its structure.

In addition, uh(t;x) is bounded. Choosing h small enough and changing u into �u if necessary, we

can assume by Proposition 2.10 that uh(t;x) > 0 at some (t;x). We now consider the new function

u"(t;x) = e�"tuh(t;x). This continuous and periodic (in x) function belongs for every t � 0 to L1C and

tends uniformly to zero as t!1 or 0. Thus, its supremum is attained at a point (t0;x0) such that t0 > 0

and x0 2 C. At (t0;x0), we must have
@u"

@t (t0;x0) = 0 and �u"(t0;x0) = e�"t�uh � 0. Since uh is a

solution of the heat equation, we have

0 =
@u"

@t
(t0;x0) = (�"u" + e�"t

@uh
@t

)(t0;x0)

= �"u"(t0;x0) + e�"t�uh(t0;x0) � �"u"(t0;x0) < 0:

This yields a contradiction and we conclude that the solution of the heat equation is unique. 2

References.

The Riesz theorem [360] states that every continuous translation invariant function u ! Tu operator

is a convolution u ! g � u where g is a smoothing kernel. This is one of the fundamental theorems of

both mechanics and signal processing [277]. If, in addition, u � 0) Tu � 0, then g � 0 is a nonnegative

kernel. The Gauss kernel is then paragdimatic, since, as we shall show in the next chapter, it is the only

one to be stable by iterated convolutions. There are several types of continuity for T , leading to several

Working version subject to errors, only for personal use. No di�usion authorized. All rights reserved. (Version: 15/07/2000)



2.2. EXISTENCE AND UNIQUENESS OF SOLUTIONS OF THE HEAT EQUATION

types of properties for g. For instance, if T is continuous from L2(IRN ) into C0(IRN ) then g 2 L2(IRN ).

Thus, all linear stable image �ltering operators are described by their convolution kernel g. Hence the

analysis of convolutions performed in Section 2.2 as a necessary tool for image processing. The existence

and uniqueness proof of Theorem 2.11 is classical and to be found in all classical treatises on Partial

Di�erential Equations like Evans [141], or Brezis [64]. In this chapter, we have used the classical Lebesgue

integral. A short and comprehensive presentation can be found in Rudin [360].
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Chapter 3

Applications of the heat equation to
image analysis.

3.1 Convergence of iterated smoothing �lters to the heat equa-
tion

In this section, we prove roughly that the heat equation (or the convolution by a Gauss kernel at di�erent

scales) is the asymptotic state of any iterative linear isotropic smoothing.

De�nition 3.1 Let g(x) 2 L1(IRN ) be a real function, which we understand as a smoothing kernel with

which we intend to convolve images. We say that g is radial if g(x) = g(jxj) only depends on the norm of

x. We say that g is pseudo-radial if it satis�es the following relations :

Z
IRN

g(x)dx = 1 (3.1)

and, for every i; j = 1; ::; N , such that i 6= j,

Z
IRN

xig(x) =

Z
IRN

xixjg(x)dx = 0; (3.2)

Z
IRN

x2i g(x)dx = �: (3.3)

Exercise 3.1 Show that if g is a radial function, then an adequate rescaling ag(xb ) of g satis�es the

relations (3.1) and (3.3) with � = 2 and preserves the zero moment relations (3.2). Thus, there is no loss

of generality in assuming that these relations are true for g.

We consider rescalings of g,

gh(x) =
1

h
N
2

g(
x

h
1
2

); (3.4)

which concentrate g and maintain (3.1) and (3.2). In the following, we note gn� = g � g � ::: � g , the

n-times convolution of a function g. Our main concern is the behavior of gn�h as n ! 1 and h ! 0. Let

us �rst see what happens with the convolution by gh as h! 0.
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Figure 3.1:
A kernel g and its rescalings gt =

1

t2
g(x=t), for t=2, 3, 4.

Theorem 3.2 Let g(x) 2 L1(IRN ) be a radial or pseudo-radial function satisfying the conditions (3.1) to

(3.3). Assume further that Z
IRN

jg(z)jjzj3dz = C < +1: (3.5)

Then for every C3 function u 2 L1C ,

(gh � u)(x)� u(x) = h
�

2
�u(x) +O(h

3
2 ); (3.6)

where jO(h 3
2 )(x)j � Ch

3
2 maxx2C jjD3u(x)jj.

Proof Using (3.1), a rescaling inside the integrals and a Taylor expansion of u,

(gh � u)(x)� u(x) =

Z
IRN

h�
N
2 g(

y

h
1
2

)(u(x� y)� u(x))dy =

Z
IRN

g(z)(u(x� h
1
2 z)� u(x))dz

=

Z
IRN

g(z)(�h 1
2Du(x):z+

h

2
D2u(x)(z; z))dz� 1

6
h

3
2

Z
IRN

g(z)D3u(x� h
1
2 �z)(z; z; z)dz;

where � = �(x; z; h) belongs to [0; 1]. Using the moment information (3.2-3.3) and the bound (3.5), we

obtain

j(gh � u)(x)� u(x)� h
�

2
�u(x)j � Ch

3
2 max
x2C

jjD3u(x)jj;

where C is de�ned in (3.5). 2

The former theorem shows a direct relation between the convolution with a smoothing kernel and the

heat equation. This link will be completed by the next theorem : It essentially states that if we set

(Thu0) = gh � u0, then iterates of Th, ((Th)
nu0)(x), tend to u(t;x); where u(t;x) is solution of the heat

equation.

Theorem 3.3 Let g(x) 2 L1(IRN ) be a radial or pseudo-radial nonnegative function satisfying the moment

conditions (3.1 to 3.3), (3.5) and set gh(x) =
1

h
N
2
g( x

h
1
2
) and Thu = gh � u. Then

((Th)
nu0)(x)! u(t;x) in L1(C) as n! +1; nh! t; (3.7)

where u(t;x) = Gt � u0 2 L1C is the solution of the heat equation (2.13) with initial value u0,

@u

@t
=
�

2
�u and

Z
C

ju(t;x)� u0(x)jdx! 0 as t! 0:
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3.1. CONVERGENCE OF ITERATED SMOOTHING FILTERS TO THE HEAT EQUATION

Figure 3.2: Iterated linear smoothing converges towards the heat equation. In this experiment on one-dimensional functions,
it can be appreciated how fast an iterated convolution of a positive kernel converges to a gaussian. On the left, we display
nine iterations of the convolution of the characteristic function of an interval with itself, with the adequate rescaling. On the
right, the same experiment is repeated with a by far more irregular kernel. Convergence to the gaussian is almost equally
fast. (See Theorem 3.3).

The preceding theorem means that from the asymptotic, scale independent viewpoint, all local linear

isotropic \low pass" iterated �lters are equivalent to the heat equation (and to the convolution with

Gaussian kernels with increasing width).

Proof Without loss of generality (see Exercise 3.1), we take � = 2. In this proof, O(h�) denotes any

function of t and x such that jO(h�)j � Ch� where C does not depend upon x and t 2 [t1; t2], a �xed

interval of ]0;+1[. We shall write Thu(t;x) for what would be more properly written (Th(u(t)))(x), where

u(t) denotes the function x! u(t;x): In the same way, we shall write T 2
hu(t;x) for (T

2
h(u(t)))(x):

Using Formula (3.6) in Theorem 3.2, we have

Thu(t;x)� u(t;x) = gh � u(t;x)� u(t;x) = h�u(t;x) +O(h
3
2 ); (3.8)

because jjD3u(t;x)jj can be bounded independently of (t;x) on the compact set [t1; t2]� C. Since u(t;x)

is a solution of the heat equation, we also have

u(t+ h;x)� u(t;x) = h�u(t;x) +O(h2); (3.9)

and, since u is C1, the behavior of O(h2) is again uniform on the compact set [t1; t2]�C. By substracting
(3.9) from (3.8), we obtain

Thu(t;x)� u(t+ h;x) = O(h
3
2 ): (3.10)

We notice that if u � C, then Thu � C. As a consequence, Th(O(h
�)) also is an O(h�), uniformly in

t 2 [t1; t2[;x 2 IRN . Thus, applying Th to both sides of (3.10), we obtain

(Th)
2u(t;x)� Thu(t+ h;x) = O(h

3
2 ): (3.11)

We can use Relation (3.10) with t+ h instead of t and we then get

Thu(t+ h;x)� u(t+ 2h;x) = O(h
3
2 ): (3.12)

By adding (3.11) to (3.12) we obtain

T 2
hu(t;x)� u(t+ 2h;x) = 2O(h

3
2 ): (3.13)
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We can iterate this process and get

Tnh u(t;x)� u(t+ nh;x) = nO(h
3
2 ); (3.14)

provided t1 � t+ nh � t2. Letting n!1 and setting h = �
n yields

Tnh u(t;x)� u(t+ �;x) = O((
�

n
)
1
2 ); (3.15)

provided t1 � t+ � � t2. This would end the proof, could we take t = t1 = 0. Now, we can't, but we can

have it very small. Fix " > 0 and t1 small enough to have

jju(t1)� u0jjL1(C) =

Z
C

ju(t1;x)� u0(x)jdx < ": (3.16)

By Proposition 2.7, we have for every u 2 L1
C

jjgh � ujjL1(C) � jjghjjL1(IRN )jjujjL1(C):

Since
R
gh = 1, we deduce from (3.16) and this relation applied to u = u(t1)� u0 that

jjTnh u(t1; :)� Tnh u0jjL1(C) � ": (3.17)

By integrating Relation (3.15) on C with t = t1, we also have

jjTnh u(t1; :)� u(t1 + �; :)jjL1(C) = O((
�

n
)
1
2 ) < " (3.18)

for n large enough. Combining (3.17) and (3.18) yields

jjTnh u0 � u(t1 + �)jjL1(C) < "

for t1 small enough and hn = �: By (??), we conclude that

jjTnh u0 � u(�)jjL1(C) � 2";

for nh = � and n large enough, which concludes the proof. 2

3.2 Directional averages and directional heat equations

The aim of this section is to show how to approximate directional second derivatives by using local averages.

We consider a C2 function u from IRN into IR, and a vector z of IRN with norm 1. We can apply the

Taylor formula around a point x by considering a perturbation of x, x+ hz :

u(x+ hz) = u(x) + hDu(x):z +
h2

2
D2u(x)(z; hz) + o(h): (3.19)

We de�ne Tzh , the operator which computes the mean value of u on a straight segment oriented by z,

Tzh u(x) =
1

2h

Z
h2[�1;1]

u(x+ hz)dh

Integrating (3.19) for h 2 [�1; 1], we obtain.
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Proposition 3.4

Tzh u(x)� u(x) =
1

3
h2D2u(x)(z; z) + o(h2)

As a consequence, the iteration of the operator Tzh intuitively corresponds to a directional heat equation,

in the direction of z,
@u

@t
(t;x) =

�

2
D2u(x)(z; z): (3.20)

Notice that the directional averages, and the preceding equation, treat u independently on each line paralel

to z. Exercise 3.2 formalizes this.

Exercise 3.2 Let, in arbitrary dimension N , u0 2 L1(C) be an initial datum. Consider the function

g(s) = 1
211[�1;1](s).

(i) Show that it satis�es the the moment conditions (3.1 to 3.3), (3.5). Compute the variance � of g.

(ii) We set gh(s) = 1

h
1
2
g( s

h
1
2
) and Thu(x) =

R
I
Ru(x + sz)gh(s)ds: By applying, in dimension N = 1,

Theorem 3.3, show that for any function u0 in L1
C,

((Th)
nu0)(x)! u(t;x) in L1(C) as n! +1; nh! t; (3.21)

where u(t;x) is the solution of the directional heat equation (3.20) with initial value u0,

If we tune the vector z adequately at each point z, the direction di�usion depending upon u and x, the

operator is then no more linear but the same asymptotic analysis applies at each point. The main choices

we shall consider in this book are z = Du
jDuj and z =

Du?

jDuj , where Du = (ux; uy) and Du
? = (�uy; ux): We

then get by applying Proposition 3.4 the following asymptotic behaviours :

� Average in the direction of the gradient We choose z(x) = Du(x)
jDu(x)j , so that

1

jDuj2Du(Du;Du) = 3 lim
h!0

T
Du=jDuj
h u:

We shall interpret in the next section this di�erential operator as an "edge detector": the Canny

operator.

� Average in a direction orthogonal to the gradient We choose z(x) = Du(x)?
jDu(x)j , so that

1

jDuj2Du(Du
?; Du?) = 3 lim

h!0
T
Du=jDuj
h u:

This last operator will arise as the second term of the curvature motion.

Exercise 3.3 We consider a C2 function u, from IR2 into IR. Prove that there 9C > 0, such that

D2u(Du;Du)(x) = C lim
h!0

1

2h2
( min
y2B(x;h)

u(y) + max
y2B(x;h)

u(y)� 2u(x)):
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3.3 Edge detection and linear scale space

3.3.1 The edge detection doctrine

One of the uses of the linear theory is, in dimension 2, \edge detection". The assumption of the edge

detection doctrine is that relevant information in an image is contained in the trace left in the image by

the apparent contours of physical objects which have been photographed. If an object with some constant

color, say, black, is photographed on a bright background, then it is expected that its silhouette in the

image is a closed curve across which the light intensity u0(x) varies strongly. Let us call this curve an

\edge". The local detection of an edge can a priori be done by computing the gradient Du0(x). This

gradient should have a large intensity jDu0(x)j and a direction Du0(x)
jDu0(x)j which indicates the direction

normal to the silhouette curve. It therefore looks sound to simply compute the gradient of u0 and choose

the points where this gradient is large. This conclusion is a bit irrealistic for two reasons.

a) The points where the gradient is larger than a given threshold are likely to form regions, and not curves.

b) Many points may have a large gradient because of tiny oscillations of the image, not related to the

real objects. In fact, the digital images being always noisy, there is no reason to assume the existence or

computability of any gradient at all.

Objection b) is solved by de�ning a smoothing process : we associate with the image a smoothed version

u(t), depending of course upon a scale parameter t measuring the amount of smoothing. In the classical

linear doctrine, this smoothing is made by convolving the image with gaussians of increasing widths.

Objection a) is solved by de�ning edge points not as points where the gradient is large only, but as points

where some maximality property of the gradient is observed. Let us take an example in dimension one. Let

u(x) be a C2 real function on IR and consider points where ju0(x)j is maximal. At these points, the second
derivative u00(x) changes sign because extrema of the gradient correspond to a change from concave to

convex or conversely. Thus we can look for the \edge points" of the smooth signal among the points where

u00(x) crosses zero. Generalizing this in dimension 2 leads to the Hildreth-Marr edge detection theory, or

alternatively to the Canny edge detection theory. The only di�erence is that Hildreth and Marr replace,

in dimension 2, u00(x) by �u(x) = @2u
@x2 (x) +

@2u
@y2 (x), which is the only isotropic linear di�erential operator

of order 2 generalizing u00.

Canny ([71]) instead, gives up the linearity and de�nes edge points as edges where the gradient is

maximal in the direction of gradient. In other terms, an edge point satis�es g0(0) = 0, where g(t) =

jDuj(x+ t DujDuj ). This implies D
2u( Du

jDuj ;
Du
jDuj ) = 0.

Exercise 3.4 Compute g0(0) and check the mentionned implication.

So the algorithms of Hildreth-Marr and Canny are as follows.

Edge detection algorithm 1 (Hildreth-Marr)

� Convolve u0 with gaussians Gt of increasing widths. We obtain a multiscale image u(t;x).

� At each scale t compute all points where Du 6= 0 and �u changes sign. Such points are called \zero-

crossings of the Laplacian", or shortly "zero-crossings".

� (Optional) Eliminate the zero-crossings at which the gradient is small.

In practice, the found \edges" are displayed for a series of dyadic scales, t = 2, 4, 8, 16, etc.
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Figure 3.3: Three-dimensional representation of the laplacian of the Gauss kernel. This convolution kernel, actually a
wavelet, is used to estimate the laplacian of the image at di�erent scales of linear smoothing. (See Proposition 2.9, and
Section 3.3).

Figure 3.4: \Zero-crossings of the laplacian" at di�erent scales. In this display, we illustrate the original Scale Space theory,
as it is for instance developed in the founding book by David Marr, Vision. In order to extract more global structure, the
image is convolved with gaussians whose variances are powers of 2. One computes the laplacian of the resulting smooth images
and displays the lines along which this laplacian changes sign : the so called \zero-crossings of the laplacian". According to
David Marr, those zero-crossings represent the \raw primal sketch" of the image, that is, the information on which further
vision algorithms should be based.
Above : from left to right, we display the results of the smoothing, and the associated gaussian kernels, of scales 1,2 and 4
respectively. Below : we display the zero-crossings of the laplacian, and the corresponding kernels, i.e. the laplacians of the
gaussians used above.

Edge detection algorithm 2 (Canny's edge detector) � Here again, convolve u0 with gaussians

Gt of increasing widths. We obtain a multiscale image u(t;x).

� At each scale t, �nd all points x where Du(x) 6= 0 and D2u( Du
jDuj ;

Du
jDuj )(x) crosses zero. At such points,

the function t! u(x+ t DujDuj ) changes, when t crosses 0, from concave to convex or conversely.

� At each scale t : �x a threshold �(t) and retain as \edge points at scale t" only the points which satisfy

the preceding conditions and in addition jDu(x)j > �(t).
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Figure 3.5: Zero crossings of the laplacian of a synthetic image. From left to right : the original image, the image linearly
smoothed by a convolution with a Gauss function, the sign of the laplacian of the �ltered image (the gray color corresponds to
values close to 0, black to clearcut negative values, white to clearcut positive values) and the zero-crossings of the Laplacian.
This experiment clearly shows the drawbacks of the Laplacian as edge detector.

3.3.2 Discussion and objections

The Canny edge detector is generally preferred for its accuracy to the Marr-Hildreth theory. Their use and

characteristics are, however, essentially the same. There are many variants and tentative improvements to

the edge detection theory. Now, the discussion which follows adapts easily to the variants. The �rst thing

to be noticed is that, thanks to Theorem 2.11 in the former section, we know that u(t;x) = Gt � u0 is a

C1 function provided u0 is bounded. Thus we can indeed compute second order di�erential operators of

u(t;x) for t > 0. In the case of linear operators like the Laplacian or the gradient, the task is facilitated by

the formula proved in Proposition 2.9. We have �u(t;x) = �(Gt � u0) = (�Gt) � u0; where (in dimension

2)

�Gt(x) =
jxj2 � 4t

16�t3
e�

jxj2
4t :

In the same way, the Canny edge detector makes sense because u is C1 at all points where Du(x) 6= 0.

Such points cannot be edge points.

Thus, we can doubtless compute edge points thanks to those �lters. Let us now list the drawbacks of

such methods. They are in fact well explained in the Scale Space theory developed by Witkin and Koen-

derink.

� The Scale Space theory. A �rst severe problem is the addition of an extra dimension : the s-

cale t in computations and image understanding. We get no absolute de�nition of edges. We only can

talk about \edges at a certain scale". An answer to this problem would be to try to track the edges

across scales. Indeed, as is noticeable in experiments, the \main edges" resist a convolution with a wide

�lter, but loose much of their spatial accuracy. On the opposite side, if one makes a sharp low �ltering,

with a gaussian with small variance, these edges keep their correct location. Now, the \main" edges are

then lost in a crowd of \spurious" edges due to noise, texture, etc... The \scale space" theory of Witkin

[440] proposes therefore to identify the main edges at a low scale, and then to \follow them backward" by

making the scale decrease again. This method could in theory give the exact location of all \main edges".

However, its implementation is rather heavy from the computational viewpoint and unstable, because of

the following-up of edges across scales and the multiple thresholdings involved in the edge detection at
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Figure 3.6: Canny's edge detector. These images illustrate the Canny edge detector, which attempts to �nd boundaries in
an image. The Canny �lter involves the following operations :

1. Convolution of the image by a gaussian kernel (from top to bottom, scale = 0.1, 0.5, 1.0).
2. Estimation of D2u(Du;Du) (we use here a �nite di�erence scheme).
3. Convolution of D2u(Du;Du) with a small Gauss kernel (sigma = 0.001).
4. Thresholding of the gradient of the result of Step 1.
5. Zero-crossings of the result of Step 3, only displayed when the threshold of Step 4 is achieved.

Left Column : result of the Canny �lter without the threshold on the gradient, (Step 4 removed)
Middle column : result with a visually \ optimal" scale and an image depending threshold. (from top to bottom : 15, 0.5,
0.6)
Right column : result with a �xed gradient threshold equal to 0.5.
Notice that this edge detection "theory" depends upon not less than three parameters which have to be �xed by the user.
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Figure 3.7: Violation of the inclusion by the linear scale-space. The linear scale-space does not maintain the inclusion
between objects. Top-left: an image that contains a black disk enclosed by a white disk. At a certain scale, the black and
white circles mix together (top-right). The level lines (middle) show that the inclusion is no longer preserved. Bottom :
three-dimensional representation of both images, where the vertical coordinate corresponds to the gray-level. For the shape
inclusion principle, see Chapter 22.

each scale.

The tracking of edges across scales excludes any thresholding of the gradient. Indeed, such a thresh-

olding may remove edges at certain scales and not at other ones. So one should trace across scales all

\zero-crossings", without consideration to their likeliness to be edges or not. This makes the edge matching

across scales very diÆcult : indeed, the experimental sparseness of zero-crossings associated with sharp

edges is no more true for zero-crossings at large. Small 
uctuations of the image may generate \spurious"

zero-crossing edges. The same is equally true for Canny's detector, as is again quite obvious in experi-

ments.

In conclusion, the \edge detection theory" is more an attempt than an established theory. After more than

30 years of existence, it has also become clear that no robust technology can be based on it. Since the

edge detection devices depend upon multiple thresholdings on the gradient, followed by \�lling the holes"

algorithms, there can be no scienti�c agreement on the identity of \edge points" in a given image.
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Contrast invariance

As we shall see in the next chapters, the assumption of contrast invariance for image operators will solve

most of the technical problems associated with linear operators. We say that an image operator u ! Tu

is contrast invariant if it commutes with all increasing functions g, i.e.,

g(Tu) = T (g(u)) (3.22)

In image processing, most images are known up to a contrast change because we ignore both the lightning

conditions and the nonlinear response of the sensors. The commutation relation (3.22) ensures that the

�ltered image Tu = g�1(T (g(u))) does not depend upon g. Convolutions are not contrast invariant, i.e.

we have in general

g(k � u) 6= k � g(u):

Exercise 3.5 Construct two simple functions u and g such that the above commutation indeed fails.

In the same way, the operator Tt : u0 ! u(t) associated with the heat equation is not contrast invariant :

one has
@(g(u))

@t
= g0(u)

@u

@t

and

�(g(u)) = g0(u)�u+ g00(u)jDuj2

if g is C2. Thus g(u) is not necessarily a solution of the heat equation if u is. (See Figure 20.5).

Figure 3.8: The heat equation creates structure. This experiment shows that the linear scale-space can create structure, i.e.
increase the complexity of the image. On the left : original synthetic image, three grey levels, two black regional minima, one
grey regional maximum, one white regional maximum. Middle : result when applying the heat equation : the grey regional
minimum is split into three regional minima. Compare with the application of a contrast invariant local �lter, the iterated
median �lter introduced in Chapter 10.

3.4 Dynamic Shape

In [252], Koenderink and Van Dorn de�ne a \shape" in IRN , a closed subset X of IRN . They propose

to smooth the shape by applying directly the heat equation @u
@t � �u = 0 to the characteristic function

11X of X . (We set 11X(x) = 1 if x 2 X , = 0 otherwise). Of course, the solution Gt � 11X is no more a

characteristic function. The authors de�ne the evolved shape at scale t by

Xt = fx; u(t;x) � 1

2
g
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The value 1
2 is chosen by an obvious requirement. Let X = f(x; y) 2 IR2; x � 0g, then we ask that

Xt = fGt �X � �g = X

which is only true if � = 1
2 .

Figure 3.9: Nonlocal behaviour of shapes with the Dynamic Shape method. This image displays the smoothing of two
irregular shapes by the Dynamic Shape method (Koenderink and Van Dorn). Top left : initial image, made of two irregular
shapes. Top to bottom and left to right: smoothing with increasing scales. Notice how, the convolution being made with
gaussians of increasing variance, the shapes merge more and more. We do not have a separate analyis of both shapes but a
\joint analysis" of both. This joint analysis depends of course a lot upon the initial distance between both shapes.

Figure 3.10: Non local interactions in the Dynamic Shape method. Two close disks (top-left) interact as scale grows and
create a qualitatively di�erent and new shape. The change of topology, at the scale where both shapes merge into one, entails
the appearance of a singularity (a cusp) on the shape(s) boundaries. Top right : Dynamic Shape evolution at the small
critical scale where the cusp appears. Bottom : further evolution when scale grows : creation of a new global shape.

Let us mention some drawbacks of this shape evolution.

The non-local interactions: Take two close disks D(x0; 1) and D(x1; 1), with jx0 � x1j = 1+ �. Then the

evolution of the union of both disks, considered as a single shape, is quite di�erent from the evolution

of each disk separately, (see �gures 3.9 and 3.10).
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Creation of singularities. As another consequence, singularities of the orientation and curvature of the

boundary of the shape may appear with the evolution. Thus, the smoothing creates new salient

features!

3.5 Curve evolution by the heat equation.

Let us go back to shapes whose boundary can be described by a �nite set of recti�able Jordan curves. We

call recti�able Jordan curve a simple closed curve of the plane, i.e. a curve without self-crossings and with

�nite length. We also assume that these Jordan curves do not meet, so that the Jordan curve structure is

uniquely de�ned. Let us then focus on the smoothing of a single Jordan curve, with �nite length.

We parameterize the initial curve by length

s 2 [0; L]! x0(s);

where s is the curve length between x(0) and x(s). We have x0(s) = (x(s); y(s)) 2 IR2. A �rst obvious

idea in order to smooth the curve is to convolve x(s) and y(s) by a smoothing kernel. The kernel must be

as local as possible in order to ensure the analysis of local curve features. Thus, we are naturally led to

iterate a smoothing kernel Mh, with h ! 0. By Theorem 3.3, we know that all such processes boil down

to the application of the heat equation.

@x

@t
(t; s) =

@2x

@s2
(t; s); s 2 [0; L]; t 2 [0;+1[: (3.23)

x(0; s) = x0(s)

Here, we must notice two very important facts which advocate against the method.

1. When t > 0, s is no more a length parameter of the evolved curve x(t).

2. Maximum principle holds for x(t; s) and y(t; s) as scalar solutions of the heat equation. In addition,

x(t; s) and y(t; s) are, as proved in chapter 2, C1 functions of (t; s), for t > 0. Now, this does not

imply that the curve x(t; s) behaves smoothly! In fact, it can easily be seen (see Figure 3.5)

that a smooth curve may generate by this evolution self-crossings which by further smoothing entail

the appearance of singularities.

Exercise 3.6 Construct a C1 map : � 2 [0; 1] ! x(�) 2 IR2 such that the curve fx(�); � 2 [0; 1]g is a

square. Deduce that a curve can have a C1 parameterization without being smooth.

3.6 How to restore locality and causality ?

3.6.1 Localization of the \Dynamic Shape" method.

The main objective of this treatise is to rede�ne the preceding smoothing processes in such a way that

they are local and do not create new singularities. This can be done, as we shall prove further on, by

alternating a small scale linear convolution with a natural normalization process.

In the case of the Dynamic Shape analysis, we de�ne an alternate Dynamic Shape algorithm in the

following way.
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"A" "B"

"C" "D"

Figure 3.11: Curve evolution by the heat equation. The coordinates of the curves are parameterized by the arc length,
and then smoothed as real functions of the length, by applying to them the heat equation. From A to D, the coordinates are
smoothed with an increasing scale. Each coordinate function therefore is C1 ; the evolving curve can, all the same, generate
self-crossings (C) or singularities (D).

Algorithm. Iterated local Dynamic Shape algorithm, or Merriman-Bence-Osher algorithm.

1. Convolve the initial shape 11X0 with Gh, h small.

2. De�ne X1 = fx; Gh � 11X0(x) � 1
2g.

3. Set X0 = X1 and go back to 1.

In fact the Dynamic Shape method is a median �lter (see Chapter 10) and the preceding Merriman-

Bence-Osher algorithm an iterated median �lter. We can anticipate that the application of an alternate

median �lter yields, as h! 0 and the number of iterations tends to in�nity, a \motion by mean curvature"

which will be de�ned in Chapter 6 as one of the main objects of Chapters 11 and following.

3.6.2 Renormalized heat equation for curves.

In [272] Mackworth-Mokhtarian noticed the loss of causality of the heat equations applied to curves. Their

solution, at least formally, looks like the solution given to the nonlocality of the Dynamic Shape method.

Instead of applying the heat equation for long times (or, equivalently, to convolve the curve x(s) with

Gaussians Gt(s) of arbitrary width, they do the following.

Algorithm : Renormalized heat equation for curves.

1. Convolve the initial curve x0(s0), parameterized by its length parameter s0 2 [0; L0], with a Gaussian

Gh ; h is small.
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Figure 3.12: The Bence-Merriman-Osher shape smoothing method is a localized and iterated version of the Dynamic Shape
method. A convolution of the binary image with small-sized gaussians is alternated with mid-level thresholding. It uses (top,
left) as initial data the same shapes as in Figure 3.4. From top to bottom and left to right: smoothing with increasing scales.
Notice that the shapes keep separate. In fact, their is no interaction between their evolutions. Each one evolves as it would
do alone.

2. Let Ln be the length of the curve xn obtained after n iterations and sn 2 [0; Ln] its arc length

parameter. Set, for n � 1, ~xn+1(sn) = (Gh � xn)(sn). Then reparameterize ~xn+1(sn) by its arc

length parameter sn+1 2 [0; Ln+1], which yields a curve xn+1(sn+1).

3. Iterate.

Theorem 3.5 Let x0(s0) be a C
2 curve parameterized by length. When h tends to zero, there is a constant

c such that

(Gh � x0)(s0)� x0(s0) = ch2
@2x0
@s20

+ o(h2) (3.24)

Proof Direct application of Theorem 3.2. 2

Exercise 3.7 Compute the constant c of Theorem 3.5.

We notice that (3.24) is consistent with the following evolution equation(as h! zero):

@x

@t
=
@2x

@s2
(= Curv(x)(s)) (3.25)

This equation is not the heat equation (3.23). Indeed, in (3.25), we assume that s denotes the length

parameter of evolved curve x(t) at time t (and not the initial parameterization). We shall consider this

last, nonlinear, curve evolution in Chapter 6.
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"A" "B"

"C" "D"

Figure 3.13: Curve evolution by the \ renormalized heat equation" (Mackworth-Mokhtarian). At each smoothing step, the
coordinates of the curves are reparameterized by the arc length of the smoothed curve. From A to D, the curve is smoothed
with an increasing scale. Note that, in contrast with the linear heat equation (Figure 3.5), the evolving curve shows no
singularities and does not cross itself.
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Figure 3.14: Multiscale histogram modes by using the linear scale space (heat equation). Histograms are strongly oscillatory
functions, presenting many peaks due to 
at image regions and quantization e�ects. We call modesof the histogram all the
intervals whose endpoints are two successive local minima. We call central point of the mode the unique maximal point
between them. In order to get a more and more global analysis of the histogram, the heat equation may be applied. We
then talk about "modes at scale t". On the left, we display the original histogram (scale 0) and the histogram at scale
100, corresponding to a convolution with the gaussian of standard deviation 50. Only three modes are left. On the right,
we display the so-called "�ngerprints" of the histogram, a scale-space representation where scale increases downwards. The
white curves display the minima of the smoothed histogram and the black curves the maxima of the histogram. By a classical
property of the heat equation, maxima and minima collapse by pairs, thus yielding the observed "�ngerprint" organization
of multiscale modes : each mode at scale t can be followed upwards to the �ne scales and contains more and more submodes.
Modes are therefore organized in a tree. No new mode is ever created when the scale increases. This is an instance where
the Witkin linear scale space works nicely !
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References.

Section 3.1 : To make local averages of the grey level in order to restore an image is one of the �rst

tools proposed in early image processing in the sixties [176], [203]. The classical remark that the di�erence

between an image and its local average is proportional to its laplacian is one of the most fruitful formulae

in image processing. Gabor (quoted in [266]) used it as an image restoration tool, as we pointed out in the

introduction. See also Hummel [218], [219]. As we commented in the introduction, Burt and Adelson [69]

based on this simple remark their Laplacian pyramid representation, one of the ancestors to the theory of

wavelets. Our proof that iterated convolutions of radial kernels converge to a gaussian is a version of the

De Moivre-Laplace formula (Central Limit Theorem [63]) adapted to Image Processing. Its relevance for

image processing is high, since it leads to recommend gaussian �ltering as the unavoidable linear smoother.

We shall prove this fact from the "scale space" point of view in Section 20.5.

Section 3.2 : Directional di�usions have a long story since Hubel and Wiesel showed the existence of

direction sensitive cells in the visual areas of the neocortex. There has been a blow-up in publications on

directional linear �lters since (e.g.) the seminal paper of Daugman [?]

Section 3.3 : The use of gaussian �ltering is so widespread in image analysis that it is hard to �nd a "�rst

paper". The Hildreth-Marr [286] paper on edge detection is seminal as well as the famous David Marr

book, Vision [287]. Now, the term "edge detection" in TV image transmission is present as early as 1959

[231]. The idea that the computation of derivatives in an image necessitates a previous smoothing has been

strongly developped in the Dutch Image Analysis school ([158], [59]. See also the books of Florack [153],

Romeny [403] and Lindeberg [265]. See also [143]. Now, the Canny edge detector [71] is probably the most

famous image analysis operator, and is based on a second derivative. Deriche [119] derived a recursive

implementation. The general image analysis framework by which an image is associated its smoothed

version at several scales is called "scale space". The term originates in Witkin [440], 1983, who proposed

to track the zero-crossings of the Laplacian of the smoothed image accross scales. Yuille and Poggio [447],

proved that this tracking works for 1-D signals. Hummel [215], [221] and Yuille and Poggio [448] analysed

the conjectures of Marr and Witkin according to which the image is completely recoverable from its edges

at di�erent scales. A wavelet-based attempt to the same aim is proposed in Mallat [277]. A general and

insightful theory of image scale space is presented in Koenderink [249].

Section 3.4 : This section is based on the famous paper of Koenderink and Van Doorn [252], proposing

to analyse a shape by convolving its characteristic function with a gaussian.

Section 3.5 : We use the �rst version of curve analysis proposed by Mackworth and Mokhtarian [271].

See also Horn and Weldon [208].

Section 3.6 : The solution to a restoration of causality and locality for the Dynamic Shape was found by

Merriman, Bence and Osher [291] who devised this algorithm for totally independent reasons : they looked

for a clever numerical implementation of the mean curvature motion equation. In [272], the model errors of

[271] were corrected and the right intrinsic equation proposed. This 1992 paper contains, however, several

inexact statements about the properties of the intrinsic equation. The right theorems and proofs can be

found in Grayson [180], 1987.
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Chapter 4

Contrast invariant classes of
functions and their level sets

Let u(x) a real function, which we interpret again as an image. De�ne the level set of u with level � by

X�u = fx; u(x) � �g; for � 2 IR. (We denote by IR the set IR [ f�1;+1g). Obviously,

X�1u = IRN ; X+1u = ;:

The level sets of a function have two striking properties. The �rst one is that they give a complete account

of the function. Indeed, we can reconstruct u from its level sets X�u by the formula

u(x) = supf�;x 2 X�ug:

Exercise 4.1 Show this last formula, which is true for any real function u.

The second one is their global invariance by contrast change. We say that two functions u and v have

globally the same level sets if for every � there is � such that X�v = X�u, and conversely. If we apply to u

a contrast change understood as a continuous increasing function g, then it is easily checked that v = g(u)

and u have globally the same level sets. (Every level set of u is a level set of v and conversely).

Exercise 4.2 Check this fact, for any real valued fonction u and any increasing continuous function g.

We shall investigate more general contrast changes, which are nondecreasing, but neither continuous nor

increasing. This is justi�ed by the technology where such contrast changes are used systematically for image

digitization. In that case, we shall see that the level sets of g(u) are either level sets of u or strict level

sets of u, that is, sets of the form fx; u(x) > �g. We shall prove a converse statement : assume that a

function v has the same level sets as another function u in the preceding sense. Then v is obtained from

u by a contrast change v = g(u).

4.1 From an image to its level sets, and conversely.

In the following proposition, we give structure properties of the family of level sets X�u of a function u.

Conversely, given a family of sets (X�)�2IR satisfying the structure properties, we construct a function u
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such that X�u = X� for every �. This explains a main technique of mathematical morphology, consisting

in handling directly the level sets of a function and ensuring reconstruction ([290]).

In the whole book, we take the conventions on in�ma and suprema of subsets of IR that

inf(;) = +1; sup(;) = �1:

Proposition 4.1 If u : IRN ! IR is a function and X� = X�u denote its level sets, then

(4.1.i) X� � X� if � > �; X�1 = IRN .

(4.1.ii) X� = \�<�X� for every � > �1.

Conversely, if (X�)�2IR is a family of subsets of IRN satisfying (4.1i) and (4.1.ii), then the function with

values in IR,

(4.1.iii) u(x) = supf�;x 2 X�g satis�es X�u = X� for every � 2 IR.

Figure 4.1: Level sets of a digital image. In this �gure, we �rst show a grey level image, which has a range of grey levels
from 0 to 255, and then eight level sets, in decreasing order from 225 to 50, the grey scale step being 25. Notice how essential
features of the shapes are contained in the boundaries of level sets, the level lines. Each level set (in gray) is contained in the
next, (Formula 4.1.i).

Proof of Proposition 4.1 Relation (4.1.i) is obvious and so is Relation (4.1.ii), since u(x) � � if and

only if u(x) � � for every � < �. Conversely, we de�ne a function u from the set of sets (X�)�2IR by

u(x) = supf� 2 IR;x 2 X�g (4.1)
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Figure 4.2: A simple synthetic image and all of its level-sets (in gray) with decreasing levels from top to bottom and from
left to right.

Let us prove that for every � 2 IR,
X�u = X� (4.2)

Indeed, if x belongs to X�, then from (4.1) we deduce that u(x) � �, so that x belongs to X�u.
Thus, X� � X�u. Conversely, if x belongs to X�u with � > �1; then u(x) � � and therefore

supf�;x 2 X�g � �. Thus for any � < �, there exists �0 such that � � �0 � � and x 2 X�0 . By

(4.1.i) we then have x 2 X�. Thus, x belongs to X� for every � < �. From (4.1.ii), we conclude that x

belongs to X�. The case � = �1 is easily checked : Since X�1 = IRN , we obviously have X�1u � X�1:

2

Remark 4.2 Notice that if u(x) < 1 for every x, then X1u = ;. Conversely, if X1 = ;, the recon-

structed function u from the X� satis�es u(x) < +1 for every x. In the same way, u(x) > �1 for every

x if and only if [
�>�1

X� = IRN :

Exercise 4.3 Show that if X� = IRN for � < �0, then u � �0 and if X� = ; for � > �0, then u � �0:

Proposition 4.3 Let u(x) be a real function and X�u = fx; u(x) � �g its level sets for � 2 IR [ f+1g.

If �n % �; then X�u =
\
n

X�nu; (4.3)

fx; u(x) > �g =
[
�>�

X�u: (4.4)

Proof Relation (4.4) follows from the obvious equivalence u(x) > �, (9� > �; u(x) � �): 2
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Figure 4.3: Image reconstruction from its level sets. Illustration of Proposition 4.1. We reconstruct an image from its level
sets. We used top-left : all level sets, top-right : all level sets whose grey level is a multiple of 8, bottom-left : multiple of 16
and bottom-right : multiple of 32. Notice the relative stability of the image shape content under these drastic quantizations
of the grey levels.

4.1.1 Functions and level sets de�ned almost everywhere

Let us give a statement simpler than Proposition 4.1, provided we consider functions and sets de�ned

almost everywhere. We say that a set X is contained in a set Y almost everywhere if meas(X n Y ) = 0,

where meas denotes the usual Lebesgue measure in IR (length in dimension 1, area in dimension 2, volume

in dimension 3...). We say that X = Y almost everywhere if X � Y and Y � X almost everywhere. We

say that two functions u and v are almost everywhere equal if meas(fx; u(x) 6= v(x)g) = 0:More generally,

we say that a property P (�); � 2 IRN , is true \ almost everywhere" or \for almost every �" if it is true

for every �, with the exception of a set with zero N -dimensional Lebesgue measure.

Lemma 4.4 Let (X�)�2IR be a nonincreasing family of sets, i.e. X� � X� if � � �. Then, for almost

every � in IR,

X� =
\
�<�

X�; almost everywhere (4.5)

Proof Let us consider an integrable strictly positive continuous function h 2 L1(IRN ). Set m(X) =R
X
h(x)dx. We notice that m(X) = 0 if and only if meas(X) = 0. The function � ! m(X�) is nonin-

creasing. Thus, it has a countable set of jumps. Since every countable set has zero Lebesgue measure, we

deduce that for almost every �,

lim
�!�

m(X�) = m(X�):

As a consequence, for those �'s, m(
T
�<�X� nX�) = 0, which implies (4.5).

2

Exercise 4.4 Show the property used in the former proof : if h is a positive continuous integrable function

on IRN and if we set m(X) =
R
IRN h(x)dx, then for every measurable set X, m(X) = 0 if and only if
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meas(X) = 0.

Corollary 4.5 Let (X�)�2IR a family of subsets of IRN such that X�1 = IRN , X� � X� for � � �. Then

the function u de�ned by

u(x) = supf�;x 2 X�g
satis�es for almost every �, X� = X�u almost everywhere. This function has values in IR.

Proof We proceed as in the proof of Proposition 4.1. We have

X�u = fx; supf�;x 2 X�g � �g

Now, if x 2 X�, we have supf�;x 2 X�g � � which implies x 2 X�u. Thus, X� � X�u everywhere.

Conversely, let � be chosen such that X� = \�<�X� almost everywhere, which by Lemma 4.4 is true

for almost every � 2 IR. Then if x 2 X�u, we have by de�nition of u, x 2 X� for every � < �. Thus

x 2 T�<�X�. We conclude that X�u �
T
�<�X� and therefore X�u � X� almost everywhere. 2

We end this subsection with a last useful lemma ensuring that if we know almost everywhere the level sets

of a function for almost all levels, then the function itself can be retrieved, up to a set with measure zero.

Lemma 4.6 Let v be a function and (Y�)�2IR be a family of sets such that

X�v = Y�; a.e. in �; a.e. in x:

Then v(x) = supf�; x 2 Y�; g a.e. in x:

Proof Let N be the negligible subset of IR such that X�u = Y� almost everywhere and for all � 2 IRnN .

We choose � � IR nN , a countable, dense subset of IR. We then still have

v(x) = supf� 2 �; u(x) 2 X�vg:

Let now N� = (X�u n Y�) [ (Y� n X�u) for � 2 � and M =
S
�2�N�: We have meas(M) = 0 and, for

x 2 IRN nM; v(x) = supf� 2 �; x 2 X�v; g = supf� 2 �; x 2 Y�:g:
2

Exercise 4.5 Construct a simple example of family X� � IR2; � 2 IR for which u attains the values +1
and �1 on subsets of IR2 with positive measure.

4.2 Contrast changes and level sets.

De�nition 4.7 We call contrast change any nondecreasing function g : IR ! IR. We also consider its

natural extension from IR into IR obtained by setting

g(+1) = sup
IR
g; g(�1) = inf

IR
g:

Without risk of confusion, we systematically adopt this extension.
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Figure 4.4: Histogram of an image : for each i 2 f0; 1; :::;255g, we display (above, right) the function h(i) = Cardfx; u(x) =
ig. The function below is the repartition function of u, g(i) = Cardfx; u(x) � ig, that is, a primitive of h. It gives an indication
on the overall contrast of the image and on the contrast change imposed by the sensor. The inverse function g�1 can be used
as inverse contrast change, in order to restore an image g�1(u) with 
at histogram. On the left column, original image and,
below, the result of this "histogram equalization".

The next lemma de�nes a pseudoinverse g(�1) to any nondecreasing function g.

Lemma 4.8 Let g : IR! IR be a real nondecreasing function and set for every � 2 IR,

g(�1)(�) = inffr; g(r) � �g:

Then

if � � g(g(�1)(�)); then g(s) � �, s � g(�1)(�): (4.6)

if � > g(g(�1)(�)); then g(s) � �, s > g(�1)(�): (4.7)

Proof Assume �rst that � � g(g(�1)(�)). If g(s) � �, then s � g(�1)(�) by the de�nition of g(�1)(�).

Conversely, if s � g(�1)(�), we obtain

g(s) � g(g(�1)(�)) � � and therefore g(s) � �:

This yields (4.6).

Assume now that � > g(g(�1)(�)). Then g(s) � � implies g(s) > g(g(�1)(�)). Thus, g being nonde-

creasing, s > g(�1)(�). Conversely, assume that s > g(�1)(�). Then there exists by de�nition of g(�1)

some r < s such that g(r) � � and therefore g(s) � g(r) � �: 2

Exercise 4.6 Compute g(�1) for the following functions :

� g(s) = max(0; s)

� g(s) = 1 if s � 0, s otherwise.
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Figure 4.5: Contrast changes, and an equivalence class of images. A grey level image with di�erent contrasts. The three
displayed images have exactly the same level sets and level lines, but are associated with three di�erent scales of grey levels.
The graphs on the right are the graphs of the functions u! g(u) which have been applied to the initial grey levels. The �rst
one is convex and enhances the brighter parts of the image. The second one is the identity, leaving thus the image unaltered.
The third one is concave and enhances the darker parts of the image. When we dispose of a digital image, we spontaneously
arrange the constrast in order to see better such or such shape information. Thus, from the image analysis viewpoint, the
image data should be considered as an equivalence class under all possible contrast changes.

The next theorem explains in which sense level sets are conserved by a nondecreasing contrast change g.

Theorem 4.9 Let g be a real nondecreasing function and u(x) a real function de�ned on IRN . Then every

level set of g(u), X�(g(u)), satis�es one of the following properties

9�; X�(g(u)) = fx; u(x) � g�1(�)g = Xg(�1)(�)u; (4.8)

9�; X�(g(u)) = fx; u(x) > g�1(�)g: (4.9)

Proof Following Lemma 4.8, we have for each � the alternative (4.6-4.7), that is

(g(s) � �, s � g(�1)(�)) or (g(s) � �, (s > g(�1)(�)):

This yields the alternative

X�(g(u)) = fx; g(u(x)) � �g = fx; u(x) � g(�1)(�)g = Xg(�1)(�)u;
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or

X�(g(u)) = fx; g(u(x)) � �g = fx; u(x) > g(�1)(�)g
2

Exercise 4.7 Let g : IR! IR be a nondecreasing function and u : IRN ! IR a real function. Show that

8� 2 IR; 8" > 0; 9�; such that X�(g(u)) � X�u and meas(X�(g(u)) n X�u) < ":

Remark 4.10 Let us give a very simple example of functions u et g where both cases (4.8) et (4.9) occur.

Let us set for x 2 IR, u(x) = x and g(x) = x if x � 0, g(x) = x+ 1 if x > 0. Then the level set X1(g(u))

is not a level set of u but we have

X1(g(u)) =]0;+1[= fx; u(x) > 0g:

Exercise 4.8 Compute in that case all level sets of u and g(u) and compare them.

Let us state a converse statement to Theorem 4.9 : it states roughly that if the level sets of v are level

sets of u, then v = g(u) for some contrast change.

Figure 4.6: The two images (left) have the same set of level sets. The contrast change function that makes the upper
image become the lower image is displayed on the right. It corresponds to one of the possible g functions whose existence is
stated in Corollary 4.12. The function g may be locally constant on intervals where the histogram of the upper image is 0
(see top-middle graph). Indeed, on such grey level intervals, the level-sets are steady.

Theorem 4.11 Let u and v be two real functions on IRN such that the following alternative holds for

every � 2 IR :

9�; X�v = X�u; or (4.10)
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9�; X�v = fx; u(x) > �g: (4.11)

Then, there exists a real nondecreasing function g : IR ! IR such that v = g(u). In addition, g can be

de�ned by the simple formula

g(�) = supf�;X�v � X�ug: (4.12)

Proof

Step 1. We �rst show that v(x) � g(u(x)). By applying (4.1.ii) with � replaced by g(�), we see that the

\sup" in the de�nition of g, (4.12) is in fact a \max", so that

Xg(�)v � X�u: (4.13)

Let us apply Relation (4.13) with � = u(x). We obtain

Xg(u(x))v � Xu(x)u 3 x

and therefore v(x) � g(u(x)):

Step 2. Let us now show that v(x) � g(u(x)). We apply the assumption (4.10-4.11) to � = v(x) and

call �(x) the corresponding value of �. Thus

Xv(x)v = X�(x)u; or (4.14)

Xv(x)v = fx; u(x) > �(x)g: (4.15)

Assume �rst that (4.14) holds. Since Xv(x)v 3 x, we deduce from (4.14) that X�(x)u 3 x and therefore

u(x) � �(x). Thus

Xv(x)v = X�(x)u � Xu(x)u;

which, by de�nition of g, yields v(x) � g(u(x)).

Assume now that (4.15) holds. Since Xv(x)v = fx; u(x) > �(x)g = S�>�(x) X�u and x 2 Xv(x)v, we
deduce the existence of � > �(x) such that x 2 X�u and therefore u(x) � �. Thus

Xv(x)v � X�u � Xu(x)u;

which, again by de�nition of g, implies that v(x) � g(u(x)): 2

We conclude this section with a simple to remember statement : il all level sets of v are level sets of of

u, then v = g(u) for some g. The precise statement is

Corollary 4.12 If v and u are two real functions such that all level sets of v are level sets of u, then there

is a nondecreasing function g : IR ! IR such that v = g(u). An instance of such a function g is

g(�) = supf�;X�v � X�ug: (4.16)
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4.3 Semicontinuous contrast changes

In this section, we adress the case where the considered contrast changes are upper semicontinuous (or

lower semicontinuous), which makes sense for digital image processing because threshold functions and

quantization functions usually are u.s.c. or l.s.c.. The results of this section are not used in the next

chapters.

De�nition 4.13 We say that a real nondecreasing function g : IR ! IR is upper semi-continuous if for

all r < +1,

g(r) = lim
�!r+

g(�) = lim
�!r;�>r

g(�)

Corollary 4.14 Assume g is a nondecreasing upper semi-continuous function. Then for every � 2 IR and

every s < +1,

g(s) � �, s � g(�1)(�): (4.17)

Exercise 4.9 Show that the condition s < +1 is necessary : Take g(s) = 0 for all s and � = 1. Then

check that g�1(1) = +1, while g(s) � 1 is impossible.

Proof Assume �rst that g(�1)(�) < +1: If g is upper semi-continuous, then the \inf" de�ning g(�1)(�)

also is a minimum. Indeed, let rn & g(�1)(�): Then by de�nition of g(�1)(�), we have g(rn) � �. Since g

is upper semi-continuous, we also have

g(g(�1)(�)) � lim
n
g(rn) � �:

By Lemma 4.8, we therefore have

g(s) � �, s � g(�1)(�): (4.18)

If now g(�1)(�) = +1, we have g(s) � � only if s = +1, which is excluded by the condition s < +1 we

have put on (4.17). Thus � � g(g(�1)(�)) and the conclusion of (4.6) holds. 2

The next corollary shows that upper semicontinuous contrast changes preserve level sets.

Corollary 4.15 Let g be a real nondecreasing upper semi-continuous function and u(x) a real function

de�ned on IRN . Then every level set of g(u), X�(g(u)) satis�es

9�; X�(g(u)) = X�u; (4.19)

where � = g(�1)(�).

Proof Set, as in Lemma 4.8,

g(�1)(�) = inffr; g(r) � �g:
According to Corollary 4.14, g(u(x)) � �, u(x) � g(�1)(�); which proves (4.19). (Notice that u(x) < +1
for all x, so that (4.17) holds for s = u(x).) 2
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Figure 4.7: The original image (top-left) has a strictly positive histogram (all grey levels between 0 and 255 are represented).
Therefore, if any non strictly increasing contrast change g is applied, some data will be lost. Every level set of the transformed
image g(u) is a level set of the original image. Now, the original image has more level sets than the transformed one.
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Chapter 5

Level lines and level surfaces.

5.1 Curves, their normal, their curvature

In this section, we summarize what must be known about smooth curves of the plane, particularly Jordan

curves, that is, curves without selfcrossing points. Such curves will appear in practice as boundaries of

smoothed shapes in an image, and more generally in the next section, as level lines of a smooth enough

image.

De�nition 5.1 We call planar curve and denote by C the range of a continuous map x(s) : s 2 [a; b]!
IR2. If the restriction of x to ]a; b[ is one to one, we say that C is a Jordan curve. If in addition x(a) = x(b),

we say that C is a closed Jordan curve. We call the map x(s) \a parameterization of the curve C". We

say that a curve C is Cm (m 2 IN , m � 1) if it admits a Cm parameterization x(s) : s 2 [a; b] ! IR2

such that 8s; jx0(s)j = 1. We call such a parameterization euclidean.

In shape analysis, the normal and curvature will play a central role and we de�ne them now.

De�nition 5.2 (and Proposition.)

Let C be a simple C2 curve and x0 a point of C.

(i) C admits in a neighborhood of x0 exactly two euclidean parameterizations such that x(0) = x0. If

x(s) : [�a; a]! IR2 is one such parameterization of C, then x(�s) is the other one. In addition, all other

euclidean parameterizations of C have the form x(s+ �) or x(�s+ �) for some � 2 IR.
(ii) We call tangent vector at x to C (parameterized by an euclidean parameterization x(s)) the unit vector

�(s) = @x
@s : As a consequence of (i), if �1 and �2 are two tangent vectors at x0, then either �1 = �2 or

�1 = ��2.
(iii) The vector @2x

@s2 (0) is independent by (i) of the choice of the euclidean parameterization and it is

orthogonal to �(x0). It is called curvature vector of the curve C at x0 and denoted by Curv(x0).

(iv) We call generalized normal the vector n(x0) =
Curv(x0)
jCurv(x0)j if Curv(x0) 6= 0 and equal to 0 otherwise.

Proof. (i) Let x; p 2 [a; b] ! x(p) 2 C be a C1 parameterization of C such that 8p; x0(p) 6= 0 and

x(p0) = x0. We seek for a new C1 parameterization ~x(s) = x('(p)) (with ' C1 and one to one) such that

j~x0(s)j = 1, that is, jx0('(p))jj'0(p)j = 1. Taking into account that this relation implies '0(p) 6= 0, we have
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two choices, namely

'0(p) =
1

jx0('(p))j or '
0(p) = � 1

jx0('(p))j and '(0) = p0: (5.1)

Since x0 is a Lipschitz function which never vanishes, so is 1
x0 . By Cauchy-Lipschitz Theorem, ' is

uniquely de�ned on IR by each one of both ordinary di�erential equations (5.1) and we get exactly two

euclidean parameterizations ~x(s) such that ~x(0) = x0. If x(s) is another euclidean parametrization, let

x(�) = x0. Then x1(s) = x(s � �) also is an euclidean parameterization and satis�es x(0) = x0. Thus

either x(s) = ~x(s+ �) or x(s) = ~x(�s+ �):

(ii) The statements of (ii) follow immediately from (i) by di�erentiation.

(iii) Since j�(s)j2 = 1, we have by di�erentiation �(s):@�(s)@s = 0, that is �(s):@
2x
@s2 = 0. Changing s into �s

does not alter the value of @2x
@s2 at s = 0. 2

Exercise 5.1 (i) Consider an euclidean parameterization for a circle with center 0 and radius R, s !
x(s) = (R cos 2�s

R ; R sin 2�s
R ): Compute the normal and curvature and check that the curvature is 1

R .

(ii) Compute the curvature at 0 of the parabola of equation y = a
2x

2:

(iii) Give the general formula for the curvature of a C2 graph y = '(x).

We must be able to compute the normal and curvature of a parameterized curve. Exercise ?? yields some

useful formulas.

Exercise 5.2 curvature of parametric curve Parametric curves. Let c(�) be a parameterized C2 curve

and x(s) an euclidean parameterization of the same curve. We assume that the reparameterization '(s) = �

is monotonic and satis�es j'0(s)j > 0.

(i) Show that

'0(s) =
1

jc0('(s))j (5.2)

(di�erentiate the relation c('(s)) = x(s) and use jx0(s)j = 1.)

(ii) Show that

x00(s) = Curv(x)(s) = c00('(s))'0(s)2 + c0('(s))'0(s): (5.3)

Deduce from 5.2 that

'00(s) = �c
00('(s))'0(s):c0('(s))

jc0('(s))j3 = �c
00('(s)):c0('(s))
jc0('(s))j4 : (5.4)

(iii) Using 5.4 and 17.20, show that the curvature vector of c is

Curv(c(�)) = x00(s) =
1

c02(�)
(c00(�) � (c00(�):

c0(�)
jc0(�)j )

c0(�)
jc0(�)j ) (5.5)

(iv) Multiplying this formula by the vector normal to the curve, c(�)
?

jc(�)j , deduce a simple formula de�ning a

"scalar curvature" :

curv(c(�)) = Curv(c(�)):
c(�)?

jc(�)j =
c00(�):c0?(�)
jc0(�)j3 : (5.6)
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5.2. THE LEVEL LINE STRUCTURE (TOPOGRAPHIC MAP) OF AN IMAGE.

5.2 The level line structure (topographic map) of an image.

In view of the applications to shape analysis (see Sections 3.4, 3.5), it is quite useful to have a description

of an image in terms of Jordan curves. If the image is assumed to be C1, the implicit function theorem

yields such a description. We therefore begin with the case of dimension 2 and then will also de�ne level

surfaces of u in higher dimension.

Theorem 5.3 Let u(x) = u(x; y) be a C1 function in a neighborhood of a point x0 such that Du(x0) 6= 0.

Set~i = Du=jDuj(x0) and x = x0+x~i+y~j, where ~j is a unit vector orthogonal to Du(x0). Then, there exists

a disk D(x0; �) and a C1 function �(x): x 2 [��; �]! �(x) 2 IR such that if x = x0+ x~i+ y~j 2 D(x0; �);
then

u(x; y) = 0, y = �(x):

The preceding theorem ensures that if u is C1 and Du(x0) 6= 0, then around x0, the set fu(x) = u(x0)g
is a C1 graph. The next corollary permits to globalize this result.

Corollary 5.4 Let u be a C1 function on IR2, and � 2 IR a level such that:

� u�1(�) is compact.

� 8x 2 u�1(�); Du(x) 6= 0:

Then u�1(�) is a �nite union of C1 Jordan curves.

Proof Indeed by the implicit function theorem, u�1(�) is a C1 graph around each of its points. Since

u�1(�) is compact, it can be covered by a �nite number of disks inside each of which, by Theorem 5.3,

u�1(�) is a C1 graph. It is easily deduced that u�1(�) is a �nite union of C1 Jordan curves. 2

In fact, Sard's Theorem ensures that the preceding situation is generic in �.

Theorem 5.5 (Sard [?]) Let u be a real C1 function on a rectangle R of IRN . Then for almost every �

in IR, the set u�1(�) is nonsingular, that is 8x 2 u�1(�); Du(x) 6= 0.

Corollary 5.6 Let u : IR2 ! IR be a function of L1C , i.e. (2; 2)-periodic and C1 IRN . Then for almost

every � 2 IR, the set u�1(�) is a union of C1 Jordan curves which are either closed or end on the boundary

of R.

Proof We consider a level � for which u�1(�) is nonsingular. By the implicit function theorem, this last

set is a C1 graph around each point and its restriction to C is compact. We can therefore cover C \u�1(�)
by a �nite set of graphs and the statement follows. 2
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CHAPTER 5. LEVEL LINES AND LEVEL SURFACES.

Figure 5.1: Level lines as a complete representation of the shapes present in an image. All level lines of the image of a sea
bird for levels which are multiples of 12. Notice that we do not need a previous smoothing in order to visualize the shape
structures in an image : a quantization of the displayed levels is enough. The extrema killer is also very eÆcient to that
visualization aim.

5.3 The topographic map as a complete image representation.

De�nition 5.7 Let u be a C1 function on a rectangle. We call topographic map of u the map which

associates with every nonsingular � (that is, every � such that Du 6= 0 on u�1(�)), the �nite set of the

oriented Jordan curves of u�1(�). By orientation, we mean that we keep the information of whether

u(x) > � or u(x) < � inside or outside the Jordan curve. These are either closed, or meet the boundary

of the rectangle at their endpoints.

Theorem 5.8 [360] The image of a Jordan curve c divides the plane in two connected components, a

bounded one and an unbounded one. In other terms, denoting for commodity by c � IR2 the range of c,

the set IR2 n c has exactly two connected components. We denote by Int(c) the bounded one.

Proposition 5.9 Let u be a C1 function on a rectangle. Then u can be recovered from its topographic

map.

Proof Indeed, u can be recovered from a set of level sets associated with a dense set of �'s. Now, the

set of singular lambda0s has zero measure. Thus, its complementary set of nonsingular values is dense.

For each nonsingular value �, the boundary of X�u is described by a �nite set of oriented Jordan curves.

We consider the �lling operator Interior which associates with each Jordan curve c the set Interior(c)

the unique bounded connected component of IR2 n c (Theorem5.8.) Then, calling ci the positively oriented
Jordan curves, understood as those which surround points of X�, and cj ; j 2 Ji the negatively oriented

curves which are contained in Interior(ci) and therefore surround a hole of X�u, we have the reconstruction
formula

X�u =
\
i

(Int(ci)�
\
j2Ji

Int(ci;j)):

In computational terms, we \�ll" the curves ci and then remove their holes to reconstruct X�: 2

Remark 5.10 In practice, u can be recovered in the following way: we keep the Jordan curves as arrays
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of vertices and we use a �lling algorithm to reconstruct each X�u. Then u is obtained by the classical

u(x) = supf�;x 2 X�ug;

which is a �nite sup to perform, since � assumes a �nite number of values in a digital image.

5.4 Generalized level lines and topographic map

The preceding de�nition of level lines is slightly restrictive and may be generalized. In view of our de�nition

of level sets, it may be advantageous to consider cases where the level set is smooth enough, so that its

boundary is (e.g.) a union of Jordan curves. By boundary, we mean here the topological boundary. Let

us give some examples. If c is a Jordan curve, then we may consider the function u(x) which is equal to

1 if x is surrounded by the curve, 0 otherwise. We see that the implicit function theorem does not apply,

and that the set fx; u(x) = 1g is not a level line. The next de�nition, however, is adapted to this case :

De�nition 5.11 Let u be upper semicontinous, so that its level sets are closed. Consider the connected

components of Xc, where X is a level set, and assume that the boundary of each is a �nite union of non

crossing Jordan curves meeting each other at a �nite number of points. Then, we say that these Jordan

curves are level lines of u.

This de�nition may seem and is restrictive ; it has, however, the advantage of applying to a main

example we will consider in the sequel : u.s.c. piecewise constant images, in particular images constant on

pixels. In that case, each level set is a union of closed squares on a grid and it is easily checked that our

de�nition applies and uniquely de�nes a set of Jordan curves which we call the level lines of the image.

Conversely, these level lines uniquely de�ne the associated level set and we can reconstruct from them the

image.

As an example, let us consider a checkerboard image, where pixels have alternate values 255 (white)

and 0 (black). If we decide that the function is u.s.c., then the white pixels include their own boundaries

and are connected. The black pixels instead are disconnected. Thus, the level lines of u are simply all

boundaries of all black pixels.

Figure 5.2: Level lines as representatives of the shapes present in an image. Left: noisy binary image with two apparent
shapes, right: its two longest level lines.
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x= (y)ϕ
j 

Du/|Du| = i

Figure 5.3: Intrinsic coordinates

5.5 The curvature of the level lines

In this section, we assume again that the dimension N is 2. Consider a real function u which is twice

di�erentiable (C2) in a neighborhood of x 2 IR2. Without loss of generality, we choose the origin to stand

at x so that in the following we set x = 0 and we assume that u(0) = 0. In order to simplify the notation,

we shall omit the mention that computations are done at 0 and write Du instead of Du(0), etc.. We

denote by Du = (ux; uy) the gradient of u at 0, by jDuj = (u2x + u2y)
1
2 its euclidean norm. If Du 6= 0,

we call \orientation of the gradient" the normalized vector ~i = Du
jDuj : We set Du? = (�uy; ux), a vector

orthogonal to Du and ~j = Du?

jDuj . Taking into account that ~j and ~i are orthogonal and with norm equal to

1, we use them to de�ne the Cartesian coordinates of points x = (x; y) in a neighborhood of 0. Thus, we

set x = x~i+ y~j. If Du = 0, we simply choose for ~i and ~j = (~i)? two arbitrary orthogonal unit vectors.

Since u is C2, we can by Taylor formula write

u(x) = px+ ax2 + by2 + cxy +O(jxj3); (5.7)

where p = jDuj(0) � 0 and, if p > 0,

b = 1
2
@2u
@y2 (0) =

1
2D

2u(Du
?

jDuj ;
Du?

jDuj )

a = 1
2
@2u
@x2 (0) =

1
2D

2u( Du
jDuj ;

Du
jDuj )

c = @2u
@x@y (0) = D2u(Du

?

jDuj ;
Du
jDuj )

(5.8)

The Implicit Function Theorem 5.3 implies that in a neighborhood of 0, the set fx; u(x)g is a C2 graph

whose equation we can write x = '(y), where ' is a C2 function in a neighborhood of 0. In order to see

how ' is related to u, we rewrite (5.7) as

x = '(y) = �1

p
(ax2 + by2 + cxy) + o(x2 + y2):

>From this equation we draw x2 = o(y2) and xy = o(y2), so that �nally

x = '(y) = � b
p
y2 + o(y2) (5.9)

Equation (5.9) is the equation in intrinsic coordinates of the level line fx; u(x) = u(0)g of u at 0. We

deduce that j 2bp j = 1
R is the inverse of the radius of the osculatory circle to this curve, which we call

absolute curvature. This and Relation (5.8) justify the next de�nition.
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De�nition 5.12 Let u be a real C2 function de�ned around a point x 2 IR2 such that Du(x) 6= 0. Then

we call curvature of u at x the real number de�ned by

curv(u)(x) =
1

jDuj3D
2u(Du?; Du?)(x) =

uxxu
2
y � 2uxyuxuy + uyyu

2
x

(u2x + u2y)
3
2

(x): (5.10)

Returning to the notations (5.8), we obtain

b =
1

2
jDujcurv(u)(0): (5.11)

Exercise 5.3 Show that Formula (5.10) can also be written in a compact way as

curv(u)(x) = div(
Du

jDuj )(x); (5.12)

where we de�ne, as usual, div(u) = @
@xu+

@
@yu = ux + uy. Show that curv(u) does not depend upon any

C2 increasing or decreasing contrast change. (Just substitute g(u) to u in the formula (5.10) de�ning the

curvature.)

Exercise 5.4 Let us make a useful veri�cation. Our de�nition of curvature must match the intuitive

notion that the curvature of a circle is the inverse of its radius. De�ne u(x) = jxj2. Then level lines are

circles and the normal vector to level lines is ~n(x) = � x
jxj . The level line passing by x is a circle with

radius jxj = R. We parameterize this circle by length : C = f(R cos s
R ; R sin s

R )g. Then the tangent vector

to the level line is ~� (s) = (� sin s
R ; cos

s
R ) and

@~�(s)
@s = � 1

R (cos
s
R ; sin

s
R ) =

1
R~n(y(s)): Thus, the curvature

of the level line (de�ned as the modulus of the acceleration along the curve) is 1
R . Check that with Formula

5.10, one has curv(u)(x) = 1
R .

Exercise 5.5 Curvature and local comparaison of functions.

We say that a function f is radial and increasing if there exists an increasing function g : IR+ ! IR

and x 2 IR2 such that f(y) = g((x � y)2). Let u(x) be a C2 function from IR2 into IR. Assume that

Du(x0) 6= 0. Our aim is to show that there exist for every � > 0 two C2 radial and increasing functions

f+� and f�� such that

f�� (x0) = u(x0) = f+� (x0);

Df�� (x0) = Du(x0) = Df+� (x0);

curv(f�� )(x0) + � = curv(u)(x0) = curv(f+� )(x0)� �;

f�� (x) + o((x � x0)
2) � u(x) � f+� (x) + o((x� x0)

2):

1. Choose, without loss of generality, x0 = (0; 0), Du(x0) = (p; 0), with p > 0. Then for some a; b; c we

have by Taylor expansion

u(x) = px+ ax2 + by2 + cxy + o(x2 + y2)

Show that for every � > 0,

px+ (b� �)y2 + (�jcj
�
+ a)x2 + o(x2 + y2) � u(x; y) � px+ (b+ �)y2 + (

jcj
�
+ a)x2 + o(x2 + y2):

2. Let f(x; y) = g((x � x0)
2 + y2) be a radial function, show by an asymtotic expansion at (0; 0) that

f(x; y) = g(x20)� 2x0g
0(x20)x+

1

2
((4g00(x20)x

2
0 + 2g0(x20))x

2 + 2g0(x20)y
2):

3. Conclude.

F. Guichard, J-M. Morel, Image Analysis and PDE's 83



CHAPTER 5. LEVEL LINES AND LEVEL SURFACES.

5.6 The principal curvatures of a level surface

Following the same line as in the preceding section, we shall now de�ne di�erential operators of u invariant

with respect to contrast changes, which we later on shall interpret as the \principal curvatures" of the

level surface of u. In the following, when z is a vector of IRN , we denote by z? the hyperplane orthogonal

to z, z? = fy; z:y = 0g.

Proposition 5.13 Let u(x) be a C2 function in a neighborhood of a point x0. Assume that Du(x0) 6= 0

and consider the symmetric matrix D2u(x0), which we write for simplicity D2u. Then the eigenvectors and

eigenvalues of the restriction of D2u to Du? are not altered by a C2 contrast change u! g(u) satisfying

g0(s) > 0.

Proof If y 2 IRN , we denote by y
 y the linear map x! (y
 y)(x) = (x:y)y whose range is IRy. Its

matrix on the canonical basis of IRN is (yiyj)1�i;j�N . An easy application of the chain rule shows that

D(g(u)) = g0(u)Du and

D2(g(u)) = g00(u)Du
Du+ g0(u)D2u:

This implies �rst thatDu? = D(g(u))? (we have assumed 8s; g0(s) 6= 0). If y 2 Du?, then (Du
Du)(y) =
0 and therefore D2(g(u))(y;y) = g0(u)D2u(y;y): Thus, the matrices D2u and D2(g(u)) are proportional

on Du? = D(g(u))? and their eigenvectors and eigenvalues are equal. 2

Exercise 5.6 By computing explicitly the coordinates @
@xi

(g(u)) of D(g(u)), check that D(g(u)) = g0(u)Du:

By computing explictly the values @2

@xi@xj
(g(u)), check the formula used in the preceding proof, D2(g(u)) =

g00(u)Du
Du+ g0(u)D2u:

We now proceed to de�ne locally the level surface of a smooth function u.

Theorem 5.14 (Implicit function theorem)[]

Let u(x) = u(x1; x2; :::; xN ) be a C
1 function in a neighborhood a point x0. Assume that Du(x0) 6= 0. Set

~iN = Du
jDuj(x0) and x = x0 + xN~iN + y, where y 2 Du(x0)?. Then there exists a ball B(x0; �) and a C1

function '(y) : y 2 B(x0; �)\fx; xN = 0g ! '(y) 2 IR such that for every x = x0+y+xN~iN 2 B(x0; �),

u(x) = 0, xN = '(y)

In other terms, the equation xN = '(y) describes the set fu(x) = 0g \ B(x0; �) as the graph of a C2

function '. Thus, we obtain a surface which we call \level surface of u around x0". If u is C2, then so is

'.

As in Sections 5.2, 5.3, we can de�ne a topographic map for C1 images on a compact hyperrectangle.

We begin by eliminating all �'s which are singular (i.e. Du(x) = 0 for some x 2 u�1(�)), and then

decompose u�1(�) into a �nite set of C1 embedded oriented manifolds. The topographic map is thus

uniquely de�ned and gives a complete representation of u, from which u can be reconstructed.

By combining Proposition 5.13 and Theorem 5.14, we can do two useful things : First, to give a

simple intrinsic form to the level surface around x0 and second to interpret the eigenvalues introduced in

Proposition 5.13 as curvatures of lines drawn the level surface of u.
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Proposition 5.15 Let u be a C2 function around a point x0 2 IRN . Assume that p = jDu(x0)j 6= 0

and denote by �1; :::; �N�1 the eigenvalues of the restriction of D2u(x0) to Du(x0)
?. Then, setting ~iN =

Du
jDuj (x0) and choosing ~i1; :::;~iN�1 to be an orthonormal basis of eigenvectors of the restriction of D2u(x0)

to Du(x0)
?, we have for x = x0 + x1~i1 + :::+ xN~iN = x0 + y small enough :

u(x) = 0, xN = � 1

2p

N�1X
i=1

�ix
2
i + o(jyj2):

Proof Fixing the origin at x0, assuming without loss of generality that u(0) = 0 and using the Taylor

expansion formula, we obtain

u(x) = Du(0):x+
1

2
D2u(0)(x;x) + o(jxj2):

Setting x = xN~iN + y, where y 2 Du(0)?, this can be written

u(x) = pxN +
1

2
D2u(0)(y;y) + xND

2u(0)(iN ;y) +
1

2
x2ND

2u(0)(iN ; iN ) + o(jxj2):

If x belongs to the level surface fu(x) = 0g and jxj � �, we deduce that x2N = o(jxj2) and by Theorem

5.14 that

xN = '(y) = �1

p
(
1

2
D2u(0)(y;y) + xND

2u(0)(iN ;y)) + o(jxj2):

This implies that xN = o(jyj2) and therefore by substitution o(jxj2) = o(jyj2), so that

xN =
�1
2p
D2u(0)(y;y) + o(jyj2): (5.13)

We have y 2 fxN = 0g \B(0; �) = B(0; �) \Du(0)?. Thus, using an orthonormal basis of eigenvectors of

the restriction of D2u(0) to Du(0)?, and calling xi, i = 1; :::; N � 1 the coordinates on this orthonormal

basis of Du(0)?,

xN =
�1
2p

N�1X
i=1

�ix
2
i + o(jyj2):

2

Let us now use our two-dimensional analysis and interpret the �i as curvatures.

Proposition 5.16 and de�nition of the principal curvatures. Let u be a C2 function around x0

such that Du(x0) 6= 0. Set again ~iN = Du
jDuj (x0): Then for every unit vector ~� orthogonal to Du(x0), the

intersection of the level surface fu(x) = 0g with the plane fxN~iN + t~�; (xN ; t) 2 IR2g, is a C2 curve for

j(xN ; t)j � �. The curvature of this curve at x0 is

�� =
1

jDu(x0)jD
2u(~�; ~�):

In the case where ~� =~ij is an eigenvector of D2u(x0) restricted to Du(x0)
?, this curvature �j is called a

principal curvature of the level surface of u at x0.
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Proof We apply Formula (5.13) with x = xN~iN + t~� = '(t~�)~iN + t~�: Thus

xN =
�1

2jDu(x0)jD
2u(x0)(~�; ~�)t

2 + o(t2):

The curvature at 0 of this two-dimensional curve is

�(u) =
1

jDu(x0)jD
2u(x0)(~�; ~�):

2

Proposition 5.17 and De�nition of The Mean Curvature in dimension N The \Mean Curvature"

is de�ned as the sum of the principal curvatures. It is also given by

curv(u) = jDujdiv(Du=jDuj)

Proof By the preceding proposition and since �u is the sum of the eigenvalues of D2u, it is easily checked

that

curv(u) = jDuj�u�D2(Du;Du)=jDuj
Now, with Du = (ux0 ; :::; uxN ), we have

div(Du=jDuj) =
X
i

@

@xi

uxi
jDuj

=
X
i

1

jDuj2
@2

@x2i
u� (

@

@xi
jDuj)uxi=jDuj

Combining all terms, we obtain

div(Du=jDuj) = �u

jDuj �
D2u(Du;Du)

jDuj
2

5.7 Visualization of the topographic map.

In pratice, the digital image is described by a matrix of values u(i; j); 0 � i � n; 0 � j � m. Those values

are assumed to be a sampling of a continuous image ~u(x; y) such that ~u(i; j) = u(i; j), at each location.

The function ~u is generally given by Shannon theory ([277]). Now, since this Shannon interpretation can

be heavy to implement and since we do not need such precision for a visualization, we shall in this book

just display level lines as concatenations of vertical and horizontal lines bounding the pixels. This involves

a zoom of factor 2 of the image size.

De�ning a function �� : IR � IR! f0; 255g by

��(a; b) = 0 if a < � and b � �
��(a; b) = 0 if a � � and b < �
��(a; b) = 255 otherwise

;
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and, given � and a digital image u(i; j), we de�ne the image of the level lines at level � of u by:

w(2i; 2j) = 255
w(2i+ 1; 2j) = ��(u(i+ 1; j); u(i; j))
w(2i+ 1; 2j + 1) = ��(u(i+ 1; j + 1); u(i; j))
w(2i; 2j + 1) = ��(u(i; j + 1); u(i; j)):

Using the code 0 =black and 255 =white, the level line � of u will appear as a black line on a white

background in image w. Of course, we can superpose several levels in order to obtain a joint map of

several level lines, i.e. a topographic map. In order to be visually readable, this topographic map must not

show too many levels ; in practice not more than about twenty. The removal of small level lines can be very

useful in order to improve the readability of the topographic map and we shall discuss �lters performing

this task in the last section about the \extrema killer" in Chapter 7.
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found. An introduction to the use of level lines in Computer Vision can be found in Caselles et al. [85].

Section ?? :

The Jordan curve theorem is proved (e.g.) in Rudin [360]. The reconstruction formula (??) permitting to

rebuild a set from its boundary, when this boundary is made of a �ne set of Jordan curves, is stated here

in an elementary framework where the Jordan curve theorem is the only needed tool. A more general con-

struction assumes that the set to be reconstructed from its boundary is a set with �nite perimeter. Then

it can be shown that its boundary can be de�ned in a unique way as a countable union of Jordan curves

and the reconstruction formula is still valid. A complete de�nition and proof of this general reconstruction

formula, is given in [24].

Sections ?? : and ?? : It is a classical mathematical trick to de�ne implictly a set as the the zero set

of its distance function. In the case where the set is a curve, one can compute the curvature of a curve at

a point x by computing the curvature curv(u)(x) at the same point of the distance function to the curve.

This yields an intrinsic formula for the curvature, not linked to a parameterization of the curve. The same

trick has been refreshed in recent years as a very useful numerical tool. This started with Barles report

[?] on 
ame propagation and was extended by Sethian [381] and Osher-Sethian [331] in a series of papers

on the numerical simulation of the motion of surface by its mean curvature.
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Chapter 6

The main contrast invariant
equations.

6.1 The normal and curvature of a shape as cues to recognition

In this section, we shall link shape recognition and scale space theory. Let us de�ne a \shape" as a

closed bounded subset of IR2. Without loss of generality, we shall assume that this subset, X , has a

boundary made of a �nite set of simple closed curves (Jordan curves) with �nite length. This �niteness

assumption is computationally realistic and implies that X is a Cacciopoli set. The mathematician Renato

Cacciopoli [?] proposed a theory for sets whose boundary has �nite length, from which it can be deduced

that the boundary of a Cacciopoli set is made of an enumerable set of Jordan curves. We restrict this

assumption to �niteness for obvious quantization reasons. The main consequence of this model for shapes

is that they are fully described by the �nite list of their boundary Jordan curves. The shape recognition

problem can therefore be reduced to the problem of recognition of the shape building elements : the

Jordan curves. Thus, we shall in the following assume that the shape undergoing a recognition process is

described by a single Jordan curve. In photographs of a natural environment, most observed shapes are

partially occluded (hidden) and distorted by perspective deformations. The shape recognition technology

has therefore focused on local methods, that is, methods which will work even if the shape is not fully in

view and if the visible parts are distorted. When we observe a Jordan curve, we can therefore not be sure

whether is belongs to one and the same object ; it may be the concatenation of several objects occluding

each other. Thus, recognition has to be based on local features of the Jordan curve and not on global one. If

the shape boundary is in some degree smooth, those local features simply are derivatives of the curve, that

is : orientation, curvature, etc.. Before starting with formal de�nitions of these geometric quantities, let

us mention that most local recognition methods indeed involve the \salient" points of the shapes, identi�ed

with in
exion points (where the curvature is zero) and extrema of curvatures (the \corners" of the shape).

In such local recognition methods, a shape is reduced to a �nite code, namely the coordinates of a set

of characteristic points, corners and in
exion point mainly. The shape recognition is then reduced to a

comparison between �nite shape codes by \voting methods" like geometric hashing. Let us now return to

what will be our main concern here, the de�nition and e�ective computation of the normal and curvature

to a shape.
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6.2 Multiscale features and scale space

The above mentionned methods (and, as a matter of fact, all nonglobal computational shape recognition

methods) make two basic assumptions, none of which is in practice true for the analyzed shapes (identi�ed

from now on with Jordan curves) :

� The shape has a smooth boundary

� The shape has a �nite set of in
exion points and extrema of curvature.

The fact that this assumption can however become a reality has been mathematically proved in 1986-87

by Gage-Hamilton [193] and Grayson [180] who proved the possibility of smoothing a Jordan curve into a

Jordan curve by the so called \intrinsic heat equation".

De�nition 6.1 Let x(t; s) be a family of Jordan C2 curves and assume for each t that s ! x(t; s) is an

euclidean parameterization. We say that x(t; s) satis�es the intrinsic heat equation if

@x

@t
(t; s) =

@2x

@s2
(t; s) = Curv x(t; s): (6.1)

Theorem 6.2 (Grayson) The intrinsic heat equation lets any Jordan curve x(s) with �nite length evolve

into a family of Jordan curves x(t; s) such that x(0; s) = x0(s), the curve x(t; s) being for every positive

scale t a C1 Jordan curve, with a �nite set of in
exion points and extrema curvature. The number of

these \characteristic points" is nonincreasing with t. In addition, there is for every initial Jordan curve a

scale t0 such that the curve s ! x(t0; s) becomes convex and another scale t1 for which the curve shrinks

to a point.

Of course, the initial shape x0(s) may well have in�nitely many characteristic points and may even

have unbounded curvature everywhere. The point is, that anyway x(t; s) has derivatives of any order for

t > 0 and the curvature has �nitely many zero-crossings and extrema for every �xed t > 0. Still better :

the number of characteristic points cannot but decrease when the \time parameter" t increases, so that

the scale space is causal according to the Vision theory terminology. The discovery of Gage-Hamilton

and Grayson has found a signi�cant response in the Vision Research, where several attempts to de�ne

scale spaces for shapes had come very close to the equation studied by Gage-Hamilton and Grayson. We

call shape scale space any method allowing to smooth a shape, the degree of smoothing being measured

by a positive real parameter t, the scale. Thus scale space associates with every initial Jordan curve

x(0; s) = x0(s) a series of smoothed shapes, x(t; s). It is expected that the intrinsic heat equation acts as

a selective way of eliminating spurious details of the shape, keeping a rougher but more reliable version

of the shape and a shorter code as well. The matching of two instances x0(s) and x1(s) of a given shape

should be done by comparing the characteristic points of x0(t; s) and x1(t; s) for a value of t large enough.

Comparing the originals x0 and x1 is simply impossible : They are expected to depend highly upon the

conditions of observation. Observation noise and distorsions of the initial Jordan curve make it impossible

to single out directly on x0(s) the signi�cant corners and in
exion points.
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6.3 From image motion to curve motion.

6.3.1 Level lines as curves

Let u be a real function which is twice di�erentiable (C2) in a neighborhood of x. We denote by Du(x) =

(ux; uy)(x) the gradient of u at x, by jDu(x)j = (u2x + u2y)
1
2 (x) its euclidean norm. We consider the level

curve of u passing by x , de�ned as the set

fy; u(y) = u(x)g

If we assume that Du(x) 6= 0, by the Implicit Function Theorem, we know that the level curve indeed is

a curve, which inherits the smoothness of u in a neighborhood of x. We set Du? = (�uy; ux), a vector

orthogonal to Du. The next lemma links the intrinsic curvature of the level curve Curv(x) introduced in

De�nition 5.2 and the curvature di�erential operator curv(u)(x) of De�nition 5.12.

Lemma 6.3 Let u(x) be a C2 real function : IR2 ! IR and x a point such that Du(x) 6= 0. Call C the

level line passing by x. Then

Curv(x) = �curv(u)(x) DujDuj (x): (6.2)

Proof Consider a level curve fy; u(y) = u(x)g. We notice that Du?

jDuj is a unit vector tangent to the curve

at x. Then there is by Lemma 5.2 a single euclidean parameterization y(s) of the level curve such that

@y(s)

@s
(0) =

Du?

jDuj (x) (6.3)

Di�erentiating the relation u(y(s)) = 0 we have Du(y(s)):@y(s)@s = 0 and di�erentiating again at s = 0 and

using (6.3),

D2u(
Du?

jDuj ;
Du?

jDuj ) +Du(x):
@2y

@s2
= 0:

Using the de�nitions 5.12 and 5.2 of curv(u) and Curv(x), this becomes

curv(u)jDuj(x) +Du(x):Curv(x) = 0:

Noticing that Curv(x) is colinear to Du(x), we deduce that

Curv(x) = �curv(u) DujDuj :

2

The intrinsic heat equation is only one instance of a wide range of nonlinear equations which move

curves with a curvature-dependent speed. The only requirement for this dependence, which we shall justify

in Chapter 22 is that the higher the curvature, the higher the speed:

De�nition 6.4 Let x(t; s) be a family of Jordan C2 curves and assume for each t that s ! x(t; s) is an

euclidean parameterization. We say that x(t; s) satis�es a curvature equation if it is C2 and for some real

function g(�; t), nondecreasing with respect to � satis�es

@x

@t
(t; s) = g(t; jCurvx(t; s)j)n(t; s): (6.4)
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De�nition 6.5 We say that u(t;x) satis�es a curvature equation if it is C2 and for some real function

g(�; t), nondecreasing with respect to � satis�es

@u

@t
u(t;x) = g(curvu; t)jDuj(t;x): (6.5)

All of these equations are candidates to be curve or image scale spaces and one of our main tasks in this

book is precisely to single out the most relevant ones. The de�nitions above are very restrictive in that

they assume a C2 regularity of the image or the curve. Now, as we shall see, this regularity requirement

impossible to attain. A more general and applicable de�nition of solutions for the above image equations

will be introduced in Chapter 17 on viscosity solutions. In the next section, we establish a formal link

between curve motions and curvature motions for images.

6.3.2 Curvature equations for curves and real functions

De�nition 6.6 Let u(t,x) be C2 function around a point (t0;x0) such that Du(t0;x0) 6= 0. Then there

exists a neighborhood V of x0, a time t1 > t0 and for t 2 [t0; t1] and ~x 2 V a unique C1 vector function

x(t; ~x) satisfying x(0; ~x) = ~x, u(t;x(t; ~x)) = u(t0; ~x) and such that @x(t;~x)
@t is colinear to Du(t;x(t; ~x)).

We call x(t; ~x) the \normal 
ow starting from (t0; ~x)". The normal 
ow satis�es the ordinary di�erential

equation
@x

@t
= �(@u

@t

Du

jDuj2 )(t;x(t)): (6.6)

Proof Di�erentiating the relation u(t;x(t)) = 0 with respect to t yields @u
@t +Du:@x@t = 0. Thus @x

@t is

colinear to Du if and only if
@x

@t
= �(@u

@t

Du

jDuj2 )(t;x(t)): (6.7)

This relation de�nes x(t) as the solution of an ordinary di�erential equation, with initial condition x(0) = ~x.

Since u is C2, the second member of (6.7) appears to be a Lipschitz function of (t;x) providedDu(t;x) 6= 0,

which is ensured for (t;x) close enough to (t0;x0). Thus, by Cauchy-Lipschitz Theorem, there exists t1 > t0

such that the O.D.E. (6.7) has a unique solution x(t; ~x) for all ~x in a neighborhood of x0 and t 2 [t0; t1].

2

Proposition 6.7 Let u(t;x) be a C2 function such that Du(t0;x0) 6= 0. Then u satis�es the curvature

motion equation
@u

@t
= curv(u)jDuj (6.8)

in a neighborhood of (t0;x0) if and only if the normal 
ow x(t) satis�es the intrinsic heat equation (6.1),

@x

@t
(t; s) =

@2x

@s2
(t; s) = Curv(x(t; s)):

Proof If (6.1) holds, by (6.6), we get

�(@u
@t

Du

jDuj2 )(t;x(t)) = Curv(x(t)):
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By (6.2), this yields

�(@u
@t

Du

jDuj2 )(t;x(t)) = curv(u)
Du

jDuj ;

which implies the curvature motion equation (6.8). Conversely, substituting in (6.6) the value of @u
@t given

by (6.8) yields
@x

@t
= �(curv(u)jDuj DujDuj2 )

and using (6.2) we obtain the heat intrinsic equation (6.1), @x
@t (t; s) = Curv(x(t)). 2

Corollary 6.8 Let u(t;x) be a C2 function such that Du(t0;x0) 6= 0 and g(�; t) a continuous function,

nondecreasing with respect to �. Then u satis�es the curvature motion equation (6.5)

@u

@t
(t;x) = g(curv(u); t)jDuj(t;x)

in a neighborhood of (t0;x0) if and only if the normal 
ow x(t) satis�es the intrinsic heat equation (6.4)

(introduced in De�nition 6.4).
@x

@t
(t; s) = g(t; jCurvx(t; s)j)n(t; s)

6.3.3 Introduction to aÆne curve and image equations

A particular instance of curvature equation is, as we shall see, aÆne invariant and therefore well suited to

be used in shape recognition.

De�nition 6.9 We call "aÆne morphological scale space" (AMSS) the image evolution equation

@u

@t
= curv(u)

1
3 jDuj(t;x); (6.9)

where k
1
3 means sgn(k)jkj 13 . We call "aÆne scale space" (ASS) the curve evolution equation

@x

@t
(t; s) = jCurv(x(t; s))j 13n(t; s) ( =

Curv(x(t; s)

jCurv(x(t; s)) 23 ): (6.10)

It is easily seen that both considered equations are formally equivalent in the sense of Corollary 6.8. Let

us now brie
y give a �rst explanation for the "aÆne" denomination. A second explanation will be given

in the next subsection.

De�nition 6.10 We say that an image evolution equation is aÆne invariant if for every linear map A

with positive determinant, there is a constant c(A) depending only on A such that u(t;x) is a solution of

the curvature equation if and only u(c(A); Ax) is.

This de�nition is a bit puzzling but will be fully explained in Section 20.4. In Exercises 6.1, 6.2, we check

that the AMSS and ASS equations indeed are aÆne invariant.

Exercise 6.1 (i) Let u be a C2 function, A a 2 � 2 matrix and set v(x) = u(Ax). Prove that at each

point x such that Dv(x) 6= 0, one has curvv(x)jDv(x)j = jdetAj 12 curv(u)(Ax).
(ii) Deduce that the AMSS equation 6.9 is aÆne invariant, namely u is solution of (AMSS) if and only if

v(x) = u(Ax) is solution of
@v

@t
= (detA)

2
3 curv(v)

1
3 jDvj(t;x):
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Exercise 6.2 AÆne invariance of the aÆne scale space (ASS).

From Exercise 5.2, we know that if c(�) is parametric C2 curve with jc0(�)j > 0, then by Formula (5.5),

Curv(c(�)) = x00(s) =
1

c02(�)
(c00(�)� (c00(�):

c0(�)
jc0(�)j )

c0(�)
jc0(�)j ): (6.11)

Using this formula, and projecting both members of the intrinsic heat equation on the normal vector c0(�)?,

we shall say that c(�) satis�es a curvature equation if

@c

@t
:
c0?

jc0j =
c00:c0

jc0j3 : (6.12)

(i) Show that if c(�) is an euclidean parameterization, then this de�nition coincides with the usual one,

(6.1). In the same way, we shall say that c satis�es an aÆne equation if for some positive constant 
 > 0,

@c

@t
:c0? = (c00:c0)

1
3 : (6.13)

(a
1
3 denotes sgn(a)jaj 13 ). Let A be a 2� 2 matrix with positive determinant. Our aim is to check that if c

satis�es an aÆne motion, then so does y(�) = Ac(�):

(ii) Let x;y 2 IR2. Show that Ax:(Ay)? = (detA)x:y? and A(x?):(Ax)? = (detA)jxj2:
(iii) Deduce the announced aÆne invariance. More precisely, show that if c(�) satis�es (6.13), then

y(�) = Ac(�) satis�es
@y

@t
:y0? = (detA)

2
3 (y00:y0)

1
3 : (6.14)

6.3.4 The AÆne Scale Space as an intrinsic heat equation

Denote by x(t; �) a curve at scale t, parametrized by a parameter �. In this paragraph, we shall show a

formal equivalence between the AÆne Scale Space,

@x

@t
= jCurv(x)j 13n(x) = jkj 13n(x); (6.15)

where k = jCurv(x)j(x) is a useful abbreviation for the curvature, and an \intrinsic heat equation",

@x

@t
=
@2x

@�2
(6.16)

where � is a special parameterization of the curve called aÆne length. Let us give some elements of aÆne

di�erential geometry. We de�ne an aÆne length parameter, or � of a Jordan curve as a parameterization

x(�) satisfying

[x� ;x�� ] = 1 (6.17)

where [; ] stands for the determinant of two vectors. Here and in the following, we write for clarity of

the formulas x� for @x
@� and x�� for @2x

@�2 . If we denote by s the arc length, and by k = jCurv(x)j(x) the
curvature, then a tangent vector and the intrinsic normal vectors to the curve are given by

t = xs n = k�1xss (=
Curv(x)

jCurv(x)j (6.18)

Moreover

x� = xs
@s

@�
and (6.19)
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x�� = xss(
@s

@�
)2 + xs

@2s

@�2
(6.20)

Now (6.17) implies

[xs
@s

@�
;xss(

@s

@�
)2 + xs

@2s

@�2
] = 1

) [xs;xss](
@s

@�
)3 = 1

Since by (6.18), [xs;xss] = k, we conclude that

@s

@�
= k�

1
3 (6.21)

Let us now deal with x�� . Using (6.21) and (6.18) in (6.20) we obtain

x�� = k
1
3n+ (

@2s

@�2
)t

We deduce that equation (6.16) is equivalent to

@x

@t
= k

1
3n+ (

@2s

@�2
)t (6.22)

Now, Epstein and Gage [135] have proved that the tangential component of such an equation does not

matter as far as the geometric evolution of the curve is concerned. Indeed, the tangential component

produces a motion of the point along the curve itself and the whole curve evolution is characterized

de�ned by the normal velocity. As a consequence, (6.16) is equivalent to Equation (6.15) on non-in
ection

points. Thus, we have the following equivalence in terms of curve evolution :
@x
@t = k

1
3n if and only if

@x

@t
=

�
0 x in
ection point
x�� x non-in
ection point

6.4 Curvature Motions in dimension N .

We consider a 
ow u(t;x) where x is of dimension N and where u(0;x) = u0(x), an initial N dimensional

image. We denote by �i(u)(t;x) the i
th principal cuvature of u the image at point (t;x). (Principal

curvatures have been introduced section 5.6). (i is between 1 and N � 1). Let us now introduce major

equations describing some interesting 
ows u(t;x).

The mean Curvature Motion

@u

@t
(t;x) = jDuj

N�1X
i=1

�i(x)

With this equation, the motion of a level-hypersurface of u in the normal direction is proportional to

the mean value of its principal curvatures.

The Gauss Curvature Motion of convex functions. We call convex functions, functions that have

all their principal curvature with same sign. Example of such a function is the signed distance function to

a regular convex shape.

@u

@t
(t;x) = jDuj

N�1Y
i=1

�i(x)
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The motion of a level-hypersurface of u is now proportional to the product of its principal curvatures.

However, this equation can not be applied, as is, on non convex functions due to the maximum principle

(see Chapter 21).

The AÆne Invariant Curvature Motion.

@u

@t
(t;x) = jDujj

N�1Y
i=1

�i(x)j 1
N+1H

� X
1�i�N�1

sgn(�i)
�

where H(N � 1) = 1, H(�N + 1) = �1 and H null otherwise.

This motion is similar to the Gauss Curvature Motion. The aÆne invariance implies to use the power
1

N+1 of the gaussian curvature, the maximum principle implies to cancel the motion at point where principal

curvatures have di�erent signs.

References.

Role of curvature in shape analysis

We can mention [9] as one of the �rst references dealing with the role of curvature in the representation

and recognition of objects in Computer Vision. The classical paper proposing to compute a "multiscale

curvature" in order to recognize objects in an image is Asada-Brady's [37], "The Curvature Primal Sketch".

The title is an allusion to the famous David Marr's "raw primal sketch", a set of geometric primitives ex-

tracted from and representing the image. This paper entailed a long series of more and more sophisticated

attempts to represent Shape from Curvature [128, 132] and to compute the curvature correctly [306].

AÆne invariant curve shortening

AÆne invariant geometry seems to have been founded by Blaschke [?], which contains de�nitions of the

aÆne length and aÆne curvature. Curves with constant aÆne curvature are discussed in [273]. The name

AÆne Shortening and the corresponding curve evolution equation was introduced by Sapiro-Tannenbaum

in [370]. Some mathematical properties were developped by the same authors in [371, 372] In [29], An-

genent, Sapiro and Tannenbaum gave a �rst existence and uniqueness proof for the aÆne shortening.

Curve shortening The mathematical study of the intrinsic heat equation (or curvature motion in dimen-

sion 2) was made in a series of brillant papers in di�erential geometry whose titles suÆciently indicate the

progress made : Gage [165, 166] ("Curve shortening makes convex curves circular"), Epstein-Gage [135],

Gage-Hamilton [193] "The heat equation shrinking convex plane curves", "Given a curve in the plane,

let it deform in the direction of its curvature vector. It was conjectured that the curve would collapse in

�nite time to a point and that, as the curve collapsed, it would become asymptotically close to a shrinking

standard circle. The authors prove this conjecture for a convex plane curve. " Finally, Grayson [] whose

paper "The heat equation shrinks embedded plane curves to round points" is commented in laconic terms

by his referee: "This paper contains the �nal solution of the long-standing \curve-shortening problem" for

plane curves."

The �rst papers introducing the curve shortening and some variants in image processing as means to do
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a multiscale analysis of curves (understood as shapes extracted from an image) were written by Kimia,

Tannenbaum and Zucker [243] and Mackworth-Mokhtarian who propose the use of curve shortening as an

eÆcient numerical tool for shape multiscale analysis [272].

Mean curvature motion In his famous paper "Shapes of worn stones", Firey [150] proposed a model

for the erosion of stones on a beach. The surface of those stones evolves at a normal speed proportional to

the speed of the Gauss curvature of the surface, and it was conjectured that the �nal shape of the stones

is spherical. The �rst attempt to make a mathematical de�nition of the mean curvature motion is Brakke

[62]. We shall discuss in the next chapters the clever numerical implementation of the same equation by

Sethian ([382] "Curvature and the evolution of fronts") In [416], a more general formulation of the mean

curvature motion is proposed, which adapts to crystal growth and in general to the evolution of anisotropic

solids.
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Chapter 7

Monotone and contrast invariant
operators. The threshold
decomposition principle

7.1 Contrast invariant function operators

In the following, we denote by F a space of functions de�ned on IRN with values in IR and denote by T
the set of all level sets of functions of F . If (e.g.) F is the set of continuous real functions on IRN , then

T is the set of closed subsets of IRN . If F is the set of Borel-Lebesgue measurable functions then T is the

set of Borel subsets of IRN , etc. We assume that F is stable by continuous nondecreasing contrast changes

u! g(u), i.e. g(u) 2 F whenever u 2 F . We consider function operators on F ,

T : u 2 F ! Tu;

where Tu is a real function, Tu(x) 2 IR, and set operators on T ,

T : X 2 T ! TX:

Our main interest here is in monotone operators, because they are nonlinear generalizations of the linear

smoothing by a nonnegative convolution kernel .

De�nition 7.1 We say that a function operator T is monotone if

u � v ) Tu � Tv: (7.1)

We say that a set operator T is monotone if

X � Y ) T(X) � T(Y ) (7.2)

De�nition 7.2 We call continuous contrast change any nondecreasing continuous function g : IR! IR.

De�nition 7.3 We say that T is contrast invariant on F if for every continuous contrast change g : IR!
IR, one has g(u) 2 F whenever u 2 F and

8u 2 F ; g(Tu) = T (g(u)): (7.3)
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The next proposition puts into evidence one of the main properties yielded by contrast invariance :

the conservation of grey levels. This conservation property implies that, in contrast to linear operators,

contrast invariant operators do not create new grey levels in an image. This means in practice that images

�ltered by a contrast invariant operator remain well contrasted. Fronts of u, which correspond to gaps in

the range of u, are preserved. In particular, binary images remain binary.

We denote by R(u) � IR the range of a function u, that is, R(u) = fs 2 IR; 9x; u(x) = s:g

Proposition 7.4 Let T be a contrast invariant operator. Then for every function u, R(Tu) � Ru. In

particular, if u attains a �nite number of values, then Tu attains a subset of them.

Proof We consider a continuous increasing function g such that g(s) = s when s 2 Ru, g(s) > s

otherwise. As an example of such function using the distance to the set Ru, we can take

g(s) = s+
1

2
d(s;Ru);

where d(s;X) denotes the distance of s to X . We have d(s;Ru) = 0 if and only s 2 (Ru). Thus g(s) = s

if and only s 2 (Ru). In particular, g(u) = u. Using this and the contrast invariance of T we have

Tu = T (g(u)) = g(Tu):

Thus (Tu)(x) is for every x a �xed point of g and therefore (Tu)(x) belongs to Ru, as announced.

2

Another interesting property of contrast invariant and translation invariant operators : they do not increase

the Lipschitz constant of functions. In fact, the property is much more general, being true for all translation

invariant operators commuting with the addition of constants : T (u+ C) = Tu+ C:

Lemma 7.5 Let T be a monotone, translation invariant operator commuting with the addition of con-

stants. If u(x) is a Lipschitz function on IR2 then the function Tu(x) is Lipschitz, with a lower or equal

Lipschitz constant.

Proof of lemma 7.5. Assume u has a Lipschitz constant equal to K. For any x, y, and z, we have

u(y+ z)�Kjx� yj � u(x+ z) � u(y+ z) +Kjx� yj (7.4)

Since T is monotone, considering the above functions as functions of z applying them T and taking the

value at 0 of the obtained functions, we obtain

T (u(y+ z)�Kjx� yj)(0) � Tu(x+ z)(0) � T (u(y+ z) +Kjx� yj))(0):

Notice that by the translation invariance, T (u(y + z))(0) = (Tu)(y), etc. Using the commutation of T

with the additions of constants and the translation invariance, we therefore obtain

(Tu)(y)�Kjx� yj � (Tu)(x) � (Tu)(y) +Kjx� yj:

2

The preceding regularity preserving property of contrast invariant operators is generalized in Exercise 7.1.

Working version subject to errors, only for personal use. No di�usion authorized. All rights reserved. (Version: 15/07/2000)



7.2. FROM CONSTRAST INVARIANT OPERATORS TO SET OPERATORS : THE THRESHOLD

SUPERPOSITION PRINCIPLE.

Exercise 7.1 We say that a function u(x) is uniformly continuous if there exists a real nonnegative

function "(s) such that "(s)! 0 when s! 0 and for all x;y 2 IRN ,

ju(x+ y)� u(x)j � "(jyj):

The function "(s) is then called a uniform continuity modulus of u. Show that if u is uniformly continuous

and T is translation invariant and commutes with the addition of constants, then Tu also is uniformly

continuous, with the same modulus as u. (Adapt the proof of Lemma 7.5).

Exercise 7.2 Let T be a monotone contrast invariant operator. Show that

(i) T(C)=C for every constant function C.

(ii) u � C ) Tu � C, u � C ) Tu � C.

(iii) sup jTu(x)� Tv(x)j � sup ju(x)� v(x)j:
Indication : write � sup ju(x)� v(x)j � u(x)� v(x) � sup ju(x)� v(x)j:
(iv) Notice that the above results still work if we only assume that T is monotone and commutes with the

addition of constants.

7.2 From constrast invariant operators to set operators : the
threshold superposition principle.

Assume that F contains the characteristic functions 11X of elements of X . We can associate with T a set

operator T, de�ned on the set T of all level sets of all functions in F by

T(X) = X1(T (11X)): (7.5)

where 11X(x) = 1 if x 2 X and 11X(x) = 0 otherwise . Note that if T is monotone, then T is a set monotone

operator. Indeed,

X � Y , 11X � 11Y :

The de�nition of T makes sense by Proposition 7.4 : according to this proposition, T (11X) attains the

values 0 and 1 like u and is therefore a characteristic function. See Exercise 7.3

Exercise 7.3 In order to justify the de�nition of T when T is contrast invariant, we shall show that T (11X)

is a characteristic function, i.e. only attains the values 0 and 1. In order to do so, consider a contrast

change g such that g(0) = 0, g(1) = 1 and g(s) 6= s for s 6= 0 or 1. Show that T (11X) = T (g(11X)) =

g(T (11X)): Deduce that T (11X) has the only values 0 and 1 and conclude that 11T(X) = T (11X). Notice that

this result also follows from Proposition 7.4.

In order to explore the relationships between T and T, we shall �rst show roughly that T commutes

with thresholds.

Lemma 7.6 Let T be a contrast invariant monotone operator. Consider the threshold functions 
�(s) = 1

if s � � and 
�(s) = 0 otherwise. Then T commutes almost everywhere with almost every threshold, i.e.


�(Tu) = T (
�(u)) a.e. in �; a.e. in x:
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Figure 7.1: Approximation of the threshold function 
� from above and from below

Proof Let


��(s) = 0 if s � �� �;


��(s) =
s� (� � �)

�
if �� � � s � �;


��(s) = 1 otherwise :

Then 
��(s) is a contrast change and 

�
� � 
�: Thus

T (
�(u)) � T (
��(u)) = 
��(Tu)! 
�(Tu); as �! 0:

Using in the same way continuous nondecreasing functions ~
�� � 
�; we also prove that T (
�(u)) �

�� (Tu); where 


�
� (s) = 1 if s > � and 
(s) = 0 otherwise. We therefore obtain


�� (Tu) � T (
�(u)) � 
�(Tu):

Let us consider the countable, and therefore negligible, subset � � IR of all � such that meas(fx; Tu(x) =
�g) > 0: For � 2 IR n �, we have 
�� (Tu) = 
�(Tu) almost everywhere. Thus, for almost every �, we

obtain

T (
�(u)) = 
�(Tu) almost everywhere.

2

In a converse way to Relation (7.5) de�ning a set operator from a function operator, we can de�ne a

function operator T from a set operator T thanks to the threshold superposition principle.

De�nition 7.7 We say that T is obtained from T by the threshold superposition principle almost every-

where if

Tu(x) = supf�; x 2 T(X�u)g; a.e. in x: (7.6)

If the preceding relation holds for every � and x, we say that the threshold superposition holds everywhere.

Proposition 7.8 Let T be a monotone contrast invariant operator on a set of functions F containing

the characteristic functions 11X of the elements X of T . De�ne its associated set operator by T(X) =

X1(T (11X)): Then T is monotone, we have for every u 2 F

T(X�u) = X�(T (u)); a.e. in �; a.e. in x (7.7)

and the threshold superposition principle holds almost everywhere :

Tu(x) = supf�; x 2 T(X�u)g; a.e. in x: (7.8)

In addition,

T(;) = ; a:e:; T(IRN) = IRN a:e::
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Proof Using the de�nition of T, the obvious relations 11X�u = 
�(u), X1(
�(v)) = X�v, and the commu-

tation almost everywhere of T with 
�, obtained in Lemma 7.6, we get

T(X�u) = X1(T (11X�u)) = X1(T (
�(u))) = X1(
�(Tu)) = X�(Tu); a.e. in �; a.e. in x:

Let us show the superposition principle ( 7.6). It follows immediately from (7.7) and Lemma 4.6, applied to

Y� = T(X�u) and v = Tu. We now prove the last statement. We take for u a constant function, say, equal

to 0. Then X�u = ; for � > 0. By the relation (7.7) just proved, we deduce that X�(Tu) = T(X�u) = T(;)
almost everywhere and for almost every � > 0. Thus the equality holds for many �'s. On the other hand,

by contrast invariance, T commutes with the constant function 0. Thus Tu = 0 and therefore X�(Tu) = ;
for � > 0. We �nally obtain T(;) = ; almost everywhere. The other announced relation follows in the

same way. 2

Relation (7.6) means that we can compute all level sets of Tu separately, by applying T to each

characteristic function of the level set X�u. We then have the following \stack �lter" algorithm:

u

X�u ! T(X�u)
% ::: &
& %

X�u ! T(X�u)
Tu(x) = supf�;x 2 T(X�u)g:

As developped in Chapter 24, the stack �lter method will be used to maintain a very accurate contrast

invariance in numerical schemes for several contrast invariant P.D.E.'s.

7.3 From set operators to contrast invariant function operators.

Can we extend a set monotone operator into a contrast invariant and monotone operator de�ned on an

adequate set of functions ? We start from a set operator T, de�ned on a subset T of P(IRN ) and with

values in T . We assume that T is a monotone operator, that is, X � Y ) T(X) � T(Y ). We de�ne F
as the set of all real functions de�ned on IRN whose level sets X�u belong to T . As a consequence, F
contains the characteristic functions of elements of T .

A natural de�nition for the function operator T associated with T is given by the threshold superposition

principle,

Tu(x) = supf�;x 2 T(X�u)g (7.9)

We have now to check whether T is contrast invariant.

Proposition 7.9 Let T, T ! T be a monotone operator satisfying

T (;) = ;; T(IRN ) = IRN

Then the operator T de�ned on F by superposition principle,

Tu(x) = supf�;x 2 T(X�u)g (7.10)
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satis�es, for almost every � 2 IR,

X�(Tu) = T(X�(u)) almost everywhere in x (7.11)

and for any nondecreasing continuous contrast change g,

g(Tu) = T (g(u)): (7.12)

Proof By Corollary 4.5, we have for almost every �

X�(Tu) = T(X�u) almost everywhere (7.13)

that is for all � in a subset � of IR such that meas(IR n �) = 0. We notice that u � v if and only if

X�u � X�v for all � in a dense countable subset of IR. We deduce immediately that T is monotone, ie

u � v ) Tu � Tv.

Let us now show that T commutes with contrast changes. Assume �rst that g is strictly increasing

and set g(+1) = lims!+1 g(s) and g(�1) = lims!�1 g(s):

For � > g(+1); we have X�g(u) = ; and therefore T(X�g(u)) = ;:
For � < g(�1), we have X�g(u) = IRN and therefore T(X�g(u)) = IRN :

As a consequence, using 7.10 we can restrict the range of � in the de�nition of T (g(u(x))) :

T (g(u(x))) = supf�; g(�1) � � � g(+1); x 2 T(X�g(u))g

= supfg(�); x 2 T(Xg(�)g(u))g
= supfg(�); x 2 T(X�u)g = g(Tu(x)):

Let us now check that T commutes with general nondecreasing contrast changes g. We can �nd strictly

increasing continuous functions gn and hn such that gn(s)! g(s), hn(s)! g(s) for all s and gn � g � hn.

Thus, by using the just proven commutation of T with increasing contrast changes, we have

T (g(u)) � T (gn(u)) = gn(Tu)! g(Tu) and

T (g(u)) � T (hn(u)) = hn(Tu)! g(Tu);

which yields T (g(u)) = g(Tu): 2

Exercise 7.4 Let g be a continuous nondecreasing function. Construct increasing continuous functions

gn and hn such that gn(s)! g(s), hn(s)! g(s) for all s and gn � g � hn.

Exercise 7.5 We explain the necessity of the assumptions T(;) = ; in Proposition 7.9, T(IRN ) = IRN in

order to get a contrast invariant operator T from T.

1) Set T(X) = X0 for all X 2 T , where X0 6= ; is a �xed set. Check that Tu(x) = +1 if x 2 X0,

Tu(x) = �1 otherwise. Let now g be a continous nondecreasing bounded function. Show that T (g(u)) 6=
g(Tu).
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2) Let ; 6= X1 � X0 6= IRN and set T(IRN) = X0, T(X) = X1 if X 6= IRN , T(;) = ;. Show that

Tu(x) = �1 on Xc
0 and deduce again that T (g(u)) 6= g(Tu) if g is bounded.

3) Let T be a monotone set operator, without further assumption. Show that its function operator T ,

associated by the threshold superposition principle, commutes with any continuous nondecreasing function

g such that g(+1) = +1 and g(�1) = �1.

We shall now examine stronger conditions on T, which ensure commutation of T with all thresholds X�
(and not only with almost all of them).

De�nition 7.10 We say that a set operator T is upper semicontinuous if for every nonincreasing sequence

of sets Xn 2 T , we have

T(
\
n

Xn) =
\
n

T(Xn): (7.14)

Exercise 7.6 Show that a monotone operator T is upper semicontinuous if and only if it satis�es for every

nonincreasing family of sets (X�)�2IR, T(
T
�X�) =

T
� T(X�):

Theorem 7.11 Let T: T ! T be a monotone upper semicontinuous set operator satisfying T(;) = ; and

T(IRN ) = IRN : Then the function operator de�ned by

Tu(x) = supf�;x 2 T(X�u)g: (7.15)

is contrast invariant and satis�es, for every �;

X�(Tu) = T(X�(u)): (7.16)

Proof of Theorem 7.11 Let us check that (7.16) holds. By Proposition 4.1, this is true if and only if the

family of sets T(X�u) satis�es (4.1.i) and (4.1.ii). Now, (4.1.i) is true by monotonicity of T and the inclusion
relations between the X�u. Relation (4.1.ii) follows immediately from (7.14) and X�u =

T
�<� X�u, which

is (4.1.ii) applied to u. The monotonicity of T is obvious : one has

u � v , (8�; X�u � X�v):

Since T is set monotone, we deduce that

8�; T(X�u) � T(X�v)

and therefore 8�;X�(Tu) � X�(Tv), that is Tu � Tv: In order to show that T is contrast invariant, i.e.

commutes with all continuous nondecreasing functions, we can now directly apply Proposition 7.9. 2

Remark 7.12 The upper semicontinuity is necessary to ensure that a monotone set operator de�nes a

function operator such that the commutation with thresholds X�(Tu) = T(X�(u)) holds for every �. Let us
choose for example the following set operator T,

T(X) = X if meas(X) > a and T(X) = ; otherwise :
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Let u be the function from IR into IR de�ned by u(x) = �jxj. Then
T (u)(x) = supf�; x 2 T(X�u)g = min(�jxj;�a=2)

Therefore

X�a=2T (u) = [�a=2; a=2]:
Now, X�a=2u = [�a=2; a=2] ; its measure is a. Thus

T (X�a=2u) = ; 6= X�a=2T (u);
which means that T is not contrast invariant.

Figure 7.2: Extrema Killer : maxima killer followed by minima killer. The extrema killer removes all connected components
of upper and lower level sets with area less than some threshold, here equal to 20 pixels.

7.4 Application : The \Extrema Killer".

We study in this section operators which remove peaks in an image. Such peaks are often created by

impulse noise. The extrema killer operators show outstanding denoising properties for such kinds of noise.

We shall use the method developped in Section 7.3 which permits to de�ne these operators on sets and

then extend them to images.
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Figure 7.3: Extrema Killer : maxima killer followed by minima killer. Above, right: extrema killer of the above, left image,
20 pixels area. Below : level lines (for levels multiple of 4) of the image before and after the application of the extrema
killer. Notice the strong simpli�cation of the topographic map : most digital images have many small oscillations generating
extrema.

De�nition 7.13 Let X � IRN be a closed set. We say that X is connected if it is not the union of two

disjoint nonempty open sets. We call connected component of x in X, cc(x; X), the maximal connected

subset of X containing x. It is a closed set.

Fix a scale parameter a > 0. We de�ne a set denoising operator on T , the set of all compact sets of IRN

in the following way: Let X 2 T be a compact set. Then X is the union of all of its connected components,

X =
S
iXi and this decomposition is uniquely de�ned. We then remove from X all connected components

of measure strictly less than a : We therefore de�ne a \small component killer"

Ta(X) =
[

meas(Xi)�a
Xi: (7.17)

Lemma 7.14 Let Yn be a nonincreasing sequence of subsets of IRN and set Y =
T
n Yn. Then, if Yn are

compact, so is Y . If Yn are compact and connected, so is Y .

Proof These are classical topological arguments and we just check the proof of the second statement. If

Y were not connected, then Y = Z1 [ Z2 where Z1 and Z2 are compact and disjoint. Thus, d(Z1; Z2) =

infz12Z1;z22Z2 jjz1 � z2jj > 0. We then remark that if Yn & Y and Yn are compact, then the Hausdor�

semi-distance of Yn to Y tends to 0: Æ(Yn; Y )! 0. (We set Æ(Y; Z) = supy2Y infz2z jjy� zjj:) We choose

n0 such that 8n > n0, � = Æ(Y; Y c
n ) <

1
2d(Z1; Z2). It is then easily checked that Yn is split into two disjoint

open nonempty sets:

Yn = (Yn \ Z�
1) [ (Yn \ Z�

2)

where we note Z� = fz; d(z; Z) < �g. 2
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Lemma 7.15 The small component killer Ta is monotone and upper semicontinuous in the sense of Def-

inition 7.10 on the set T of all compact subsets of IRN .

Proof If X � Y , then for every x, cc(x; X) � cc(x; Y ). Thus, if we assume that meas(cc(x; X)) � a,

then we also have meas(cc(x; Y )) � a. We conclude that Ta(X) � Ta(Y ), that is, Ta is monotone.

Let (Xn)n2IN be a nonincreasing sequence of compact sets and let X =
T
nXn. We wish to show that

Ta(X) =
T
n Ta(Xn). By Lemma 7.14, \nXn is compact. Let now Y = cc(x; X) be a connected compo-

nent of X and denote by Yn = cc(x; Xn). Since X � Xn, we have Y � Yn for all n. Let us show that

Y =
T
n Yn. Obviously, Y � Tn Yn and

T
n Yn �

T
nXn = X . We therefore just have to check that

T
n Yn

is connected, which follows from Lemma 7.14. 2

Theorem and De�nition 7.16 One can associate with Ta a \maxima killer", de�ned on all continuous

periodic functions u 2 LC. This operator Ta is de�ned by the threshold decomposition principle,

Tau(x) = supf�;x 2 Ta(X�u)g;

we also have

X (Tau) = Ta(Xu) (7.18)

and, as a consequence, no connected maximum set of Tau has area less than a. In addition, Tau is

continuous.

Proof By Theorem 7.11 and Lemma 7.15, we deduce immediately the announced commutation (7.18).

Let us check that Tau is continuous. Since u is continuous and periodic, it is uniformly continuous. We

can use the result of the (easy) exercise 7.1, whose proof mimics the proof of Lemma 7.4. Since Ta is

monotone and translation invariant, Tau also is continuous. (And, by Lemma 7.4, if u is Lipschitz, so is

Tau, with the same Lipschitz constant.) 2

We have de�ned a \maxima killer" and we could de�ne in the same way a \minima killer". A faster

way to de�ne it is to simply set

T�a u = �Ta(�u)

A good denoiser can be obtained by alternating Ta and T
�
a . This alternance is licit since each one of both

extrema killers maintains the continuity of the image. Note, however, that Ta and T�a do not necessarily

commute as is shown by the next exercise.

Exercise 7.7 Take N = 1, u(x) = sin(x): Let a 2 IR+. Compute Tau and T�a u and show that they

commute on u if a � � and do not commute if a > �. Following the same kind of idea, construct an

example in dimension 2 of function u(x; y) such that TaT
�
a u 6= T�a Tau:

Remark 7.17 The operators Ta do not constitute a scale-space in the sense which we will consider in

Chapter 20. In particular, they do not satisfy a local comparison principle. See Exercise 20.1.
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Image operators commuting with thresholds have been very popular because of their simplicity of

implementation on VLSI, which led to very simple patents in image or signal processing as late as 1987

[111]. These operators have received four di�erent but equivalent names : "stack �lters" [433, 434, 196, 70],

"threshold decomposition" [204], "rank �lters" [437, 99, 241] and "order �lters" [399]. The most famous

such operators are the sup, inf and median operators. The implementation of the last one has received a

lot of attention because of his remarkable denoising properties [151, 444, 324].

The papers by Maragos and Shafer [284, 283] and Maragos and Zi� [285]introduce the functional

notation in the debate and establish the link between stack �lters and the Matheron formalism in "
at"

mathematical morphology. Actually, Maragos and his collaborators prove the equivalence between stack

�lters and operators commuting with thresholds. The full equivalence between contrast invariant operators

and stack �lters, proved in this chapter, does not seem instead to be classical and we cannot give any

other reference than the present book. A related classi�cation of rank �lters with beautiful and useful

generalizations to the so-called "neighborhood �lters" can be found in [241].

The extrema killer is probably the most eÆcient denoising �lter for images degraded by impulse noise

(small spots). In spite of its simplicity, it is a recent �lter, probably because it involved nontrivial com-

putations : the search of connected components of upper and lower level sets. A �rst attempt seems to

be [102]. The �lter in its generality was de�ned in Vicent [415]. Its de�nition �ts in the general theory of

connected �lters developped by Salembier and Serra [364]. Simon Masnou [289] de�ned a variant which

is invariant by contrast as well as by reverse contrast changes (the so-called "grain �lter"). Monasse and

Guichard developped a fast implementation of this �lter based on the so called "fast level set transform"

[301].
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Chapter 8

Monotone contrast invariant
operators as sup-inf operators.

In this chapter, we mainly state two theorems which give an analytic form to set monotone operators and

to contrast invariant and monotone operators. Before starting with the statements, let us introduce a

further useful invariance property. In practice, image analysis operators are translation invariant.

De�nition 8.1 We denote by �xX = x+X the result of an x-translation. We also consider translations

of a function u, which we de�ne by (�x)u(y) = u(y� x).

Exercise 8.1 Show that the de�nitions of translations of sets and functions made in De�nition 8.1 are

made in such a way that

�x(X�u) = X�(�xu):

De�nition 8.2 We say that a set operator T is translation invariant if

�x(T(X)) = T(�xX):

We say that a function operator T is translation invariant if

�x(T (u)) = T (�xu):

8.1 Monotone set operators.

Theorem 8.3 (Matheron) Let T be a translation invariant monotone operator acting on a set of subsets

of IRN . Then, there exists a family of sets IB � P(IRN ), which can be de�ned as IB = fX; 0 2 T(X)g,
such that

T(X) =
[
B2IB

\
y2B

(X � y) = fx; 9B 2 IB; x+B � Xg: (8.1)

Conversely, (8.1) de�nes a monotone, translation invariant operator on P(IRN ).
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Proof Let us �rst explain Formula (8.1). In fact,

T(X) =
[
B2IB

\
y2B

(X � y) = fx; 9B 2 IB; 8y 2 B;x 2 X � yg (8.2)

This last set is obviously equal to fx; 9B 2 IB; x+B � Xg:
Using the monotonicity and the translation invariance, we have the following chain of equivalent prop-

erties :

x 2 T(X), 0 2 T(X)� x, 0 2 T(X � x), X � x 2 IB , 9B 2 IB; X = x+B ,

9B 2 IB; x+B � X , 9B 2 IB; 8y 2 B;x 2 X � y:

The �fth equivalence comes from the obvious remark that if B � X and B 2 IB then X 2 IB. Thus

T(X) =
S
B2IB

T
y2B(X � y) and Relation (8.1) holds. Conversely, if an operator is de�ned by (8.1), it is

obviously monotone and translation invariant. 2

Exercise 8.2 Show that the set IB is not uniquely associated with T. Among those IB which are associated

with T, prove that there exists at least one with the following properties :

(i) if B;B0 2 IB, then B does not contain B0 and B0 does not contain B.

(ii) IB is minimal for inclusion, i.e. does not contain another smaller IB0 also associated with T.

8.2 Sup-inf operators

Theorem 8.4 Let F a set of functions, T the set of all level sets of functions of F . Assume that F
is stable under contrast changes and contains the characteristic functions 11X of elements of T . Let T

be the set operator associated with T , T(X) = X1(T (11X)). De�ne for any x 2 IRN the family of sets

IBx = fX;x 2 T(X)g. Then for every u in F ,

Tu(x) = sup
B2IBx

inf
y2B

u(y); a.e. in x (8.3)

If, in addition, T is translation invariant, then setting IB = IB0 = fX; 0 2 T(X)g we have

Tu(x) = sup
B2x+IB

inf
y2B

u(y); a.e. in x (8.4)

Conversely, if an operator is de�ned by (8.4) or (8.3), then it is monotone and contrast invariant, and is

translation invariant in the �rst case.

Remark 8.5 The set IB is called in Mathematical Morphology set of structuring elements. It corresponds

to an \impulse response" of the nonlinear operator T .

Proof of Theorem 8.4. Set ~Tu(x) = supB2IBx infy2B u(y), where IBx = fX;x 2 T(X)g. Let us show
that ~Tu(x) = Tu(x) almost everywhere. We argue as in Lemma 4.6 : We choose a countable dense set

� � IR such that for every � 2 �, X�Tu(x) = T(X�u)(x) for x 2 IRN nN�, where meas(N�) = 0. We set
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N =
S
�N� and we still have meas(N) = 0. In order to prove that Tu = ~Tu almost everywhere, we show

that for all � 2 � and all x 2 IRN nN , we have

~Tu(x) � �, Tu(x) � �:

and we apply Lemma 4.6. In what follows, � and � denote elements of �: We have

Tu(x) � �, 8� < �; Tu(x) � �, 8� < �; x 2 X�(Tu), 8� < �; x 2 T(X�u)

, 8� < �; X�u 2 IBx , 8� < �; 9B(= X�u) 2 IBx; inf
y2B

u(y) � �

, sup
B2IBx

inf
y2B

u(y) � �, ~Tu(x) � �:

The �fth equivalence is true because if B � X and B 2 IBx, then X 2 IBx. Thus, if for some B 2
IBx; infy2B u(y) � �, then the set X�u contains B and therefore also belongs to IBx. We conclude

that ~Tu(x) = Tu(x) almost everywhere. If, in addition, T is translation invariant, we obviously have

IBx = x + IB0. By the preceding result, we obtain Tu(x) = supB2x+IB infy2B u(y) almost everywhere,

which is (8.4).

Let us now show the converse statement of the theorem. If T is a \sup-inf" operator, the monotonicity

of T is obvious and the commutation of T with continuous nondecreasing functions follows from the fact

that if g is continuous nondecreasing and I a subset of IR, then g(inf I) = inf g(I) and sup g(I) = g(sup I).

The translation invariance is easily checked. 2

Corollary 8.6 Let T and T be translation invariant function and set operators such that

X�T (u) = T(X�u); (8.5)

the relation being true for every � and x. A simpli�ed version of the proof of Theorem 8.4 shows that for

all u 2 F and x, Tu(x) = supB2x+IB infy2B u(y); the relation being true everywhere.

It will be useful to state a converse statement to Theorem 8.4. It states that given a sup�inf operator,
we can keep the same set of structuring elements for its associated set operator T.

Proposition 8.7 Let F be a set of functions containing the characteristic functions of sets belonging to

T and T a function operator having a sup-inf form (8.3), namely

Tu(x) = sup
B2x+IB

inf
y2B

u(y):

Then its associated set operator T can be de�ned by (8.1), that is

T(X) =
[
B2IB

\
y2B

(X � y) = fx; 9B 2 IB; x+B � Xg:
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Proof Notice that T , satisfying (8.4), is extended to all level sets of functions of F . It is easy to deduce
(8.1) from (8.4) : We apply this relation to the characteristic function of X , 11X . Then,

infy2x+B 11X = 0 if x+B 6� X
= 1 if x+B � X:

Thus supB2IB infy2x+B 11X(y) = 1 if and only if there is B in IB such that x+B � X and (8.1) follows.

2

Exercise 8.3 Apply Corollary 8.6 to the extrema killer Ta and deduce its canonically associated structuring

set IB. Show that another set of structuring elements for Ta can be

IB1 = fB � IRN ; compact, connected, meas(B) > ag:

Indication : show that if IB is a set of structuring elements de�ning an operator T and if IB1 is another

structuring set satisfying

� IB1 � IB and

� for every B 2 IB, there is B1 2 IB1 such that B1 � B, then IB1 de�nes the same operator T .

Exercise 8.4 It is not true that the sup-inf forms (8.3) or (8.4) de�ne in general an operator commuting

with all thresholds X�. This needs some restriction, either on IB, or on the domain of de�nition of T .

As an easy counterexample, let us set IB = ffxg;x 2 D(0; 1)g where D(0; 1) is the ball with center 0 and

radius 1 and therefore Tu(x) = supy2x+D u(y). We consider a dense sequence of IRN , (qn)n2IN and we

set u(x) = 1� 1=n if x = qn for some n, u(x) = 0 otherwise. Show that T (X1u) = 0= 6= X1Tu = IRN . We

shall see in Exercise 8.5 that T , which we de�ne later on as a \dilation", yields an operator commuting

with all thresholds when it is restricted to u.s.c. functions.

Exercise 8.5 .

A �rst classical example for F is the set of all upper semi-continuous (u.s.c.) functions, that is,

functions which satisfy at every x,

u(x) � lim sup
y!x

u(y):

Check that T is the set of all closed subsets of IRN . A classical operator on this set is the so-called dilation,

Tru(x) = supD(x;r) u(y). Show that it corresponds to the set operator TX = fx; d(x; X) � rg = Xr.

The Matheron-Maragos theorem 8.4 and its \everywhere" version (Corollary 8.6) yield a sup inf for-

mulation to contrast invariant operators. It is easy to deduce that those operators also have an inf sup

form. (See also Exercise 8.6)

Proposition 8.8 Let T be a sup inf operator Tu(x) = supB2IB infy2x+B u(y). Then it also has an inf sup

form for a new structuring set IB0

Tu(x) = inf
B2IB0

sup
y2x+B

u(y): (8.6)
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EXTENSION

Proof This follows from elementary Boolean algebra. Let us call \ selection function" any map � : IB !S
B2IB B such that 8B; �(B) 2 B. Let us call SIB the set of all selection functions. We then have

sup
B2IB

inf
y2B

u(y) = inf
�2SIB

sup
B2IB

u(�(B))

= inf
�2SIB

sup
y2�(IB)

u(y)

Let us note D= f�(IB); � 2 SIBg. We obtain

sup
B2IB

inf
y2B

u(y) = inf
�(IB)2D

sup
y2�(IB)

u(y)

which indeed is an inf-sup operator. Of course the structuring set D thus obtained for the inf sup form is

not the same as in the sup inf form ! 2

Exercise 8.6 The result of Proposition 8.8 can be deduced in a slightly weaker form from Theorem 8.4.

By applying this theorem to �T (�u), show that if

8.3 From contrast invariant function operators to set operators :
the Evans-Spruck extension

In this section, we consider monotone contrast invariant function operators T which are only de�ned on

a set of continuous functions. Thus, we cannot associate with them a set operator by the formerly used

formula, T(X) = T (X1(11X)). Indeed, T is no longer de�ned on characteristic functions of sets ! We shall

see, however, that we can associate with T a set operator T in such a way that X�(Tu) = T(X�u) for all �:
The method, introduced by Osher and Sethian, has shown to be very powerful in the numerical analysis

of front propagation. We shall need a slightly restrictive assumption, that all level sets of the processed

functions u are compact. In image analysis, images are anyway de�ned in a compact set C (in general a

square, a rectangle, a cube, etc.) so that this compactness assumption is no real restriction. Thus, in the

following, we consider a space of bounded continuous functions F de�ned on a compact set C. The level

sets of functions in F are compact and we can always assume that functions in F are de�ned in all of

IRN : we just make a continuous extension of u preserving compactness of level sets. A standard way to

do that is the periodization proposed in Section 2.2, in which case the level sets become periodic sets and

remain compact provided we endow them with the natural periodic topology.

Let us now explain the Osher-Sethian method. Let X be a compact subset of IRN and let us associate

with X a continuous bounded function u(x) such that X be its zero level set :

X = fx; u(x) � 0g = X0u (8.7)

Using a distance function to X , that is d(x; X) = inffjx � yj;y 2 Xg, we can easily build many such

functions, as for example u(x) = �min(1; d(x; X)). We can de�ne T(X), by using (8.7), in the following

way.

Lemma 8.9 and de�nition (Evans-Spruck). Let F � C0(IRN ) be a set of real continuous functions.

Assume that all level sets of all functions of F are compact. Let T be a monotone and contrast invariant
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operator de�ned on F . Let X be any compact set of IRN and u 2 F any continuous function having X as

zero level set : X = fx; u(x) � 0g = X0u. De�ne

T(X) = fx; Tu(x) � 0g = X0(Tu): (8.8)

Then the set T(X) does not depend upon the particular choice of u.

Corollary 8.10 Let F � C0(IRN ) be a set of real continuous functions. Assume that the level sets of

functions of F are compact. Let T be a monotone and contrast invariant operator de�ned on F , then the

set operator T de�ned by (8.8) satis�es

T(X�u) = X�(Tu)

Proof We can rewrite Relation (8.8) as

T(X0u) = X0(Tu)

and, replacing u by u� � and using that T (u� �) = Tu� �, we in fact have

T(X�u) = X�(Tu) (8.9)

for every continuous bounded function with compact level sets. 2

Remark 8.11 If u � 0, then Tu � 0. Indeed, by commutation with the function g(x) = 0;8x, we have

T (0) = 0 and by monotonicity, we obtain Tu � 0.

Remark 8.12 Without the compactness assumption on X, the result of Lemma 8.9 can be false. Take

for instance X = ;. De�ne F = C0(IRN ) and Tu(x) = supIRN u(x): Take e.g. v(x) = �1. Then X0v = ;
and X0(Tv) = ;. On the other side, choosing u(x) = � 1

1+jxj we have Tu(x) = 0, so that X0u = ; and

X0(Tu) = IRN . Thus Lemma 8.9 does not work.

Lemma 8.9 is easily deduced from the following comparison result.

Lemma 8.13 Let X be a compact set and u and ~u two non-positive bounded continuous functions satisfying

X = fx; u(x) � 0g = fx; ~u(x) � 0g: Assume that the level sets of u and ~u are compact. Then there exists

a continuous nondecreasing function  : IR� ! IR� such that  (0) = 0 and u �  (~u).

Proof of Lemma 8.9

Our aim is to prove, for all continuous functions with compact level sets u and ~u,

X0u = X0~u) X0(Tu) = X0(T ~u): (8.10)

Consider the contrast change g(s) = max(�1;min(0; u)): Obviously, for every function u, X0u = X0g(u)

and therefore X0Tu = X0(g(Tu)) = X0T (g(u)): Thus, we may as well prove the implication (8.10) for g(u)

and g(~u). In other terms, we can assume without loss of generality that u and ~u are nonnegative and

bounded. By Lemma 8.13, there exists a continuous nondecreasing function  such that  (0) = 0 and

 (~u) � u. Since T is monotone and contrast invariant, we deduce that Tu � T ( (~u)) =  (T ~u). Using

 (0) = 0, we get T ~u(x) = 0 ) Tu(x) = 0. The converse implication is also true by exchanging the roles

of u and ~u and we conclude that fx; Tu(x) = 0g = fx; T ~u(x) = 0g. 2
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Proof of Lemma 8.13 Since the level sets fx; ~u(x) � rg; r � 0 are compact, it is tempting to simply

set
~ (r) = min

~u(x)�r
u(x):

By the de�nition of ~ ,

u(x) � min
~u(y)�~u(x)

u(y) = ~ (~u(x)):

Notice that ~ (0) = 0. Let us show that ~ is continuous at 0. Let rk ! 0 be an increasing sequence and

xk such that ~u(xk) � rk and ~ (rk) = u(xk). Then xk belongs to fx; ~u(x) � rlg for every k � l. By

compactness of these level sets, a subsequence of xk converges to some x such that ~u(x) � rl for every l.

Thus ~u(x) = 0, x 2 X and therefore u(x) = 0. We conclude that ~ (rk) = u(xk)! u(x) = 0, so that  is

continuous at 0. Thus ~ matches all requirements of Lemma 8.13 except one : it is not always continuous

at all points ! This is easily �xed by choosing a continuous nondecreasing function  such that ~ �  and

 (0) = 0. As an example,  (r) = 1
jrj
R r
2r

~ (s)ds, for r < 0 answers the question, so that we �nally have

u(x) � ~ (~u(x)) �  (~u(x)): 2

Exercise 8.7 Show that the function  de�ned in the proof of Lemma 8.13 indeed is continuous. Find

examples of functions u and ~u such that ~ is not continuous (such examples can be found in dimension

N = 1.)

Corollary 8.14 (Evans-Spruck extension from periodic functions to periodic sets). Let F � LC \
C0(IRN ) be a set of real continuous (2; :::; 2)-periodic functions, i.e. functions satisfying u(x + z) = u(x)

whenever z 2 2IZN . Let T be a monotone and contrast invariant operator de�ned on F . Then there exists

a unique set operator T de�ned on (2,...,2) periodic sets by

T(X�u) = X�(Tu) (8.11)

Proof We proceed exactly as the proof of Lemma 8.9. Indeed, the level sets of the considered functions

being periodic, we can de�ne their points modulo IZN , which ensures compactness of sequences of points

in a level set. Thus, Corollary 8.10 also holds and T and T are associated by Relation (8.11). 2

8.4 The extension to u.s.c. functions

Digital images should in principle be continuous, by Shannon's digitization theory. Now, Shannon's theory

does not take into account the quantization of grey levels, which gives us only a �nite set of level sets of

the image (about 255 in all day technology). If we process each level separately, as is askable if we do

contrast invariant processing, then we consider de facto the image as discontinuous along its quantized

level lines. Assume that we have de�ned a contrast invariant monotone operator on continuous functions.

We have just proved that such an operator has an extension to compact sets. It is therefore natural to

extend, by the threshold superposition principle, this operator to upper semicontinuous functions. This

extension will be in practice necessary for digital image processing and we shall use it to extend (e.g.) the

curvature motion to u.s.c. functions.
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De�nition 8.15 We say that a function u : IRN ! IR is upper semicontinuous (u.s.c.) if one of the

following equivalent items is true.

(i) the upper level sets X+
� u = fx; u(x) � �g are all closed.

(ii) at every x 2 IRN , u(x) � lim supy!x u(y).

We say that u is lower semicontinuous (l.s.c.) if �u is u.s.c. A real function u is continuous if and only

if it is both lower and upper semicontinuous.

Exercise 8.8 Show that the equivalence of (i) and (ii) in De�nition 8.15 is indeed true. Deduce that every

u.s.c. function attains its maxima and every l.s.c. function attains its minima.

Theorem 8.16 Let F � C0(IRN ) be a set of continuous functions whose level sets are compact (or

(2; :::; 2)-periodic) and T a contrast invariant monotone operator on F . Let T be the set operator associated

with T by the Evans-Spruck method. Then T can be extended into a monotone contrast invariant operator,

de�ned for all upper semi-continuous functions whose level sets are compact (periodic) and commuting with

almost all thresholds :

X�(Tu) = T(X�u); a.e. in �; a.e. in x:

In the same way, T can be extended into a contrast invariant operator T�, de�ned for all lower semi-

continuous functions whose lower level sets are compact (or periodic) and commuting with almost all lower

thresholds X�� :

X�� (T�u) = T(X�� u) a.e. in �; a.e. in x:

Remark 8.17 The extensions T and T� can be quite di�erent, as shown by the checkerboard experiment

(Figure 24.9).

Figure 8.1: The chessboard dilemna. Left: chessboard image. Next: result with the �nite di�erence scheme (FDS, Chapter
24) of the curvature motion, applied up to a �xed scale. The creation of a new gray level proves that the scheme is not
fully contrast invariant. Indeed, by Proposition 7.4, a contrast invariant operator does not create new levels. The new
observed gray level corresponds to an average of the existing ones, black and white. The next two images are obtained by the
Evans-Spruck extension of the curvature motion, �rst under the assumption that the image is u.s.c. and second under the
l.s.c. assumption. Thus, the schemes are in both cases fully contrast invariant and are extensions of the curvature motion as
speci�ed in Theorem 8.16.
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Proof of Theorem 8.16 By Corollary 8.10, we can de�ne T on compact sets X in such a way that for

any u 2 F and � 2 IR,
T(X�u) = X�(T (u)) (8.12)

For any u.s.c function (with compact level sets) u we de�ne T 0 by the threshold superposition principle,

T 0(u)(x) = supf�;x 2 T(X�u)g: (8.13)

Let us now prove that T 0(u) = T (u) for any continuous function with compact level sets. This immediately

follows from (8.12) and the de�nition of T 0:

T 0(u)(x) = supf�;x 2 T(X�u)g = supf�;x 2 X�T (u)g = T (u):

In addition, it follows immediately from (8.13) and Proposition 7.9 that T 0 is monotone and contrast

invariant on the u.s.c functions and commutes with almost all thresholds, X�(Tu) = T(X�u):

2

Exercise 8.9 By Theorem 7.11, T 0 is contrast invariant on the u.s.c. functions if and only if T is upper

semicontinuous. It is easily seen (see Exercise 8.11) that this is true if and only if T satis�es, for every

nonincreasing family of compact sets X�, the implication

(X� =
\
�<�

X�)) (T(X�) =
\
�<�

T(X�)):

Let us set u(x) = supf�;x 2 X�g and assume that u is continuous. Then we obtain

T(X�) = T(X�u) = X�T (u) =
\
�<�

X�T (u) =
\
�<�

T(X�u) =
\
�<�

T(X�):

Now, u may well be discontinuous. In order to extend the preceding argument, we set, for some �xed �

and � � �,

Y� = fx; dist(x; X�) � �� �g:
Consider the function v de�ned by v(x) = supf�;x 2 Y�g: Let us show that v is a Lipschitz function

and therefore continuous. For any x0 and y0 such that v(y0) > v(x0), we have y0 2 Yu(y0)
and x0 62

Y(v(y0)+v(x0))=2. Thus, by the de�nition of Y� again,

x0 62 fx; 9y 2 B(x; (v(y0)� v(x0))=2); u(y) � (v(y0) + v(x0))=2g

This implies that

dist(x0; Yu(y0)
) � (v(y0)� v(x0))=2

and therefore

jx0 � y0j �
1

2
jv(y0)� v(x0)j:

Thus v is continuous and we obtain

T(Y�) =
\
�<�

T(Y�):
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Now, 8� � �, X� � Y�, and by the monotonicity of T on compact sets, T(X�) � T(Y�). We then have

\
�<�

T(X�) �
\
�<�

T(Y�) = T(Y�) = T(X�):

Conversely, T(X�) �
T
�<� T(X�) by monotonicity of T. We conclude that T 0 is contrast invariant on the

u.s.c function with compact level sets. T 0 also is monotone by the monotonicity of T.

Remark 8.18 IB may change with the extension ! Let us start with a set of structuring elements IB

and its associated operator

Tu(x) = inf
B2IB

sup
y2B

u(x+ y):

Then T is contrast invariant and can receive the contrast invariant extension of Theorem 8.16. Now,

contrast invariant operators have an inf sup form, so that we can assert the existence of a set IB0 such that

Tu(x) = inf
B2IB0

sup
y2B

u(x+ y):

It is easily seen that IB0 must be in some cases di�erent from IB. As an example, if Tu(x) = supy2B(0;1) u(x+

y) is a dilation by an open ball B(0; 1), then the extension T 0 to u.s.c. functions is associated with (e.g.)

IB0 = fB(0; 1)g, the closure of the ball. The original IB cannot work, since T 0 must transform a closed

level set into a closed level set, while the dilation by an open ball transforms any set into an open set.

8.5 The who's who of monotone and contrast invariant opera-
tors.

Let us summarize what we have proved in the preceding section.

First case : F is a set of functions whose level sets are T and F contains all characteristic

functions of elements of T .

Consider monotone set operators T (with T (;) = ;, T (IRN) = IRN ) and monotone contrast invariant

function operators T . Then, we can either de�ne T from T, by the threshold superposition principle,

Tu(x) = supf�; x 2 T(X�u)g (8.14)

or de�ne T from T , provided the domain F of T contains the characteristic functions, by thresholding :

T(X) = X1(T (11X)): (8.15)

The relation between T and T is also characterized by the commutation with thresholds,

T(X�u) = X�(Tu): (8.16)

This relation being true almost everywhere in � and x. Every contrast invariant operator T has a sup inf

formulation,

Tu(x) = sup
B2IBx

inf
y2B

u(y): (8.17)
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where IB is de�ned from T by the \impulse response" formula,

IB = fB; 0 2 T (B)g: (8.18)

For the same IB, we also have, by Proposition 8.7, the analytic form (8.1), that is

T(X) =
[
B2IB

\
y2B

(X � y):

We can summarize the full equivalences proved in one sentence.

It is equivalent to de�ne : a set monotone operator T with T(;) = ;, a contrast invariant operator T

or an inf sup operator. Each one of the forms of the operator is deduced from each other one with the help

of Formulas (8.14-8.18) above. This equivalence between the three modes of de�nition is summarized in

the �rst column of Figure 8.2. It is sometimes easier and more intuitive to de�ne an image operator as a

set operator: we have seen or shall see several examples : the \extrema killer", the median �lter and the

classical mathematical morphology operators (erosions, dilations, etc.).

The case of contrast invariant operators de�ned on a set of continous functions.

Now, we shall also have cases, namely the case of solutions of partial di�erential equations, where

the operator is much easier to de�ne as an operator on a set of continuous functions. This will be the

case for the solutions of the curvature motion and the aÆne morphological scale space. In such cases,

the Evans-Spruck method applies and we directly de�ne an extension of the operator T as a compact set

operator by Relation (8.16), the relation being then true everywhere (for all � and all x). Then, the opera-

tor T receives an extension ~T to upper semicontinuous functions, which still satis�es (8.16). In one sentence,

Given a contrast invariant operator T de�ned on continuous functions, we can de�ne an extension ~T

which satis�es all of equivalence properties of the �rst column of Figure 8.2. This situation is again

summarized in the second and third column of the mentionned �gure : from the contrast invariance on

continuous functions, we go up to de�ne a set operator on compact sets by thresholding and then a function

operator on u.s.c. functions.

Exercise 8.10 Let T and T be respectively a contrast invariant monotone operator and a set operator such

that for all �;

X�(Tu) = T(X�(u)):
Show that T is upper semicontinuous. Show that T commutes with all u.s.c. nondecreasing functions g,

i.e. T (g(u)) = g(Tu).

Exercise 8.11 Let T be set operator such that T(;) = ;, T(IRN ) = IRN . Show that T is upper semicontinu-

ous if and only if, for any family of sets (X�)�2IR such that X� =
T
�<�X�, one has T(X�) =

T
�<� T(X�):
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(1) T monotone, T(X) =
S

B2IB

T
y2B(X � y):

*
T(X�u) = X�(Tu) a.e. in � and x

+

X�
~Tu = T(X�u)

(2) T monotone contrast invariant (= for u u.c.s = (5) T de�ned on compact sets
~T = T for all u 2 C0

* *
IB = fB; 0 2 T(B)g T(X�u) = X�(Tu)

+ k
(3) Tu = supIBinfB(u) =) (4) T contrast invariant on C0

Figure 8.2: Relations between set and function operators. (All operators are monotone and translation invariant - See text
for exact assumptions).

(1) , (2): Propositions 7.8 and 7.9, (2) ) (3): Theorems 8.3 and 8.4, (3) ) (4): Theorem 8.4, (4) ) (5): Lemma
8.9, Corollary 8.10, (5)) (2): Theorem 8.16.

References.

The formalism presented in this chapter is due to Matheron [290] in the case of the set operators
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Chapter 9

Erosions and dilations

9.1 Erosions and dilations as multiscale contrast invariant oper-
ators

In this chapter, we study with some detail the simplest operators of mathematical morphology. We have

seen in the previous chapter that we can associate with every contrast invariant and monotone operator an

\inf-sup" or a \sup-inf" form. It is natural to study �rst the operators whose set of structuring elements,

IB, is a singleton. In that case, the operators, if they are translation invariant, are simply written as

Tu(x) = sup
y2B+x

u(y) or Tu(x) = inf
y2B+x

u(y):

In the �rst case, we call the operator a \dilation" and in the second one, an \erosion". These operators

can be de�ned on subsets of IRN as well. Since we do not wish to be dependent upon a particular choice

as for the size of B, we shall introduce a scale parameter t and consider the family of erosions or dilations

by tB.

De�nition 9.1 Let B be a subset of IRN . Let t � 0 be a scale parameter. We call dilation with structuring

element B and scale t of a subset X of IRN the set

DtX = X + tB = fx+ y;x 2 X; y 2 tBg =
[
y2tB

(X + y) (9.1)

We call erosion with structuring element B and scale t of a set X the set

EtX = fx;x+ tB � Xg =
\

y2�tB
(X + y): (9.2)

This de�nition is made in such a way that Et and Dt be somehow inverse of each other. This is the case

if, e.g., B = fx0g is reduced to a point. Then Dt is the translation by tx0 and Et by �tx0. When B is

an open ball centered at 0, we notice that the dilation of X at scale t is nothing but its t�neighborhood,
the set of points which lie at a distance less than t from X . When B is a symmetric set with respect to 0,

one also de�nes an operator called \opening at scale t", by composing Dt and Et and a \closing at scale

t" operator by EtDt. These names have the following origin. If B is (e.g.) an open ball centered at 0

with radius 1, then the opening at scale t of a set X is the union of all balls with radius t contained in
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X . Now, the classical, topological, opening of X is the union of all open balls contained in X . Thus, the

opening at scale t appears as a quanti�ed opening. Besides, the classical statement that \the closing of the

complementary is equal to the complementary of the opening" remains true, as shows the next exercise.

Exercise 9.1 1) Let B = B(0; 1) the unit open ball. Show that DtEt is the union of all open balls with

radius t contained in X.

2) We note Xc = IRN n X. Show that for any structuring element B, symmetric with respect to 0,

Dt(X
c) = (EtX)c:

Figure 9.1: Dilation of a set. A set X (in black), its dilation by a ball of radius 20, and the di�erence set.

Figure 9.2: Erosion of a set. A set X (in black), its erosion by a ball of radius 20, and the di�erence set.

De�nition 9.2 The dilation at scale t with structuring element B of a function u0 is de�ned by

Dtu0(x) = sup
y2tB

u0(x� y);

Similarly, the erosion at scale t with structuring element B of a function f is de�ned by

Etu0(x) = inf
y2�tB

u0(x� y)

Exercise 9.2 Show that if B is symmetric with respect to 0, then Et(�u) = Dt(u):

We have de�ned independently set or function erosions and dilations. Let us now see under which

conditions the de�nitions coincide. We can use the equivalence scheme described in Figure 8.2 : for the
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9.1. EROSIONS AND DILATIONS AS MULTISCALE CONTRAST INVARIANT OPERATORS

Figure 9.3: Distance image.
Dilations and erosions as level sets of the signed distance function. Left : a set X, middle :
the signed distance to X, u(x) = d(x;X) if x 2 Xc, u(x) = �d(x;X), if x 2 X, right : by
quantizing the grey levels of u, as done on the right, one can easily check that the level sets
of u are dilated or eroded of X. Compare with Figures 9.1 and 9.2.

dilation, we obviously take IB = f�tb; b 2 Bg: We get

Dtu(x) = sup
y2�tB

u(x+ y)$ DtX =
[

y2�tB
(X � y) =

[
y2tB

X + y;

where the double arrow $ means that the set operator on the right and the function operator on the left

are in a T -T relation, i.e. the threshold superposition principle applies and we have

Dt(X�u) = X�(Dtu) (9.3)

for every real function u, this relation being true x-almost everywhere, for almost every � 2 IR: In the

same way, we take for the erosion IB = f�tBg, a single structuring element, and we obtain

Etu(x) = inf
y2tB

u(x+ y)$ EtX =
\
y2tB

(X � y)

by applying the equivalence scheme. Thus, we have proved the following theorem.

Theorem 9.3 The pair : set dilation, function dilation and the pair set erosion, function erosion, denoted

respectively by Dt and Et, satisfy the threshold superposition principle and we have

Dt(X�u) = X�(Dtu) and Et(X�u) = X�(Etu); a.e. in x; a.e. in �: (9.4)

Exercise 9.3 Let u be a real continuous function on IRN and consider the dilation Dt associated with

open unit ball. From Formula 9.4, we have Dt(X�u) = X�(Dtu) for almost every � and almost everywhere

in x. Prove that the set on the left is open and that the set on the right is closed. Deduce that the relation

will be true for every x only if both sets are empty, or equal to IRN .

The preceding exercise shows that we cannot expect perfect commutation of dilations with thresholds.

The next proposition gives, however, a framework where that property is true.

Proposition 9.4 Let B be a compact (bounded and closed) subset of IRN . Let T be the set of closed parts

of IRN and F+ be the set of upper semi-continuous functions, that is the set of functions whose upper

level sets X�u = fx; u(x) � �g are in T . Let F be the set of lower semi-continuous functions, that is,
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functions whose lower level sets X�� u = fx; u(x) � �g are in T . Then for any function u in F+ one has

Dt(X�u) = X�(Dtu) and for any function in F�, Et(X�� u) = X�� (Etu). In other terms, it is equivalent to

directly dilate (resp. erode) u or to dilate (resp. erode) �rst each level set of u and then de�ne as dilation

(resp. erosion) of u the function which has these level sets.

Proof of Proposition 9.4. We have x 2 X�(Dt(u)) if and only if supy2tB u(x � y) � �. Since u is

u.s.c and therefore attains its maxima on compact sets, this is equivalent to 9y 2 tB; u(x � y) � � and,

setting z = x � y, to 9z 2 X�(u) and y 2 tB; x = z + y, which means x 2 X�(u) + tB and is therefore

equivalent to x 2 Dt(X�(u)). 2

We now look for a property which is desirable for a family of scaled operators, the recursivity. We

say that the erosions (or the dilations) associated with a structuring element B are a recursive family of

operators if Et+s = Et ÆEs (resp. Dt+s = Dt ÆDs.) This property is also called \semigroup" property. It

implies that Dt = (D t
n
)n; a very useful computational property.

Proposition 9.5 The erosions and dilations are recursive if and only if their structuring element B is

convex.

Lemma 9.6 One has (t+ s)B = tB + sB for any s � 0 and t � 0 if and only if B is convex.

Proof of Lemma 9.6 : If B is convex, then by de�nition of the convexity, for any s and t; sB + tB is

included in (s+ t)B, and the reverse inclusion is obvious. Conversely, assume that sB + tB is contained

in (s + t)B. Then, for any x and y in B one can �nd z in B such that (s + t)z = sx + ty. This means

that the barycenter of x and y with weights s
s+t and

t
s+t also is in B. Since this is true for any positive s

and t, we deduce that B is convex. 2

Proof of Proposition 9.5 : We do the proof for the dilation. We have

DtDsX = (X + sB) + tB = X + sB + tB

and

Ds+tX = X + (s+ t)B

Since we can take X = f0g, we deduce that the dilation is recursive if and only if (t+ s)B = tB+ sB. By

Lemma 9.6, this is true if and only if B is convex. 2

9.2 P.D.E.'s associated with erosions and dilations

Multiscale dilations and erosions are canonically associated with a partial di�erential equation. Let us

denote by jjxjjB the gauge associated with a convex set B containing 0, that is

jjyjjB = sup
z2B

y:z;
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9.2. P.D.E.'S ASSOCIATED WITH EROSIONS AND DILATIONS

Figure 9.4: Opening of a set as curvature threshold from above. A set X, its opening by a ball of radius 20, and the
di�erence between original and processed. This opening transforms X into the union of all balls of radius 20 contained in it.
The resulting operation can be understood as a threshold from above of the curvature of the set boundary.

Figure 9.5: Closing of a set as a curvature threshold, from below. A set X, its closing by a ball of radius 20, and the
di�erence between original and processed. The closing of X is nothing but the opening of Xc. It can be viewed as a threshold
from below of the curvature of the set boundary.

where y:z denotes the Euclidean scalar product of y and z. When B is a ball centered at 0 and with radius

1, jj:jjB is the usual Euclidean norm.

Proposition 9.7 (Hopf-Lax formula [258][141] ) Assume that B is a bounded convex set containing 0.

Set u(t;x) = Dtu0(x) (resp. Etu0(x)). Then u(t;x) satis�es

@u=@t = jjDujj�B :

(resp. @u=@t = �jjDujj�B) at each point (t;x) where u is C1 with respect to t and x.

Proof. Let us �rst show the property at t = 0. Assume that u0 is C
1 at x. We have u(t;x) = Dtu0(x)

and u(0;x) = u0(x). Thus

u(h;x)� u(0;x) = sup
y2hB

(u0(x� y)� u0(x))

Since u0(x) is C
1 at x and B is bounded, we get

u(h;x)� u(0;x) = sup
y2hB

(�Du0(x):y) + o(h)

= h sup
z2�B

(Du0(x):z) + o(h):

By dividing by h and passing to the limit as h tends to zero, we get

@u

@t
(0;x) = jjDu0(x)jj�B ; (9.5)
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Figure 9.6: Erosion and dilation of a real image. On the �rst row, a sea bird image, and its level lines for all levels multiple
of 12. On the second row, an erosion with radius 4 has been applied. On the right, the resulting level lines where the circular
shape of the structuring element (a disk with radius 4) appears around each local minimum of the original image. Erosion
removes local maxima (in particular, all small white spots), but expands minima. Thus, all dark spots, like here the eye of
the bird, are expanded. The third row displays the e�ect of a dilation with radius 4, and the resulting level lines. We see
how local minima are removed (see e.g. the eye of the bird) and how white spots on the tail expand. Here, in turn, circular
level lines appear around all local maxima of the original image.

which is the announced equation in the particular case where t = 0. Let us prove the same relation at an

arbitrary scale t. Since Dt+h = DtDh = DhDt, we can write

u(t+ h;x)� u(t;x) = Dh(u(t))(x)� u(t)(x):

We divide by h, let h tend to zero and apply the preceding result with u(t) instead of u0. This yields the

general equation. 2
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Figure 9.7: Opening and closing of a real image. On the �rst row, the original image and its level lines for all levels multiple
of 12. On the second row (resp. third row), an opening (resp. closing) with radius 4 has been applied. In the level-lines
displayed on the right, we can recognize the circular shape of the structuring element.

Figure 9.8: Opening and closing based denoising. On the �rst row : scanned picture of the word \operator" with black
dots and a black line added, a dilation with a 2 � 5 rectangle (middle), then an erosion with the same structuring element.
The resulting operator is a closing. Small black structures are removed by a such process. In the second row : the word
\operator" with a white line and white dots inside the letters, erosion with a rectangle 2 � 5, followed by a dilation. The
resulting operator is a opening. Small white structures are removed.

References.

Matheron introduced dilations and erosions as a useful toof for set and shape analysis in his seminal

book [290]. A full account of the set and function properties of dilations, erosions, openings and closings

can be found in the classical books of Serra [378, 380]. See also the introductive paper by Haralick and
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Figure 9.9: Examples of denoising based on opening or closing, as in Figure 9.8. Here are added on the \operator" image
some perturbations made of both black and white lines or dots. In the �rst column, up-down : original picture, erosion with a
1�3 rectangle, then dilation with the same structuring element. In other terms opening with this rectangle. In continuation,
a dilation is applied with a rectangle 3 � 1, and �nally an erosion with the same rectangle. In the second column, the same
process is applied, but with erosions and dilations exchanging their roles. It does not work so well because closing expands
white perturbations and opening expands black perturbations : those operators do not commute. See Figure ??, where the
median �lter applies with more success.

al. [195] and the early Nakagawa and Rosenfeld [314]. An algebraic axiomatics for erosions, dilations,

openings and closings has been developped by Ronse and Heijmans [201, 352]. We did not expose here this

algebraic point of view. The obvious relationships between dilations, erosions of a set and the distance

function have been numerically exploited in [211], [386] and [245]. The skeleton of a shape can be de�ned

as the set of points where the distance function to the shape is singular. A numerical procedure computing

the skeleton in this way is proposed in [247]. The relationship between multiscale dilations or erosions and

the Partial Di�erential Equations @u
@t = �jDuj is known by the work of Lax [258] where it is used to give

eÆcient stable numerical schemes for the P.D.E.. Rouy and Tourin have shown that the distance function

to a shape is a viscosity solution of 1 � jDuj = 0, with null boundary condition (Dirichlet condition)

on the boundary of the shape. In order to de�ne eÆcient numerical schemes for computing the distance

function, they actually implement the evolution equation @u
@t = 1 � jDuj, starting from 0 and with null

boundary condition on the boundary of the shape. The fact that the multiscale dilations and erosions

can be computed by the partial di�erential equation @u
@t = �jDuj has been rediscovered or revived , thirty

years after Lax, in several papers, namely Alvarez et al. [15], Boomgard and Smeulders [411], Maragos

[281, 282]. As a curve evolution algorithm, see [366]. As a strange matter of fact, the link between erosions,

dilations and their P.D.E.'s seems to have remained unknown or unexploited until 1992. The erosion and

dilation P.D.E.'s can used for shape thinning, a popular way to compute the skeleton. Pasquignon [335]

developped an erosion P.D.E. with adaptive stopping time, permitting to computed directly a skeleton

which does not look like barbed wire.
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Chapter 10

Median �lters and mathematical
morphology

In the whole chapter, we consider real functions denoted by u(x) and de�ned for x 2 IRN . We make no

assumption at all about their regularity, except for one thing : we shall use the Lebesgue measure of the

level sets of u. Thus, we need to assume that the level sets of u are measurable, which is equivalent to say

that u is Lebesgue measurable. For the mathematical treatment of measurability, we refer to classic books

like (e.g.) ([?]). The Lebesgue measure is the simplest mathematically correct de�nition of the intuitive

concept of length in dimension 1, area in dimension 2 or volume in dimension 3. Thus all that will be

said will remain thoroughly understandable. We refer to Appendix ?? for the statement of the Lebesgue

dominated convergence theorem.

In the whole chapter, we consider a \weight function" k(y) de�ned on IRN with values in [0;+1[ and

satisfying Z
IRN

k(y)dy = 1:

We call k-measure of a subset B of IRN and denote by jBjk the integral

jBjk =
Z
B

k(y)dy:

Of course, 0 � jBjk � 1. We shall also write, when there is no risk of ambiguity, jBj instead of jBjk. As
a main example for k, let us mention k(x) = c�1N XB(0;r), where cN is the Lebesgue measure of the ball

B(0; r) and XB(0;r) the characteristic function of the ball B(0; r). The median value (weighted by k) of

a function u is the result of an attempt to de�ne a smoothed version of u which does not depend upon

contrast changes. This is done by \averaging" the level sets of u, so that our �nal de�nition will be better

understood if we start by de�ning a median operator on sets.

De�nition 10.1 Let X be a measurable subset of IRN and k a weight function. We call median set of X

(weighted by k ) and denote by medkX (or medX, since there is no risk of ambiguity) the set

medX = fx; jX � xjk � 1

2
g (10.1)

Example 10.2 As a �rst example, let k(x) = 1
�r2XB(0;r)(x) in IR2. Then x belongs to medkX if and

only if the Lebesgue measure of X \ B(0; r) is larger or equal to the half measure of B(0; r). In intuitive

terms, x belongs to medkX if points of X are in majority around x.
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Example 10.3 The Koenderink-Van Dorn \ dynamic shape" (Section 3.4). Take k(x) = Gt(x) =
1

4�te
�jxj2

4t . Then, since
R
IR2 Gt(x)dx = 1, we immediately see that the dynamic shape is nothing but a

gaussian weighted median �lter.

Let us now extend the set median operator med into a contrast invariant operator acting on measurable

functions.

Lemma 10.4 The operator medk : T ! T is a monotone operator satisfying the set continuity property

(7.14), that is : If (X�)�2IR is a non-increasing family of measurable sets such that 8� 2 IR, X� = \�<�X�,

then

medk(X�) = \�<�medk(X�): (10.2)

Proof Since medk is monotone, we already have medk(X�) � \�<�medk(X�): Conversely, let x 2
\�<�medkX�: Then, by (10.1), we have for every �, jX��xjk � 1

2 . Since X� is a nondecreasing sequence

of sets, all with �nite measure, we have by Lebesgue theorem (Appendix ??) jX��xjk ! jX��xjk. Thus
jX� � xjk � 1

2 and, by (10.1) again, x 2 medk(X�). 2

De�nition 10.5 and Proposition The median set operator de�ned on measurable sets has a unique

contrast invariant extension to measurable functions, obtained by the threshold superposition principle.

This extension has the sup inf form

medk(u)(x) = sup
jBjk� 1

2

inf
y2B+x

u(y) (10.3)

and satis�es

X�(medk(u)) = medk(X�(u)):

Proof By Lemma 10.4 and Theorem 7.11, the median operator medk, de�ned on measurable sets, has a

unique contrast invariant extension to measurable functions such that

medk(X�u) = X�(medku)

for every measurable function u. In addition, by Corollary 8.6, the median operator thus de�ned on

functions has the \sup inf" form

(medku)(x) = sup
B2IB

inf
y2x+B

u(y);

where IB = fB; 0 2 medk(B):g This immediately yields (10.3).

2

Example 10.6 In order to understand the consequences of the de�nition of the median operator in case

of functions which have \
at" parts and jumps, it is useful to consider the following examples of functions

de�ned on IR with k = 1
211[�1;1] :

� u(x) = x if x � 0, u(x) = 0 if x > 0 : medku(0) = 0. In that case, the median value coincides with the

supremum.
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� u(x) = �1 if x � 0, u(x) = 1 if x > 0 : medku(0) = 1. Notice the symmetry breaking : +1 and -1 are

equally good candidates to de�ne a median value, but our de�nition of the median operator gives a privilege

to the larger value.

� u(x) = 0 if x � � 1
4 , u(x) = 1 if � 1

4 < x < 1
3 , u(x) = 2 if x � 1

3 : medku(0) = 1.

Notice that the median value is, in all of the three cases, di�erent from the mean value on the same

neighborhood.

Exercise 10.1 Prove that if u attains a �nite number of values, then med(u) takes its values in the range

of u.

Remark 10.7 Upper and lower median operators The median operator, as we have de�ned it, is not

invariant by reverse contrast : we do not have med(�u) = �med(u) as is clear from the second example

above. Thus, we can consider an alternative de�nition of for the median operator, as

med�k (u) = inf
jBjk� 1

2

sup
B+x

u(y) (10.4)

Obviously,

med�k u = �medk(�u);
so that both de�nitions yield the same formalism and properties. In particular, we have

med�k X = fx; jX � xjk > 1

2
g; (10.5)

which is easily deduced from the remark that

med�k X = (medkX
c)c;

where Xc is the complementary set of X, IRN nX. The choice of medk is more adapted to closed sets and

u.s.c. functions, since, as we shall now see, medkX is closed if X is closed and medku is u.s.c. if u is. In

the same way, med�k is adapted to open sets and l.s.c. functions.

Theorem 10.8 Let u be a measurable function. Then medku is an upper semi-continuous function (and

med�k u a lower semi-continuous function).

Lemma 10.9 For every subset X of IRN , medkX is a closed set (and med�k X is an open set.)

Proof If xn 2 medkX , then jX � xnjk � 1
2 , that is

R
X
k(y � xn)dy � 1

2 . If xn ! x, the last integral

converges to
R
X k(y� x)dy by Proposition 2.3. We obtain jX � xjk � 1

2 ; that is, x 2 medk(X). 2

Proof of Theorem 10.8 Let u be a measurable function on IRN . By De�nition-Proposition 10.5, the

level sets of medu are obtained by applying med to the level sets of u. By Lemma 10.9, the level sets of

med(u) are therefore closed, so that med(u) is upper semi-continuous. One also deduces that med�(u) is

a lower semi-continuous function from the relation med�(u) = �med(�u): 2

We shall now give a very general suÆcient condition ensuring �rst that medku is continuous if u is and

second that both possible de�nitions of the median operator, med and med�, coincide on continuous

functions.
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Figure 10.1: Example of denoising with the median �lter : scanned picture of the word \operator" with perturbations and
noise made of black or white lines and dots. Middle : �rst iteration of the median �lter with a circular neighborhood of
radius 2, right second iteration. Compare with the denoising by opening-closing experiment (Figure 9.9).

Proposition 10.10 (i) For every measurable function u,

medk(u) � med�k (u) (10.6)

(ii) Assume that k satis�es the following property :

8B;B0 such that meask(B) � 1

2
and meask(B

0) � 1

2
; then B \ B0 6= ;;

where B denotes the topological closing of B. Then, for every continuous function u, medk(u) is continuous

and

medk(u) = med�k (u) (10.7)

Exercise 10.2 Condition (ii) in Proposition 10.10 is very weak and grossly corresponds to the assumption

that the support of k cannot be split into two connected components with measure 1
2 . Check that if (e.g.)

k is continuous and its support connected, then Condition (ii) holds.

Proof (i) Set � = medk(u)(x) = supjBjk� 1
2
infy2B+x u(y). For every � > 0, we then havemeask(X�+�u) <

1
2 . Thus meask((X�+�u)c) � 1

2 and therefore sup(X�+�u)c u � �+ �. Hence

8� > 0; inf
jBjk� 1

2

sup
B+x

u(y) � �+ �

Letting � tends to zero yields (i).

(ii) The assumption on k implies that for all B and B0 with k-measure larger or equal than 1=2 we

have

inf
B+x

(u) � sup
B0+x

(u)

and since u is continuous,

inf
B+x

(u) � sup
B0+x

(u):

Taking the inf over all B0 and the sup over all B yields

8x; sup
jBjk� 1

2

inf
B+x

u(y) � inf
jB0jk� 1

2

sup
B0+x

u(y)

>From this last relation and (i), we deduce the equality of the med and med� operators on continuous

functions. Now, by Theorem 10.8, the operator med transforms any measurable function into an upper

semi-continuous one, and med� into a lower semi-continuous one. Thus med(u) is continuous if u is. 2
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Exercise 10.3 Show that

sup
jBjk� 1

2

inf
B+x

u(y) � sup
jBjk> 1

2

inf
B+x

u(y) � inf
jBjk� 1

2

sup
B+x

u(y);

sup
jBjk� 1

2

inf
B+x

u(y) � inf
jBjk> 1

2

sup
B+x

u(y) � inf
jBjk� 1

2

sup
B+x

u(y):

Remark 10.11 Discrete median �lters and the \usual" median value.

We de�ne a discrete median �lter by considering a measure made of a �nite number of Dirac masses Æi,

i 2 f1; ::Ng, centered at points xi. The locations of the Dirac masses represent the discrete neighborhood on

which the median value will be computed around each point. (Notice that such a measure is not associated

with an integrable function k, so that Theorem 10.8 does not hold anymore.)

The formula of the median �lter can be simpli�ed in that case. We have

med u(x) = inf
P2IP (N); card(P )�N=2

sup
i2P

u(x� xi);

med�u(x) = sup
P2IP (N); card(P )�N=2

inf
i2P

u(x� xi)

where IP (N) denotes the set of all parts of f1, ..., Ng. Let us now denote by M = E(N=2)+1, the smallest

integer larger or equal than N=2. For any set P containing strictly more thanM elements, we can construct

a smaller set P 0, with still a number of elements larger than M , by simply removing an element from P .

The sup on P 0 is therefore smaller than the sup on P , and since the med operator chooses the smallest

value over IP (N), we can remove such P 's from IP (N) without changing the value of med. We therefore

have, with M = E(N=2) + 1,

med u(x) = inf
P2IP (N); card(P )=M

sup
i2P

u(x� xi)

med�u(x) = sup
P2IP (N); card(P )=M

inf
i2P

u(x� xi)

Is it now easy to see that medu(x) (resp. med�u(x)) corresponds to the M smallest (resp. M largest)

value out of the real numbers u(x�x1); :::u(x�xN ) which are the values of u in the discrete neighborhood

of x.

The operators med and med� are identical if and only if N is odd. Indeed, in that case, M = (N+1)=2

and the M smallest value out of N real numbers is also the M largest value. This is compatible with

Proposition 10.10 : indeed, if N is odd, then any two sets of cardinality M = (N + 1)=2 made out of N

points must intersect. (Take e.g. N=7, therefore M=4. Two sets of 4 pixels out of a set of 7 pixels have

necessarily at least one pixel in common.) This is not true anymore if N is even, and therefore in that case

med and med� can di�er. This is why in general a median value on an odd number of pixels is preferred.

Now, the discrete median �lter can be also de�ned by putting a weight on each Dirac mass, which is

equivalent to say that neighboring pixels will weigh di�erently in the computation of the median value. A

simple example is given in Figure 10.2, where the weight is set according to the area of the intersection

between each pixel and a 2� 2 mask.
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An image u.

j=0

i=0

to a set B  (2x2 square).
The mask associated

7 2 5 2 0

1 1 6 6 6

5 0 4 6 1

5 4 2 5 5

6 3 4 2 7

0.25 0.5 0.25

0.5 1 0.5

0.25 0.5 0.25

1

0 1 2 3 4 5 6 7 ...

Hu,B(0.0)

The histogram of u at the poin

Median value.

(weight for each pixel).

Gray levels.

Figure 10.2: Discretization of a median �lter. The digital image (above,left) is considered as constant on each square pixel.
The support of the illustrated median �lter is a square centered at zero. The sub�gure above, left, shows the intersections of
the nine neighboring pixels with the mask. The values correspond to the areas of those intersections. These values are used
as weights to the pixel values around zero. They permit to build the weighted histogram of the neighborhood of the central
pixel. In this histogram (below), the values 0 and 2 appear once with weight 0.5, the value 1 appears once with weight 0.25,
the value 2 does not appear, the value 4 appears once with weight 1 and once with weight 0.25, resulting in a histogram value
of 1.25, etc. The obtained median value is 4.
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Exercise 10.4 By arginfmf(m), we denote a value of m (if any) at which f attains its in�mum. Consider

N real numbers xi.

(i) Show that their mean value satis�es

1

N

NX
i=1

xi = arginfm

NX
i=1

(xi �m)2:

Show that

med�(xi) � arginfm

NX
i=1

jxi �mj � med(xi):

(ii) Set k = 11B, where B is a set with Lebesgue measure equal to 1. Denote by medBu the \median value

of u in B" de�ned by medBu = medku(0): Consider a bounded and measurable function u on B. Show

that Z
B

u = arginfm

Z
x2B

(m� u(x))2dx

and

med�B(u) � arginfm

Z
x2B

jm� u(x)jdx =
med�Bu+medBu

2
� medB(u):

(iii) Conclude that the mean (resp. median) value is the \best" constant approximation with respect to the

L2 (resp. L1) norm.

Figure 10.3: Denoising properties of the median �lter. Left : image altered by a 40% salt and pepper noise. Right : Three
iterations of the median �lter on a 3� 3 square mask.

Remark 10.12 The Discrete Median Filter M is a cyclic operator on discrete images. Consider an image

u having N pixels. The number of di�erents gray levels can be obviously bounded by the number of pixels

that is again N . Since the Median Filter is contrast invariant, it preserves the discrete set of gray levels.

That is to say that Mk(u) is an image with N pixels and with level among the di�erent levels of u (N at

max). Since the maximal number of di�erent realizations is NN then after NN iteration of the median M ,

there will be two identical images among the images Mk(u), k 2 f1; :::; NNg. As consequence the Median

is cyclic.

Simple example to illustrate the cyclicity is as follow. Consider a pixel set made of one pixel and its

four neighbor and the associated median �lter taking the median value among the �ve pixels. Consider also
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Figure 10.4: Smoothing e�ect of the median �lter on level lines. Above : original image, then all of its level lines (boundaries
of level sets) with levels multiple of 12, then level lines of level 100. Below : result of two iterations of a median �lter on a
disk with radius 2, then corresponding level lines (levels multiple of 12), then level lines with level 100.

the \chessboard" image, that is u(i; j) = 255 if i+ j is even, and u(i; j) = 0 otherwise. When we apply the

median �lter the chessboard is \reversed". Indeed, any white pixel (value=255) is surrounded by 4 black

pixels, so that the median �lter transforms it into a black pixel. Conversely, a black pixel is transformed

into a white one.

References.

The remarkable denoising properties and numerical eÆciency of median �lters are well-known and

acclaimed for the removal of all kinds of impulse noise in digital images, movies and video signals [315,

224, 339, 117, 349]. The last mentionned paper proposes an eÆcient, low complexity implementation, as

well as [115, 212, 39]. An introduction to the weighted median �lter can be found in [67, 444] and some

generalizations (conditional median �lters, etc.) in [260, 396, 34] and Unser-Yaroslavski [?]. Max, Min

and median �lters are just particular instances of rank order �lters. See [112] for a general presentation of

these �lters. There are few studies on iterated median �lters. The use of iterated median �ters as a scale

space is, however, proposed in [48]. The extension of median �ltering to multichannel (colour) images is

problematic. Let some interesting attempts be mentionned [350], [91].
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Chapter 11

Asymptotic behavior of contrast
invariant isotropic operators
(Dimension 2).

In this chapter, we consider the \inf-sup" operators introduced in Section 8.2,

Tu = inf
B2IB

sup
y2x+B

u(y): (11.1)

Since T 0(u) = �T (�u), every statement about T will be easily adapted to \sup-inf" operators

T 0u(x) = sup
B2IB

inf
y2x+B

u(y) (11.2)

By Theorems 8.4 and Theorem 8.16, we know that the monotone contrast invariant and translation in-

variant operators simply are operators in the \inf sup" (or sup inf) form. Thus, our asymptotic analysis of

contrast invariant operators will be fully general if we adopt the \inf sup" formalism. In order to simplify

the analysis, we shall, in addition, assume that the considered operators are isotropic, that is, IB is invari-

ant under all linear isometries R of IR2 : RIB = IB. In this chapter, we also assume that IB is bounded,

that is, B � D(0;M) for every B in IB and some disk D(0;M). The action of such operators seems a

priori to open a wide range of possibilities, as many as possible sets of structuring elements. We shall see

that this freedom of choice is rather an illusion. Let us introduce a scale parameter h > 0. We associate

with IB and T the scaled family IBh = hIB and the scaled operator Th de�ned by

Thu(x) = sup
B2hIB

inf
y2x+B

u(y):

In fact, we shall prove that when h tends to zero, the action of Th on smooth functions u is described by

a fairly small set of possibilities.

We shall prove a theorem which plays the same role for isotropic contrast invariant �lters as Theorem

3.2 played for linear �lters. As a main example, we shall prove that if Th is a shrinked median operator,

then

Thu� u = Ch2curv(u)jDuj+ o(h2):

Thus, the operator jDujcurv(u) = D2u(Du
?

jDuj ;
Du?

jDuj ) plays the same role for contrast invariant operators as

the laplacian �u for linear ones.



CHAPTER 11. ASYMPTOTIC BEHAVIOR OF CONTRAST INVARIANT ISOTROPIC OPERATORS
(DIMENSION 2).

11.1 Asymptotic behavior theorem.

In the following, we set

H(�) = T [x+ �y2](0); (11.3)

where T [x + �y2] stands for \T (u) with u(x; y) = x + �y2". Since T is monotone, H is a nondecreasing

function, which is, in addition, Lipschitz. Indeed, by the monotonicity of T and the boundedness of IB,

T [x+ �1y
2](0)� j�2 � �1jM2 � H(�2) � T [x+ �1y

2](0) + j�2 � �1jM2

and therefore

jH(�2)�H(�1)j �M2j�2 � �1j; (11.4)

where we have used the fact that all elements of IB are contained in a disk D(0;M).

Let us also note the following relations :

Th[x] = hT [x] = hH(0) (11.5)

Th[x+ �y2](0) = hT [x+ h�y2](0) = hH(�h) (11.6)

Theorem 11.1 Let IB be a family of structuring elements in IR2 which is bounded ( 8B 2 IB, B �
D(0;M)) and isotropic (if B 2 IB, then RB 2 IB for every linear isometry R of IR2). Let Tu(x) =

infB2IB supy2x+B u(y) (or Tu(x) = supB2IB infy2x+B u(y)) and de�ne the rescaled operator

Thu(x) = inf
B2hIB

sup
y2x+B

u(y) ( resp. Thu(x) = sup
B2hIB

inf
y2x+B

u(y) ):

Then for every C2 function u on IR2,

(Thu)(x) = u(x) + hT [x](0)jDuj(x) +O(h2):

Proof. Since T (u � u(x)) = Tu � u(x), we can impose without loss of generality u(x) = 0. T being

translation and isometry invariant, we can choose the origin 0 at x, and orthogonal axes (~i;~j) satisfying

~i = Du
jDuj(0) and ~j = (Du?=jDuj)(0) when Du 6= 0. Since u is C2, we can by Taylor formula write for

y = (x; y) in a neighborhood of 0,

u(y) = px+O(jyj2); (11.7)

where p = jDuj(0) � 0. >From (11.7) we deduce that for every y = (x; y) in hD(0;M), we have

px�O(h2) � u(y) � px+O(h2):

Let us apply Th to both members of this relation. By the monotonicity of Th, and since every hB is

contained in D(0;Mh), we deduce that

Thu(0) = Th[px](0) +O(h2): (11.8)

Using (11.5), we have Thu(0) = hT [px](0)+O(h2) = ph(T [x](0))+O(h2), which proves the theorem, since

p = jDu(0)j. 2

Let us state an informal but meaningful conclusion yielded by the preceding theorem. Let T be a contrast
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11.1. ASYMPTOTIC BEHAVIOR THEOREM.

invariant and monotone operator. The �rst \test" to which T must be submitted is simply to compute

its action on u(x) = u(x; y) = x. If T [x](0) 6= 0, then when the scale h of a scaled operator Th tends

to zero, Th behaves like a dilation if T [x](0) > 0 and like an erosion otherwise (See Proposition 9.7).

Thus, if T [x](0) 6= 0, there is no use to de�ne it with complicated sets of structuring elements : they all

yield asymptotically an erosion or a dilation which can be performed with a single and simple structuring

element : the disk.

Exercise 11.1 An analogous statement when T is no more isotropic : show that under the same assump-

tions as in Theorem11.1, except the isotropy of T , one has

(Thu)(0)� u(0) = hT [Du(0):x](0) +O(h2):

We now consider the case where T [x](0) = 0. In such a case, the operator T has a desirable symmetry : If

we understand Tu(x) as a kind of average value of u in a neighborhood of x, the assumption T [x](0) = 0

is of very sound. It means that all isotropic averages of u(x; y) = x around (0; 0) should be 0.

Theorem 11.2 Let IB be a family of structuring elements in IR2 which is bounded ( 8B 2 IB, B �
D(0;M)) and isotropic (if B 2 IB, then RB 2 IB for every linear isometry R of IR2).

Let Tu(x) = infB2IB supy2x+B u(y) (or Tu(x) = supB2IB infy2x+B u(y)) and de�ne the rescaled

operator

Thu(x) = inf
B2hIB

sup
y2x+B

u(y) ( resp. Thu(x) = sup
B2hIB

inf
y2x+B

u(y) ):

Set H(h) = T (x+ hy2)(0) and assume that H(0) = T [x](0) = 0. Then for every C3 function u on IR2 :

(i) On every compact set K contained in fx; Du(x) 6= 0g,

Thu(x) = u(x) + hjDu(x)jH(
1

2
h curv(u)) +Ox(h

3);

where jOx(h3)j � CKh
3 for some constant CK depending only on u and K.

(ii) On every compact set K of IR2,

jThu(x)� u(x)j �M2h2jjD2u(x)jj+Ox(h
3);

where jOx(h3)j � CKh
3 for some constant CK depending only on u and K.

In (ii), we notice that D2u(x) is a 2� 2 matrix and we take jjAjj = jaj+ jbj+ jcj+ jdj as a norm for such

a matrix A =

�
a b
c d

�
. As a canonical application of the preceding theorem which we will develop later

in this chapter, the reader may think of the median �lter. Indeed, the median �lter does not alter linear

functions and we therefore have H(h) = med(px)(0) = 0.

Proof. We adopt the same notation as in the proof of Theorem 11.1, take again and without loss of

generality x = 0, u(0) = 0 and set again, for (x; y) in a neighborhood of 0,

u(x; y) = px+ ax2 + by2 + cxy +O(jx2 + y2j 32 ): (11.9)

We refer to Section 5.5 for a detailed account of the notation and the di�erential interpretation of p, a; b,

c: Note that by Taylor formula,

O(jx2 + y2j 32 ) � jjD3u(0)jjjx2 + y2j 32 : (11.10)
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The same reasoning as in Theorem 11.1 and an obvious rescaling yield

Thu(0) = hT [px+ ahx2 + bhy2 + chxy](0) +O(h3) = hT [uh(x; y)](0) +O(h3); (11.11)

where we set uh(x; y) = px+ ahx2 + bhy2 + chxy. In order to prove the theorem, we have to show that c

and a play no role in the asymptotic behavior of Tuh(0) = infB2IB supB uh.

Step 1 : An estimate. If (x; y) 2 B 2 IB, then

px� h(jaj+ jbj+ jcj)M2 � uh(x; y) � px+ h(jaj+ jbj+ jcj)M2:

By assumption, T (px) = 0, and we obtain, by applying Th to the inequalities,

jTuh(0)j � h(jaj+ jbj+ jcj)M2: (11.12)

Returning to the de�nitions of a; b; c, using Relations (11.9) to (11.11) and remarking that D3u(x) is

continuous and therefore bounded on each compact set K, we deduce the assertion (ii) from (11.12).

>From now on, we focus on (i) and assume that p 6= 0. We set

C = (jaj+ jbj+ jcj)M2:

Step 2 : First reduction. By Step 1, for every B 2 IB, we have

sup
B
uh � inf

B2IB
sup
B
uh = Tuh(0) � �Ch:

Now, if (x; y) 2 B and x � �2Ch=p, then

uh(x; y) = px+ ahx2 + bhy2 + chxy � �2Ch+ h(jaj+ jbj+ jcj)M2 = �Ch:

Let us set C 0 = 2C
p : We obtain

8B 2 IB sup
B
uh = sup

B\f(x;y);x��C0hg
uh:

Step 3 : Second reduction. Since Tuh(0) � Ch (Step 1), one does not need to consider the sets B

for which supB uh � Ch. If supB uh � Ch, then

8(x; y) 2 B; px+ ahx2 + bhy2 + chxy � Ch

and therefore

x � 1

p
(Ch+ (jaj+ jbj+ jcj)M2h) � 2Ch

p
= C 0h:

Hence,

Tuh(0) = inf
B2IB;B�f(x;y); x�C0hg

sup
B
uh (11.13)

and by Step 2,

Tuh(0) = inf
B2IB;B�f(x;y); x�C0hg

sup
B\f(x;y); x��C0hg

uh(x; y): (11.14)
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Now, for those (x; y), belonging to B � f(x; y); x � C 0hg and satisfying x � �C 0h, we have jahx2+chxyj �
C 00h2 and therefore uh(x; y) = px+ bhy2 +O(h2). Thus (11.14) implies

T (uh)(0) = T [px+ bhy2](0) +O(h2): (11.15)

Conclusion. Using the de�nition of H , H(h) = T [x+ hy2](0), we obtain

Thu(0) = hT (uh)(0) = phH(
bh

p
) +O(h3): (11.16)

Since, by Formula (5.11),

b =
1

2
curv(u)jDuj(0)

and p = jDuj(0), we obtain the relation announced in (i), at x = 0. Now, all computations have been

done with the origin �xed at x = 0. If we let vary x in a compact set K on which p = jDu(x)j 6= 0 (so

that p = jDu(x)j, a, b, c now depend on x), then we have for some positive constants cK and CK only

depending on K and u,

p � cK ; jaj; jbj; jcj � CK :

Indeed, x! D2u(x) is continuous and therefore a; b; c are bounded on each compact set K. By compact-

ness again, the lower bound cK of p on K is attained and therefore positive. It then easy to check that

the constants C(x) and C 0(x) involved in the preceding proof also are bounded independently of x on K.

Thus the O(h3) involved in (11.16) is uniform on K. The same argument applies to the statement (ii),

which we have proven above at x = 0. 2

11.2 Median �lters and curvature motion.

We recall that the median �lter, med, de�ned in Chapter 10, can be written, as in Formula (10.3) :

medku(x) = sup
jBjk� 1

2

inf
y2B+x

u(y): (11.17)

In the following, we take as a �rst example for k the uniform measure on a disk D(0; 1), so that

jD(0; 1)jk = 1; kh =
11D(0;h)

�h2

and we shall examine only continuous functions. This entails by Proposition 10.10 that med and med�

are simply equal. So we shall simply write \med" and talk about \the" median �lter. The \infsup" form

of the median �lter on continuous function is given by

medD(0;h)u(x) = inf
measB� 1

2 ;B�D(0;h)
sup

y2x+B
u(y):

The main result of this section gives an in�nitesimal interpretation of the median �lter. This theorem will

be generalized in the next chapter to much more general weighted median �lters (Theorem 12.1).
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Theorem 11.3 Let u be a C3 function in IR2. Then

(i) medD(0;h)u(x) = u(x) +
1

6
curv(u)jDuj(x)h2 + Ox(h

3);

where Ox(h
3) � cKh

3 on every compact subset of fx; Du(x) 6= 0g and

(ii) jmedD(0;h)u(x)� u(x)j � jjD2u(x)jjh2 +Ox(h
3)

where Ox(h
3) � cKh

3 on every compact subset of IR2.

Figure 11.1: The erosion does a smoothing independent of the curvature of the level lines. Left : image of a simple shape.
Right : di�erence of this image with its eroded by a ball with radius 6. We see in black the points which have changed. The
width of the di�erence is constant.

Figure 11.2: Median �lter and the curvature of level lines. The median �lter does a smoothing linked to the curvature of
the level lines. Left : image of a simple shape. Right : di�erence of this image with itself after it has been smoothed by one
iteration of the median �lter. We see, in black, the points which have changed. The width of the di�erence is proportional
to the curvature, according to Theorem 11.3.

Lemma 11.4

medD(0;1)[x+ hy2](0) =
h

3
+O(h3)
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P(h)

y=-1

y

m(h)

D(0.1)

0

DC

A
B

E

y=1

x

Figure 11.3: When h is small, the parabola P (h) with equation x+hy2 = m divides D(0; 1) into two connected components.
The median value m(h) of x + hy2 on D(0; 1) simply is the value m for which these two connected components have equal
area.

.
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Proof. When h is small, the parabola P (h) with equation x+hy2 = m divides D(0; 1) into two connected

components. By De�nition 10.1, the median value m(h) of x + hy2 on D(0; 1) is de�ned as the value m

for which these two connected components have equal area. The whole geometric situation is shown in

Figure 11.3. The algebraic area between the Oy axis and the parabola is (for jyj � 1)

Z 1

�1
(m(h)� hy2)dy = 2m(h)� 2h

3

Thus m(h) is the median value if and only if

2m(h)� 2h=3 = 2area(ABE) (11.18)

where ABE denotes the curved triangle bounded by the parabola, the circle and the line y = 1. This area

could be explicitly computed, but we prefer to give it the simple bound : area(ABCD)
2 . Now, the length

of (AB) is jm(h)� hj and the length of (BC) is less than (m(h)� h)2, so that (11.18) implies

j2m(h)� 2h

3
j � jm(h)� hj3:

We conclude that m(h) = h=3 +O(h3), as announced. 2

Figure 11.4: Fixed point property of the median �lter, proving its grid-dependence. On the left, original image. On the
right, result of 46 iterations of the median �lter with a radius of 2. The resulting image turns out to be a �xed point of the
median �lter with radius 2. This is not in agreement with Theorem 11.3 showing the median �lter moving images by their
curvature : the image on the right clearly has non zero curvatures ! Now, the discrete, pixelized median �lter which we have
applied here is grid-dependent and blind to small curvatures.

Proof of Theorem 11.3. The operator

Tu(x) = medD(0;1)u(x)

satis�es the conditions of Theorem 11.2. By Lemma 11.4, the function H associated with T satis�es

H(0) = 0, so that the conclusions (i) and (ii) of Theorem 11.2 are satis�ed. From Theorem 11.2 and

Lemma 11.4 we obtain

H(h) =
h

3
+O(h3)

Thus Relation (i) in Theorem 11.2 yields

medD(0;h)u(x) = u(x) + hjDu(x)j(1
6
hcurv(u)) +O(h3)

on compact subsets of fx; jDu(x)j 6= 0g. 2
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Figure 11.5: Comparison between iterated median �lter and median �lter : Top-middle : 16 iterations of the median
�lter with a radius 2, top-right : one iteration of the same median �lter with a radius 8. Below : for each image, the
level-lines for grey levels multiple of 16. To iterate a small size median �lter results in more accuracy and less shape-mixing
than to apply a large size median one. See the comparison between the Koenderink-Van Dorn shape smoothing and the
Bence-Merriman-Osher iterated �lter in Chapter 3, in particular Figures 3.10, 3.9, 3.12 .

Second application : the Catt�e-Dibos scheme

Theorem 11.5 Let IB be the set of all segments of the plane with length 2 and centered at zero. Set

SIhu(x) = sup
BIB

inf
y2x+hB

u(y)

and, similarly,

IShu(x) = inf
BIB

sup
y2x+hB

u(y):

Let u be a C3 function in IR2. Then

1

2
(ISh + SIh)u(x0) = u(x0) + h2

1

4
curv(u)jDuj(x0) +O(h3)

if Du(x0) 6= 0.

Proof. Let us compute the function H1(h) = ISh[x + hy2](0) associated with ISh. Writing (x; y) =

(r cos �; r sin �) in polar coordinates, we have

H1(h) = inf
��

2����
2

sup
�1�r�1

(rcos� + hr2sin2�):

Since, for h � 0, the function r ! rcos� + hr2sin2� is increasing when r � 0, we obtain

H1(h) = inf
��

2����
2

(cos� + hsin2�) = h

F. Guichard, J-M. Morel, Image Analysis and PDE's 149



CHAPTER 11. ASYMPTOTIC BEHAVIOR OF CONTRAST INVARIANT ISOTROPIC OPERATORS
(DIMENSION 2).

Figure 11.6: Consistency of the median �lter and of the Catt�e-Dibos scheme with curvature motion. On the �rst row, the
sea bird image and its level lines for all levels multiple of 12. On the second row, a median �lter on a disk with radius 2 has
been iterated twice. On the third row, an inf-sup and then a sup-inf �lter based on segments have been applied. On the
right : the corresponding level lines of the results, which, according to the theoretical results, must have moved at a normal
speed proportional to their curvature, (Theorems 11.3 and ??). The results are very close. This yields a cross-validation of
two very di�erent numerical schemes implementing the curvature motion.

if h � 0 is small enough (e.g. h < 1
2 ). If h � 0, we have H1(h) = 0 because rcos� + hr2sin2� � cos�:

By doing exactly the same computations for SIh, we get in that second case for the associated function

H2(h) = h�. We notice that in both cases, Hi(0) = 0, so that the conclusions (i) and (ii) of Theorem 11.2

apply. Adding the relations (i) thus obtained for ISh and SIh yields the announced result. 2

References.

Bence, Merriman and Osher [291] discovered and gave some heuristic arguments proving that a con-

volution of a shape with a gaussian followed by a 1
2 thresholding simulated the motion by mean curva-

ture @u
@t = jDujcurv(u). The consistency of their arguments was checked by Mascarenhas [288]. Barles-

Georgelin [50] and Evans [136] also give a consistency proof and in addition prove that the iterated weighted

gaussian median �ltering converges to the mean curvature motion. An extension of this result to any it-
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erated weighted median �lter is given in [225]. An interesting attempt to generalize this result to vector

median �lters is made in Caselles et al. [91]. Catt�e, Dibos and Koep
er [94] linked the mean curvature

motion with classical morphological �lters whose structuring elements are oriented one-dimensional sets in

all directions [311, 390] A question arises from the main asymptotic convergence theorem : are there sets

of structuring elements permitting to obtain any function H ? As is shown in this chapter, H(s) = s is

attained by the median �lter. Pasquignon [336] has extensively studied this question and gives a positive

answer for all power functions H(s) = s� with simple families of structuring elements. The presentation

of the main results of this chapter is mainly original and was announced in the tutorials [191, 187] with

an early version in [190].
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Chapter 12

Asymptotic behavior of contrast
invariant operators (Dimension N)

We now consider a generalization of the asymptotic results of the preceding chapter to arbitrary dimensions.

Our aim is to show that all inf-sup �lters, when rescaled, are equivalent to a motion of the volumic image

by its principal curvatures. We refer to Section 5.6 for the de�nition of principal curvatures of a level

surface. We shall then, as in the preceding chapter, analyse several multidimensional �lters. We shall in

particular relate the median �lter to the mean curvature of the level surface.

12.1 Asymptotic behavior theorem in arbitrary dimension.

Our main asymptotic theorem will be a simple adaptation to arbitrary dimensions of Theorems 11.1 and

11.2 ; the proof will be basically the same. We just need to �x some notations. We consider the Euclidean

space IRN , and if x 2 IRN we set x = (x; y2; :::; yN ) = (x; y), so that y 2 IRN�1:We also set b = (b2; :::; bN )

and for any h > 0,

H(b) = T (x1 + b2y
2
2 + :::+ bNy

2
N )(0) (12.1)

where

Tu(x) = sup
B2IB

inf
y2x+B

u(y):

In this chapter, IB is assumed to be a set of parts of IRN which is invariant by linear isometries of IRN

and such that all elements of IB are contained in a ball B(0;M). As in the preceding section,

T [x1 + h(b2y
2
2 + :::+ bNy

2
N )]

is a short notation for

\T (u) with u(x) = u(x; y) = x1 + h(b2y
2
2 + :::+ bNy

2
N )".

Since T is monotone, H is a nondecreasing function with respect to each bi. It is, in addition, Lipschitz,

by the same argument yielding (11.4) :

jH(b)�H(b0)j �M2jb� b0j: (12.2)

If u(x) is a C3 function, we denote, as in De�nition 5.16, by �(u) = (�2; :::; �N ) the N � 1 eigenvalues of

the restriction of D2u(x) to the hyperplane (Du)? orthogonal to Du (provided Du 6= 0.) The �i are the

principal curvatures of the level surface of u, fy; u(y) = u(x)g passing by x.
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Theorem 12.1 Let IB be a family of structuring elements in IRN which is bounded ( 8B 2 IB, B �
B(0;M)) and isotropic (if B 2 IB, then RB 2 IB for every isometry R of IRN).

Let Tu(x) = infB2IB supy2x+B u(y) or Tu(x) = supB2IB infy2x+B u(y) and de�ne the rescaled oper-

ator

Thu(x) = inf
B2hIB

sup
y2x+B

u(y) ( resp. Thu(x) = sup
B2hIB

inf
y2x+B

u(y) )

Then, setting H(b) = T [x1 + b2y
2
2 + :::+ bNy

2
N ](0) and assuming that u is a C3 function on IRN ,

(i) if H(0) 6= 0, then

(Thu)(x) = u(x) + hH(0)jDuj(x) +O(h2);

(ii) if H(0) = 0, then on every compact set K contained in fx; Du(x) 6= 0g,

Thu(x) = u(x) + hjDu(x)jH(h
1

2
�(u)) +Ox(h

3);

where jOx(h3)j � CKh
3 for some constant CK depending only on u and K;

(iii) if H(0) = 0, then on every compact K of IRN ,

jThu(x)� u(x)j � h2M2jjD2u(x)jj+Ox(h
3);

where jOx(h3)j � CKh
3 for some constant CK depending only on u and K.

Proof. This proof follows exactly the proofs of Theorems 11.1 and 11.2 ; we simply have to adjust the

preliminaries of the proof of Theorem 11.1. We notice that T (u� u(x)) = Tu� u(x) and that, T being

translation and isometry invariant, we can choose the origin 0 at x, and the orthogonal axes (~i1; :::;~iN) so

that~i1 =
Du
jDuj (0) if Du 6= 0 and~i2; :::;~iN are the eigenvectors of the restriction of D2u(x) to the hyperplane

Du(x)?.

Since u is C3, we can therefore write

u(x) = px+ ax2 + b2y
2
1 + :::+ bNy

2
N + (c:y)x+O(jxj3); (12.3)

where p = jDuj(0) � 0, c = (c2; :::; cN), c:y denotes the scalar product in IR
N�1 and for l = 2; :::; N ,

bl =
1
2
@2u
@y2

l

(0) = 1
2D

2u(~il;~il)

a = 1
2
@2u
@x2 (0) =

1
2D

2u(~i1;~i1)

cl =
@2u
@x@yl

(0) = D2u(~i1;~il):

(12.4)

In addition, if p 6= 0, we have

bl =
1

2
jDuj�i(u)(0): (12.5)

>From this point, the proof of Theorem 12.1 is identical to the proof of Theorem 11.2. We simply have to

replace in formulas (11.9) to (11.15) the expressions \cxy" by \x(c:y)", \by2" by \b2y
2
1 + :::+ bNy

2
N" and

\curv(u)" by \�(u)". Of course, \jcj" denotes the Euclidean norm of c in IRN�1. 2
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Figure 12.1: Three dimensional median �lter. The original three dimensional image is made of 20 cuts of a vertebra. We
display on the left column three succesives cuts, and on the next column their level-lines with levels multiple of 20. The
next column shows these three cuts after one iteration of the median �lter done with a 3D ball of radius 2, and the resulting
level-lines.

12.2 Asymptotic behavior of weighted median �lters in arbitrary
dimension.

In this section, we consider C3 real functions u de�ned in IRN and a radial, nonnegative, continuous

function k(x) = k(jxj) satisfying RIRN k(x)dx = 1. We have de�ned the measure with density k by

jEjk =
Z
E

k(x)dx

and the median operator, weighted by k by Formula (10.3), that is

medk(u)(x) = sup
jBjk� 1

2

inf
y2B+x

u(y) (12.6)

We assume also that k satis�es the assumption of Proposition 10.10, so that for continuous functions u,

med�k u and medku coincide. This is true, e.g., if k is continuous and if the set fx; k(x) > 0g is connected.
We now give an in�nitesimal interpretation of the median �lters. In order to do so, we \shrink" k(x) into

kh(x) = h�Nk(xh ), which corresponds to the scaling of the structuring elements by a factor h. Without

risk of confusion, we write medh for medkh . We have analysed in the preceding chapter the asymptotic

behaviour of the median �lter in two dimensions when k is the characteristic function of a disk. The aim

of the next theorem is to adress, in arbitrary dimension, more general forms of k. We shall not make the

analysis in full generality, because this would be uselessly heavy. We shall just treat the case where k is

smooth and compactly supported. We shall also adress the case where k is no more compactly supported,
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but in that case we won't be in a position to apply Theorem 12.1 because the set of structuring elements

is then no more bounded. We shall adress and solve later this diÆculty, in Chapter ??. As a canonical

example of application of the next theorem we can think of the case where k is the Gauss function.

Theorem 12.2 Let k be a radial nonnegative function with integral 1 in the Schwartz class S. We assume

that the support of k is compact, connected, and contains 0. Then, there exists a constant c(k) such that

if u is a C3 Lipschitz function in IRN , then

(i) On every compact set K contained in fx; Du(x) 6= 0g,

(medhu)(x) = u(x) +
1

2
h2jDu(x)jc(k)�Ni=2�i(u)) +Ox(h

3);

where jOx(h3)j � CKh
3 for some constant CK depending only on u and K.

(ii) On every compact K of IRN ,

jmedhu(x)� u(x)j � h2M2jjD2u(x)jj+Ox(h
3);

where jOx(h3)j � CKh
3 for some constant CK depending only on u and K.

Lemma 12.3 Let k be a radial nonnegative function with integral 1 in the Schwartz class S. We assume

that the support of k is connected, and contains 0. (We do not assume that the support of k is compact, so

that the Gauss function is a valid example). Then the function H(hb) = medk[x+h(b2y
2
2 + :::+ bNy

2
N )](0)

associated with the weighted median �lter by Relation (12.1) satis�es

H(hb) = c(k)(�Ni=2bi)h+ o(h);

where

c(k) =

R
IRN�1 y

2
2k(y)dyR

IRN�1 k(y)dy
:

and y = (y2; :::; yN ) 2 IRN�1, b = (b2; :::; bN ) 2 IRN�1:

Proof. Repeating the analysis of Lemma 11.4, we notice that the median valuem(h) = medk[x+h(b2y
2
2+

:::+ bNy
2
N )](0) is de�ned by

Z
IRN�1

dy

Z m(h)�h(b2y22+:::+bNy2N )

0

k((x2 + y2)
1
2 )dx = 0: (12.7)

This formula uniquely de�nes m(h) because its �rst member is a strictly increasing, continuous function

of m(h) in a neighborhood of 0. Formally di�erentiating (12.7) with respect to h yields

m0(h)
Z
IRN�1

k((y2 + (m(h)� h(b2y
2
2 + :::+ bNy

2
N))

2)
1
2 )dy =

Z
IRN�1

(b2y
2
2 + :::+ bNy

2
N )k((y

2 + (m(h)� h(b2y
2
2 + :::+ bNy

2
N ))

2)
1
2 )dy:

In order to reduce the size of formulas, we set

'(a; h) =

Z
IRN�1

(b2y
2
2 + :::+ bNy

2
N)k((y

2 + (a� h(b2y
2
2 + :::+ bNy

2
N))

2)
1
2 )dy; (12.8)
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 (a; h) =

Z
IRN�1

k((y2 + (a� h(b2y
2
2 + :::+ bNy

2
N))

2)
1
2 )dy: (12.9)

These functions are well de�ned, C1 and positive for small a and h because of the assumptions on k. So

we obtain

m0(h) (m(h); h)� '(m(h); h) = 0;

and formally again,

m0(0) =
'(0; 0)

 (0; 0)
= (�Ni=2bi)

R
IRN�1 y

2
2k(y)dyR

IRN�1 k(y)dy
= c(k)(�Ni=2bi): (12.10)

This formal computation is easy to justify. We simply introduce the ordinary di�erential equation

~m0(h) =
 ( ~m(h); h)

'( ~m(h); h)
; ~m(0) = 0; (12.11)

which has, by Peano Theorem ([?]), a solution on some interval [0; h0[. Indeed, the second member of

(12.11) is C1 with respect to h and ~m(h). Multiplying both members of (12.11) by '( ~m(h); h) and

integrating between 0 and h yields

Z
IRN�1

dy

Z ~m(h)�h(b2y22+:::+bNy2N )

0

k((x2 + y2)
1
2 )dx = 0: (12.12)

Thus ~m(h) satis�es (12.7) and therefore m(h) = ~m(h) on [0; h0]. As a consequence, (12.10) is true. We

can also di�erentiate (12.11) as many times as we wish with respect to h and we therefore obtain by Taylor

formula

H(hb) = m(h) = c(k)(�Ni=2bi)h+O(h2):

In addition, since � and  and their derivatives with respect to a and h are continuous functions of b at

any order of derivation, the obtained O(h2) is obviously uniform if b = (b2; :::; bN) stays in an arbitrary

compact set of IRN�1. 2

Proof of Theorem 12.2. The operator Tu(x) = medku has a \supinf" form and his set of structuring

elements

IB = fB; jBjk � 1

2
; B � Support(k)g

is isotropic and bounded. Thus, T satis�es the conditions of Theorem 12.1. By Lemma 12.3, the function

H associated with T satis�es H(0) = 0, and we obtain the conclusions (ii) and (iii) of Theorem 12.1. Using

Lemma 12.3 yields

H(hb) = c(k)(�Ni=2bi)h+O(h2)

and therefore, by Theorem 12.1(ii),

(medhu)(x) = u(x) + h2jDu(x)jc(k)(1
2
�Ni=2�i(u))) +Ox(h

3)

with jOx(h3)j � OK(h
3) on compact sets K where jDu(x)j 6= 0. The assertion (ii) follows immediately

from Theorem 12.1(ii). 2
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Exercise 12.1 Adapt the proof of Theorem 12.2 and of Lemma 12.3 to the case where k only is C0 and

compactly supported, with connected support containing 0 in its interior. (As an example, we can take k

proportional to the characteristic function of the unit ball).

12.2.1 The three-dimensional case

The third dimension opens many degrees of freedom in the synthesis of contrast invariant operators with

respect to dimension 2 ; indeed, we can now play with two variables instead of one, the principal curvatures

of the level surface, which we order so that �1 � �2. We list a series of examples which are easy applications

of Theorem 12.1. We shall in the following formulas consider a two-dimensional set B and we set IB =

fRB; R 2 SO(3)g. The set of structuring elements IB is obtained by rotating in IR3 a single subset of

IR2 in all possible ways. We set, as usual,

SIhu(x) = sup
B2hIB

inf
y2x+B

u(y)

and

IShu(x) = inf
B2hIB

sup
y2x+B

u(y):

We then have the following formulas.

� If B is a segment with length 2 centered at 0:

IShu = u+
1

2
h2�+1 jDuj+O(h3);

ISh(SIh)u = u+
1

2
h2(sign(�1(u)) + sign(�2(u))min(j�1j; j�2j) +O(h3):

� If B is made of two symmetric points, (1,0,0) and (-1, 0, 0),

IShu = u+
1

2
h2jDujmin(�1(u); �2(u)) +O(h3);

SIhu = u+
1

2
h2jDujmax(�1(u); �2(u)) +O(h3);

ISh(SIh)u = u+
1

2
h2jDuj(�1(u) + �2(u)) +O(h3):

The last formula yields the mean curvature of the level surface of u at x.

� If B is made of two orthogonal segments with length 2 each and centered at 0,

IShu = u+ h2jDuj1
2
(�1(u) + �2(u))

+ +O(h3);

SIhu = u+ h2jDuj1
2
(�1(u) + �2(u))

� +O(h3):

Of course, one can get directly the mean curvature by simply taking for B the endpoints of both orthogonal

segments. Another possibility to obtain the mean curvature is to alternate the preceding schemes, or to

add them.
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Sketch of proof. In order to prove the preceding formulas, we simply compute for all considered oper-

ators T the function

H(b) = T [x1 + b2y
2
2 + b3y

2
3 ](0);

where x = (x1; y2; y3): In all cases, we have H(0) = 0 so that, by Theorem 12.1,

Thu(x) = u(x) + hjDu(x)jH(h
1

2
�1; h

1

2
�2) +O(h3): (12.13)

Let us for instance compute H(b) in the �rst case, when T = IS and B is a segment with length 2 centered

at 0. By a symmetry argument, it is easily seen that the \inf-sup" is attained for a segment contained in

the plane x1 = 0, so that

H(b) = inf
IB

sup
B2IB

b2y
2
2 + b2y

2
3 = inf

�
sup

0�r�1
r2(b2 cos

2 � + b3 sin
2 �):

If b2 � 0 or b3 � 0, this yields H(b) = 0. If 0 � b2 � b3, we get H(b) = b2. Thus H(b) = b+2 and we obtain

from (12.13) :

Thu(x) = u(x) + h2jDu(x)j1
2
�+1 +O(h3)

as announced. The other formulas are computed in a totally similar way and are left as exercises.

2

Figure 12.2: Median �ltering of a three-dimensional image. First image : representation of the horizontal slices of a
3-D level-surface of the 3-D image of a vertebra. Right-left and up-down : 1, 2, 5, 10, 20, 30, 60, 100 iterations of a
three-dimensional median �lter, supported by a ball with radius 3. We have just proved that this scheme is a possible
implementation of the mean curvature motion, originally proposed as such by Bence, Merriman and Osher.
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References.

The references for this chapter are essentially the same as in the preceding one, devoted to the dimension

2. The main theorem on the asymptotic behaviour of morphological �lters was �rst stated and proved in

[191, 187]. The examples, given in the last section, of possible morphological �ltering with their subjacent

surface motion equations are not published elsewhere. The consistency of gaussian smoothing followed by

thresholding with the Mean Curvature Motion was proved in increasing mathematical sophistication and

generality by Bence, Merriman and Osher [291], Mascarenhas [288], Barles-Georgelin [50] and Evans [136].

Our presentation here is slightly more general than the one in these authors (we allow any weight function

in the Schwartz class). The best general result is given by Ishii [225].
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Chapter 13

AÆne invariant mathematical
morphology

In this chapter, we consider ways to erode or dilate a shape in an aÆne invariant way. The aÆne invariance

requirement is a further extension of the obvious translation invariance and the isotropy (rotation invarian-

ce) which we already considered for convolutions, erosions and dilations. Let us mention that a translation

is characterized as a transform which preserves distances between points and the angle of each vector

with a �xed direction. Isometries (rotations-translations) preserve distances between points and angles

between vectors. Similarities (i.e. isometries followed by a zoom) preserve angles between points. Then,

aÆne transforms are characterized as transforms of an image which preserve parallelism and projective

transforms as transforms which preserve alignments. This is the classical hierarchy of \anamorphoses", or

image deformations, we can face in image processing.

When we take a photograph of a plane image, like a painting, we perform a transform which preserves

alignments, that is, a projective transform. When we take a photograph of a plane image from a long

enough distance, however, the transform tends to preserve parallelism. We then perform an aÆne transform

and a rectangle looks like a parallelogram. This rule is used in the paintings of the traditional chinese

painting, which tends to always display scenes seen from some distance. (See Exercise 13.3 at the end of

this chapter.) To take a more up to date example, most photocopy machines perform an aÆne transform

and so do fax machines and even scanners. Thus, the analysis of scanned or copied plane documents must

be aÆne invariant in order to get rid of this artefactual deformation. We shall here explore with much

detail set operators which are aÆne invariant. We shall prove further in this book (Chapter 21 that it is

impossible to perform a shape smoothing with more invariance than the aÆne one.

De�nition 13.1 Let A =

�
a b
c d

�
be an arbitrary matrix such that detA = ad � cb = 1. The set of

such matrices is the so called \special linear group", SL(IR2). We say that an operator T is special aÆne

invariant if T commutes with A for every A in SL(IR2) : AT = TA.

We �rst de�ne an \aÆne invariant distance" of a point x to a set X which will be a substitute to the

classical euclidean one. We consider shapes X , that is, in whole generality, subsets of IR2. Let x 2 IR2

and � an arbitrary straight line passing by x. We consider all connected components of IR2 n (�(X) [�).

If x =2 �X, two and only two of them contain x in their boundary. We denote them by CA1(x;�;X),
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CA2(x;�;X), we call them the \chord-arc sets" de�ned by x, � and X , and we order them so that

area(CA1(x;�;X)) � area(CA2(x;�;X)).

De�nition 13.2 Let X be a subset of IR2 and x 2 IR2;x =2 �X. We call aÆne distance of x to X the real

number Æ(x; X) = inf� area(CA1(x;�;X))
1=2 if x =2 �(X); Æ(x; X) = 0 if x 2 �(X).

Remark 13.3 Obviously, we take the power 1=2 in order that the aÆne distance be homogeneous to a

length. The aÆne distance can be in�nite :

Take e.g. a closed convex set X and x outside X. Then it is easily seen that Æ(x; X) = +1 because

all chord-arc sets de�ned by all straight lines � are in�nite.

Figure 13.1: AÆne distance to a set.

De�nition 13.4 Let X be a shape, i.e. a subset of IR2. We call aÆne a-dilate of a set X the set ~DaX =

fx; Æ(x; X) � a1=2g. We call aÆne a-eroded of set X the set ~EaX = fx; Æ(x; Xc) > a1=2g = ( ~DaX
c)c.

Exercise 13.1 Show that ~EaX = ( ~Da(X
c))c: This relation shows that it is equivalent to erode a set or to

dilate its complementary set : a useful symmetry, since the same shape may appear as an upper level set

or as the complementary set of an upper level set, depending on whether it is darker or brighter than the

background.

Remark 13.5 The denominations \erosion" and \dilation" for the preceding operators do not correspond

to the standard terminology in Mathematical Morphology. Indeed, a dilation must commute with the set

union and an erosion with the set intersection. It is easily checked that the aÆne erosions and dilations

as de�ned above do not satisfy this requirement. 1. All the same, we shall maintain these names, because

aÆne erosions and dilations as we have just de�ned are clearly sound generalizations of the euclidean ones.

Proposition 13.6 The aÆne invariant erosions and dilations ~Ea and ~Da are special aÆne invariant

monotone operators.

1We thank Michel Schmitt for pointing us out this fact
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Proof It is easily seen that if X � Y , then for every x, Æ(x; X) � Æ(x; Y ). From this, we deduce that

X � Y ) ~DaX � ~DaY . The monotonicity of ~Ea follows by the duality relation ~EaX = ( ~DaX
c)c. The

special aÆne invariance of ~Da and ~Ea follows from the fact that if detA = 1, then area(X) = area(AX). 2

Exercise 13.2 Show that ~Ea and ~Da are aÆne invariant in a sense similar to De�nition 20.19, namely

that for every linear map A =

�
a b
c d

�
with detA > 0, A ~E(detA)�1=2a = ~EaA.

We shall now use Matheron Theorem 8.3 in order to give a standard form to ~Ea and ~Da. According

to this theorem, we can associate withh any translation invariant monotone operator acting on a set of

subsets of IRN a family of sets IB � P(IRN ), de�ned by IB = fX; 0 2 T (X)g and such that

T (X) =
[
B2IB

\
y2B

X � y = fx; 9B 2 IB;x+B � Xg:

We can apply this theorem to ~Ea, provided we identify its associated structuring elements.

De�nition 13.7 We say that B is an aÆne structuring element if B is a set whose interior contains 0,

and if there is some b > 1 such that for every line � passing by 0, both connected components of B n �
containing 0 in their boundary have an area larger or equal to b. We denote the set of aÆne structuring

elements by IBa� .

Figure 13.2: An aÆne structuring element : all lines passing by 0 divide B into several connected compo-
nents. The two of them which contain 0 in their boundary have area larger or equal to B.

Proposition 13.8 For every set X,

~EaX =
[

B2IBaff

\
y2a1=2B

X � y = fx; 9B 2 IBa� ;x+ a1=2B � Xg
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∆∆

x

C

Figure 13.3: Illustration of the Corollary 13.10.

Proof We simply apply Matheron Theorem 8.3. The set of structuring elements associated with ~Ea is

IB = fX; ~EaX 3 0g. Now,

~EaX 3 0, Æ(0; Xc) > a1=2 , inf�area(CA1(0;�; X))1=2 > a1=2:

Let us call b the value of the preceding in�mum. This las relation means that for every �, both connected

components of X n� containing 0 have area larger than b > a. Thus, X belongs to a1=2IBa� by de�nition

of IBa� . 2

By Proposition 13.8, x belongs to ~EaX if and only if for every straight line �, chord-arc sets containing

x have an area strictly larger than a. Let us now characterize the points which belong to X but not to

~EaX .

De�nition 13.9 We call chord-arc set of X any connected component of X n�, where � is an arbitrary

straight line.

Corollary 13.10 ~EaX can be obtained from X by removing, for every straight line �, all chord-arc sets

contained in X which have an area smaller or equal than a.

Proof ATTENTION DEMONSTRATION A CONTROLER Let C be a chord-arc set of X , with area

less or equal to a, and bounded by a straightline �. Then, we claim that for every x 2 C, Æ(x; Xc) � a
1
2 :

Indeed, consider �0, the straight line parallel to � and passing by x. One of CA1(x;�
0; Xc) or

CA2(x;�
0; Xc) is contained in C and therefore has area less or equal to a. Thus Æ(x; Xc) � a

1
2 and x does

not belong to ~EaX: Conversely, if x 2 X n ~EaX , then by de�nition there is some � passing by x such that

area(CA1(x;�; X
c)) � a: Thus C = CA1(x;�; X

c) is a chord-arc set with area less or equal to a and x

belongs to C.

2

Corollary 13.10 has a huge numerical relevance : it gives an easy way to perform aÆne dilations and aÆne

erosions. In the next section, we shall make a �rt hint on how those operators are related to the (AMSS)

model.
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13.1. APPLICATION TO AFFINE ALTERNATE CURVE FILTERS

13.1 Application to aÆne alternate curve �lters

One of the main diÆculties of mathematical morphology is the non commutation of erosions and dilations,

which entails the non commutation of opening and closing. Why is it a problem ? By performing an

opening (with a ball) of a shape, we simply remove its external peaks. More precisely, if we do an opening

by a ball with radius h, then the radius of curvature of the external peaks becomes larger than h and if

we perform an opening of the shape, the radius of curvature of the peaks pointing inside becomes larger

than h. Thus, the aim of opening and closing is to smooth out the peaks in exactly the same way and

it would be quite desirable to have both operations made simultaneously. In order terms, they should

commute, and we could talk about a \curvature thresholding" operator. This type of commutation is

roughly asymptotically attained by performing alternate �lters [378]. The idea is to chose a very small

scale h, and to alternate the openings O and closings F in the following way :

OtFtO t
2
F t

2
:::O t

2n
F t

2n
:::

Since Ot and Ft are idempotent, the growth in scale is necessary in order to perform a progressive smooth-

ing, up to the scale t.

In the same way, aÆne erosions and dilations do not commute and should alternate. Now, they are

not idempotent and the situation is simpler : we only need to choose an incremental scale h small enough

and to alternate ~Eh and ~Dh, that is, to compute ( ~Eh ~Dh)
n: In Chapter 24 we describe how to implement

such an alternate �lter. Its relevance will be demonstrated in Chapter ??, where we prove that there is

only one way to smooth out shapes in an aÆne invariant way, the \aÆne shortening" or AMSS model.

In Section 18.5, we shall prove that when h! 0, the iterated alternate aÆne erosion ( ~Eh ~Dh)
n converges,

when n ! +1 and h ! 0 in an adequate way, to the solution of the aÆne shortening equation. More

precisely, let c0 be a Jordan curve, which is the boundary of a simply connected set X . Iterating aÆne

erosions and dilations on X gives a numerical scheme that computes the aÆne shortening cT of c0 at a

given scale T . If cT is the curve represented by the function s 7! C(s; T ), then

@C

@t
(s; t) = jCurv(s; t)j1=3~n(s; t) (13.1)

where Curv(s; t) and ~n(s; t) are the curvature and the normal vector at the point with abscissa s of the

curve ct = C(�; T ).

Exercise 13.3 The aim of this exercise is to prove that if an application ~A : IR2 ! IR2 preserves par-

allelism between pairs of points, then there is a linear map A and a vector b such that ~A(x) = Ax + b:

The preservation of parallelism will be stated in the following way. If any four points x1; x2, x3 and

x4 satisfy x1 � x2 = �(x3 � x4) for some real number �, then there exists a real number � such that
~Ax1 � ~Ax2 = �( ~Ax3 � ~Ax4):

1) Consider a basis (~i;~j) of the plane, set 0 = (0; 0) and x = x~i + y~j: Set Ax = ~Ax � ~A0 and prove that

there exist real functions �1(x) and �2(y) such that A(x~i) = �1(x)~i and A(y~j) = �2(y)~j:

2) Notice that A preserves parallelism and satis�es A0 = 0:

3) Show that A(x) = �1(x)~i+ �2(y)~j:

4) By using Thales' Theorem, show that �1(x) = ��2(x) for some real constant �.

5) Replace ~i by �~i and apply the preceding results : deduce that ��1(�
�1x) = c is a constant and conclude.
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References.

Clearly, planar shape recognition algorithms are be more eÆcient when they are aÆne invariant, since

most optical duplication devices (scanners, photocopiers, faxes) perform slight aÆne distortion on planar

images. Also, all di�eomorphisms are locally aÆne distortions. Shape aÆne invariant matching techniques

are described in [222] and discussion on the role of aÆne and projective invariance for object recognition in

[61, 431, 239]. Clearly, corners and T-junctions can be seen in projective scenes with arbitrary angles. The

detection of angles between two straight lines must be aÆne invariant. Algorithms are proposed in [60, 17,

413, 121]. See Merriman, Bence, Osher [292] for a very original numerical view of the �ltering of multiple

junctions. Because of its relevance in Computer Vision, aÆne invariant de�nitions of classical geometric

measure or integral geometry concepts have been actively sought for. [123] contains an interesting attempt

to de�ne an "aÆne invariant length" and an "aÆne invariant dimension", by analogy with Hausdor�

lengths and dimensions. The diameters of the sets of a Hausdor� covering are simply replaced by their

area. Several attempts to de�ne aÆne invariant analyses of discrete set points are described in [169, 365].

[171] de�nes an aÆne invariant symetry set (skeleton) for shapes and [345] relates to aÆne invariance the

1/3 power law of planar motion perception and generation. Some of the techniques on aÆne erosions and

dilations presented in this chapter were announced in [268]. We used liberally the Matheron formalism for

set monotone operators [290].
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Chapter 14

Localizing a family of structuring
elements

When the set of structuring elements IB is aÆne invariant, the associated rescaled operators

IShu(x) = inf
B2hIB

sup
y2B

u(x+ y)

commute with a lot of plane transforms : with space translations, u(x) ! u(x + y0), with grey level

translations u(x) ! u(x) + C, with linear maps with determinant 1, u(x) ! u(Ax) where A 2 SL(IR2)

and with contrast changes u! g Æ u when g is continuous and nondecreasing. Now, the aÆne invariance

entails a loss of locality. The value at x of IShu may depend upon values of u(y) at points which are

arbitrarily far from x, no matter how small h is. Indeed, the linear invariance permits to stretch an element

of IB in any direction. Indeed, if B 2 IB, then A"B 2 IB; where A" =

�
" 0
0 1

"

�
:

Thus ISh looks like an a priori non local operator. We shall see that this is not the case for a very

general class of families IB, for which ISh behaves like a local operator, though involving arbitrarily

elongated sets. The locality property which we wish for ISh (in fact, a local comparison principle) will be

deduced from a corresponding \localizability" property for IB. The same problematic applies to median

�lters when their weight function is not compactly supported. So we shall also treat the case of gaussian

weighted median �lters and show that they in fact like local �lters, their set of structuring elements IB

being \localizable".

14.1 Localizable families of structuring elements

Proposition 14.1 and de�nition Let � > 0 be a positive constant which will play the role of an \expo-

nent of localizability". We shall say that a set of structuring elements IB is �-localizable if there exists a

constant c > 0 such that for every � > c�1 we can assert that

8B 2 IB; 9B0 2 IB;B0 � D(0; �)

and B0 � D c
��
(B) = fx; d(x;B) � c

�� g, where d denotes the euclidean distance, d(x;B) = infy2B d(x; y).

As a consequence, by rescaling by a scale factor h, we have the equivalent property :

9c > 0; 8r > 0; 8h � cr; 8B 2 IBh; 9B0 2 IBh; B
0 � D(0; r)
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and B0 � D ch�+1

r�
(B).

Proof In order to deduce the second relation from the �rst, we simply set r = �h. We have B 2 IB if

and only if hB 2 IBh. We therefore replace B by hB and B0 by hB0 and we get for the new B and B0 in

IBh :

B0 � D ch
��
(B) = Dh�+1

r�
(B);

provided � > c�1, i.e. r > c�1h, i.e. h < cr. 2

Let us give a �rst criterion for the 1-localizability, which will apply to aÆne invariant families of structuring

elements.

Proposition 14.2 Let IB be made of subsets of IR2 containing 0. Assume that there exists c > 0 such that

if B 2 IB and r > c, then the connected component of D c
r
(B)\D(0; r) containing 0 is in IB (resp. contains

an element of IB). Then IB is 1-localizable. (We denote by D c
r
(B) the dilate of B, fx; d(x;B) � c

rg).

Proof For any B in IB, we consider B0, the connected component of D c
r
(B) \D(0; r) containing 0. In

the second case, we consider an element B0 of IB contained in this connected component. 2

Proposition 14.3 If IB = IBa� is the set of all aÆne structuring elements, then IB is localizable.

0

B

∆

C

C’
x

Figure 14.1: Proof of Proposition 14.3.

Proof We want to apply proposition 14.2. Let B 2 IBa� and bB > 1 such that for every � passing

by 0, the areas of the connected components of X n � containing 0 are larger than bB . Let B0 be the

connected component of D 3
r
(B) \ D(0; �) containing 0. We shall show that B0 belongs to IBa� . Let us

consider C0, one of the two connected components of B0 n� containing 0 in its boundary. Consider also C,
the connected component of (B n�) \D(0; �) containing 0 in its boundary and on the same side of � as

C0. Notice that C � C0.
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14.2. LOCALIZABILITY OF THE GAUSSIAN MEDIAN FILTER

Two cases : If C does not meet @D(0; �), then C is the one of the connected components of B n �
containing 0 and, in addition, C0 contains C. Thus area(C0 � bB and we are done.

Let � be a line passing by 0. We consider one of the two connected components C0 of B0 n� containing

0 in their boundary. We also consider C the connected component of B n� containing 0 in their boundary

and such that C \D(0; r) � B0.

Two cases : if C is contained in D(0; r), then by de�nition of chord-arc sets, the area of C is larger than b.

Therefore, the area of C0 is larger than b.
Second case : if C is not contained in D(0; r), we consider the connected component C1 of C n@D(0; r� 2b

r )

which contains 0. C1 � C meets @D(0; r� 2b
r ) at some points, then, by connectedness, each line orthogonal

to [0; x] and passing by tx, with 0 � t � 1, meets C1 at at least one point x(t) 2 D(0; r � 2b
r ). Noting

� = x?

kxk , a unit vector orthogonal to x, we notice that the interval [x(t) � 2�
r ; x(t) +

2�
r ] is contained in

D 2b
r
(C1) � D 2b

r
(C) � B0. In addition, one half at least of this interval is contained in C0. Thus, provided

r � 2b, area(C0) � (r � 2b
r )

2b
r = 2b� 4b2

r2 � b. 2

We can roughly say that all aÆne invariant families made of connected sets containing 0 are localizable,

provided the shape of the elements is not too much distorted. The next example gives another example,

where the \not too much distorted" condition is given by convexity.

Exercise 14.1 Examples of localizable families.

1) Let IB be an aÆne invariant family of convex sets containing 0, all with area less than 1. Show that

IB is localizable. Here is a way to prove it : Let B 2 IB. If B � D(0; �), we are done. Otherwise, let x

be the element of B with largest norm. Consider the special linear symmetric map A with eigenvectors x

and x? and respective eigenvalues �
jxj and

jxj
� . Then check that if � is larger than some universal constant

C, then AB � D(0; �). Set B0 = AB, which belongs by assumption to IB, and prove that for some other

universal constant c, B0 � D c
�
(B). Conclude.

2) Let B be a bounded connected set whose interior contains 0 and de�ne an aÆne invariant family IB =

fAB; A 2 SL(IR2)g, where SL(IR2) denotes the special linear group of all linear maps with determinant

1. Show, by using the same method as in 1), that IB is localizable.

14.2 Localizability of the gaussian median �lter

We shall now give another relevant instance of localizable family, associated with the weighted median

�lter. Although one can state much more general results, we shall restrict ourselves to the case where

the weight function k of the median �lter is the Gauss function G(x) = 1

(4�)
N
2
e�

jxj2
4 : We then haveR

IRN G(x)dx = 1 and we can consider in the following the family of structuring elements IB associated

with G. For brievety, we write jBjG for
R
B
G(x)dx: Then

IB = fB � IRN ; jBjG � 1

2
g:

Proposition 14.4 The set IB associated with the gaussian median �lter is �-localizable for every � > 0.

More precisely,

8� > 0; 9c = c(�); 8� � c; 8B 2 IB; 9B0 2 IB; B0 � B(0; �) such that B0 � D 1
��
(B):

F. Guichard, J-M. Morel, Image Analysis and PDE's 169



CHAPTER 14. LOCALIZING A FAMILY OF STRUCTURING ELEMENTS

Corollary 14.5 As an immediate consequence of De�nition-proposition 14.1, we obtain by scaling IB into

IBh = hIB :

8r > 0; 8h � cr; 8B 2 IBh; 9B0 2 IBh; B
0 � B(0; r) and B0 � Dh�+1

r�
(B):

Proof of Proposition 14.4 We begin by choosing �0 such that

jB(0; �0)jG =
3

4
:

We then call �1 the value �1 � �0 for which

jB(0; �1)jG =
1

8

and we assume in the following � � �1.

Two cases :

� If B 2 IB satis�es

jBjG � 1

2
+ jB(0; �)cjG;

we simply set B0 = B \ B(0; �) and we get

jB0jG � jBjG � jB(0; �)cjG � 1

2
;

which proves that B0 2 IB, B0 � B answers the question.

� If B 2 IB satis�es

jBjG � 1

2
+ jB(0; �)cjG � 1

2
+
1

8
;

then

jB \B(0; �0)jG � jBjG � jB(0; �0)cjG � 1

2
� 1

4
=

1

4
; (14.1)

jBc \ B(0; �0)jG � jB(0; �0)jG � jBjG � 3

4
� (

1

2
+
1

8
: (14.2)

Since G � 1, we have for every measurable set A, jAjG � meas(A): Thus, from (14.1-14.2),

meas(B \ B(0; �0)) � 1

4
and meas(Bc \B(0; �0)) � 1

8
: (14.3)

By Lemma 14.6, which we state in continuation, and Relation (14.3), we obtain, for a universal constant

C,

meas(B(0; �0) \D 1
��
(B \ B(0; �0)) nB)) � C

��

and therefore

jB(0; �) \D 1
��
(B \ B(0; �)) nBjG � C

��
e�

�2
0
4

(4�)
N
2

� C

��
(14.4)

for some universal constant C. We �nally set

B0 = B(0; �) \D 1
��
(B \ B(0; �);
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so that d(B0; B) � 1
�� , B

0 � B(0; �). We then have by (14.4)

jB0jG � jBjG � jB(0; �)cjG +
C

��
;

that is

jB0jG � jBjG +
C

��
�
Z
jxj��

G � jBjG � 1

2
;

for � � c(�), where c(�) only depends on �. Indeed,

Z
jxj��

G � cN�
N�1e�

�2

4

for a universal constant cN . 2

Lemma 14.6 Let B(0; �0 be a ball and B a subset of IRN satisfying for some constant Æ > 0,

meas(B \ B(0; �0)) � Æ and meas(Bc \ B(0; �0)) � Æ:

Then there are constants C(�0; Æ) and �0(�0; Æ) such that

8� � �0; meas(B(0; �0) \Deta(B \ B(0; �0)) nB) � C�:

Proof This is an easy consequence of the isoperimetric inequality ([?]). 2

14.3 A local comparison principle.

We shall now prove that our de�nition of \localizable family" for IB indeed yields locality properties for

the associated operator

IShu(x) = inf
B2hIB

sup
y2B

u(x+ y):

Intuitively, an operator Th depending on a scale parameter h is local if its value (Thu)(x) at a point x

primarily depends upon the values of u(y) in a neighborhood of x whose size tend to zero as h tends to

zero. This can be stated in many ways. Thanks to the monotonicity of the considered operators, we can

formulate it as a local comparison principle.

Lemma 14.7 [local maximum principle] Let IB be an �-localizable set of plane closed nonempty sets. Let

u and v be two Lipschitz functions in a disk D(x0; r) satisfying u(x) � v(x) in D(x0; r). Let K be the

Lipschitz constant of u. Then if h � cr,

(IShu)(x0) � (IShv)(x0) +Kc
h�+1

r�
:
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Proof of Lemma 14.7.

(IShv)(x0) = inf
B2IBh+x0

sup
y2B

v(y) � inf
B2IBh+x0

sup
y2B\D(x0;r)

v(y)

� inf
B2IBh+x0

sup
y2B\D(x0;r)

u(y)

By De�nition 14.1, for all B 2 IBh + x0, there exists B
0 in IBh + x0, B

0 � D(x0; r), such that Æ(B;B0) �
ch

�+1

r� . Thus, since u is K-Lipschitz,

sup
y2B\D(x0;r)

u(y) � sup
y2B0

u(y)�Kc
h�+1

r�
:

The two preceding relations yield

(IShv)(x0) � inf
B2IBh+x0

sup
y2B\D(x0;r)

u(y) (14.5)

� inf
B02IBh+x0; B0�D(x0;r)

sup
y2B0

u(y)�Kc
h�+1

r�
� inf

B2IBh+x0

sup
y2B

u(y)�Kc
h�+1

r�
:

We obtain

(IShu)(x0) = inf
B2IBh+x0

sup
y2B

u(y) � (IShv)(x0) +Kc
h�+1

r�
:

2

The next lemma permits to �x an optimal relationship between the localization scale r and the operator's

scale h.

Lemma 14.8 (Locality) Let IB be an �-localizable set of subsets of IRN . Let u; v be two K-Lipschitz

functions such that

ju(x)� v(x)j � Cjxj3

in a neighborhood of 0. Then

jIShu(0)� IShv(0)j � (C +Kc)h
3(�+1)
3+� :

Proof. Applying the local maximum principle (Lemma 14.7), we deduce from the relation

v(x)� Cr3 � u(x) � v(x) + Cr3

on D(x; r) that

(IShv)(0)� Cr3 �Kc
h�+1

r�
� (IShu)(0) � (ISrhv)(0) + Cr3 +Kc

h�+1

r�

We choose r in such a way that both in�nitesimals appearing in the second member of the former inequality

be of the same order : r3 = h�+1

r� , which yields

r = h
�+1
3+� r3 =

h�+1

r�
= h

3(�+1)
3+� :

We obtain

(IShv)(0)� Ch
3(�+1)
3+� �Kch

3(�+1)
3+� � (IShu)(0) � (IShv)(0) + Ch

3(�+1)
3+� +Kch

3(�+1)
3+� :

Working version subject to errors, only for personal use. No di�usion authorized. All rights reserved. (Version: 15/07/2000)



14.3. A LOCAL COMPARISON PRINCIPLE.

2

The main interest of lemma 14.8 is to reduce the asymptotic analysis of the operator ISh as h! 0 to

the case where it is applied to second order polynomials. In all that follows, we adopt the rule of scale

r = h
�+1
3+� . This choice will be justi�ed in Lemma14.8 to follow.

In the following, it will be useful to associate with the operators ISh new operators

(ISrhu)(x0) = inf
B2IBh+x0

sup
y2B\D(x0;r)

u(y);

whose locality has been enforced : we truncate all elements in IB by removing their parts outside D(0; r).

We shall now estimate the asymptotic di�erence between ISh and ISrh.

Lemma 14.9 (Localization Lemma)

Let IB be an �-localizable set of structuring elements in IRN and u a K-lipschitz function on D(x0; 1). Let

us set r = h
�+1
3+� . Then

(i) ISrhu(x0) � IShu(x0) � ISrru(x0) +Kch
3(�+1)
3+� :

for r small enough. As a consequence,

(ii) jSIrhu(x0)� SIhu(x0)j � Kch
3(�+1)
3+� :

(iii) jISrhu(x0)� IShu(x0)j � Kch
3(�+1)
3+� ;

(iv) jSIrhISrhu(x0)� SIhIShu(x0)j � 2Kch
3(�+1)
3+�

Proof : The inequality (i) follows from the inequalities (14.5), in the proof of Lemma 14.7, by taking

u = v. The inequalities (ii) and (iii) are deduced by using ISs(�u) = �SIs(u). In order to obtain (iv),

we notice that if u is globally K-Lipschitz, then so is IShu by Lemma 7.5. We have by (ii) and (iii)

SIrhu � SIhu � Kch
3(�+1)
3+� + SIrhu (14.6)

ISrhu � IShu � Kch
3(�+1)
3+� + ISrhu (14.7)

Taking in (14.6) u = IShu and using (14.7), we obtain

SIrhIS
r
hu � SIhIShu � 2Kch

3(�+1)
3+� + SIrhIS

r
hu;

which proves (iv). 2
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Chapter 15

Asymptotic behavior of aÆne and
contrast invariant �lters.

In this chapter, we analyze, in dimension 2, the asymptotic behaviour of contrast invariant aÆne invariant

monotone operators. By aÆne invariance, we mean that the operators commute with all linear maps of

the plane with determinant 1. We know that such operators have an inf sup (or sup inf) form,

Tu(x) = inf
B2IB

sup
y2x+B

u(y)

We denote by SL(IR2) the special linear group, that is, the group of all linear transforms A =

�
a b
c d

�

such that jdet(A)j = jad� bcj = 1. If the operator T is aÆne invariant, its set IB of structuring elements is

obviously also invariant under special linear transforms of the plane : AB 2 IB if B 2 IB and det(A) = 1.

Conversely, if AIB = fAB;B 2 IBg is equal to IB, then the associated inf sup or sup inf operators T are

aÆne invariant : Denoting by Au(x) = u(Ax), we obviously have T (Au) = AT (u): Since, in addition, T

commutes with translations, it indeed commutes with all aÆne maps of the plane. By abuse, we shall

sometimes say that IB is aÆne invariant. An obvious example of aÆne invariant set IB is the family of

ellipses with area 1 centered at 0. More generally, we can consider the set fAB;A 2 SL(IR2)g where B is

an arbitrary bounded set of the plane.

In what follows, we write as usual x;y; z for elements of IR2 and x = (x; y). We consider a scaling

parameter h > 0, and we set IBh = fhB;B 2 IBg.
We set, for every real function u(x) de�ned on the plane,

SIhu(x) = sup
B2IBh

inf
y2x+B

u(y);

IShu(x) = inf
B2IBh

sup
y2x+B

u(y):

SIhu is understood as an \aÆne erosion" of u and IShu as an \aÆne dilation". Since SIhu = �ISh(�u),
we choose to study in the following one of these operators, namely ISh. All theorems will be trivially

adapted to SIh. Our main concern is the behavior of IShu(x) when u(x) is a smooth (C3) function and

h! 0. We prove in this chapter that if IB is aÆne invariant and 1-localizable (as shown in the preceding

chapter, aÆne invariance entails easily the the 1- localizability),

lim
h!0

(IShSIhu)(x0)� u(x0)

h
4
3

= cIB jDujcurv(u) 13 ;
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where cIB is a suitable constant and r
1
3 is meant for r

jrj jrj
1
3 . This main result extends to aÆne invariant

Matheron operators the asymptotic analysis performed in the preceding chapter for euclidean invariant

local operators.

Lemma 14.8 shows that if IB is localizable, then the behaviour of a C3 function is very close to the

behaviour of its Taylor expansion of order 2. If u is C2, let us write

u(x) = u(x; y) = u(0; 0) + ax2 + by2 + cxy +O(jxj3) = v(x) +O(jxj3):

If IB is 1-localizable, then by Lemma14.8 we have

jIShu(0)� IShv(0)j � (C +Kc)h
3
2 :

Thus we have to compute the action of ISh on polynomials of degree 2. We shall consider in the series

of lemmas to follow more and more general such polynomials. In the following, because of the translation

invariance of the operators ISh, we can assume without loss of generality for the asymptotic analysis of

IShu(x) that x = 0 and u(0) = 0. Thus, we take \ISh(x + ax2 + by2 + cxy)" as an abbreviation for

\ISh(x+ ax2 + by2 + cxy)(0)". As we shall see, the cases a = c = 0; b = +1 and b = �1 play a canonical

role, so that we set

c+IB = inf
B2IB

sup
y2B

(x+ y2); c�IB = inf
B2IB

sup
y2B

(x� y2):

Since our main results involve these constants, it is worth noticing that they can be di�erent from zero.

Lemma 15.1 (i) If IB is a set of convex sets, invariant by SL2(IR2) (or a set of boundaries of convex

sets), all with area 1 and symmetric with respect to 0, then c+IB > 0 and c�IB = 0:

(ii) If IBaff is the set of all aÆne structuring elements de�ned in De�nition 13.7, then c+IB � 1, c�IB = 0:

Proof. Proof of (i). Consider the disk D = D(0; 1p
�
), with area 1. All elements B in IB have area 1 and

therefore meet the boundary @D of D. Thus, taking into account that x � x2 for x = (x; y) 2 D,

c+IB � inf
B2IB

sup
(x;y)2B\D

(x+ y2) � inf
B2IB

sup
(x;y)2B\D

(x2 + y2) � 1

�
:

Indeed, since the sets B are symmetric with respect to 0, supB\D(x + y2) is always attained for some

(x; y) with x � 0. In order to prove that c�IB = 0; we �rst remark that since every B 2 IB surrounds 0, it

contains at least one point where x > 0 and y = 0. Thus c�IB � 0: We then �x a set B in IB and consider

the new sets obtained by squeezing B onto the line x = 0 :

B" = f("x; y
"
) ; (x; y) 2 Bg:

Then B" 2 IB and therefore

c�IB � sup
B"

(x� y2) � sup
B"

(x) � C":

Thus, c�IB = 0:

Proof of (ii). Let B be an aÆne structuring element. Then its intersection with every half plane whose
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boundary contains 0 has measure larger than 1. Let us choose as half plane H = f(x; y); x � 0:g We

deduce that

( sup
B\H

x)( sup
B\H

jyj) � 1:

Let us estimate

cIB � sup
B
(x+ y2) � sup

B\H
(x+ y2) � inf( sup

B\H
x; sup

B\H
y2):

Setting � = supB\H x, we deduce that

cIB � inf
��0

(�;
1

�2
) = 1:

2

Exercise 15.1 As shown in this exercice, on can have cIB < 0 for an even simple aÆne invariant family

of structuring elements.

1) Let IB = fAC;A 2 SL(IR2)g, where C is a truncated square with center 0, half side 2 and one of the

sides missing, (e.g. (x; y) 2 C if x = �2 and �2 � y � 2 or �2 � x � 2 and y = +2 or y = �2) Show
that c+IB > 0 and c�IB < 0.

2) Show that this family of structuring elements is localizable.

There is one case of simple function, which turns out to be canonic, where we can compute by invariance

argument the action of an aÆne invariant operator ISh.

Lemma 15.2 Let IB be a set of structuring elements invariant by the special linear group and let ISh its

associated inf sup operator. Let p > 0. Then

ISh(px+ by2) = c+IB(
b

p
)
1
3 ph

4
3 if b > 0;

ISh(px+ by2) = c�IB(�
b

p
)
1
3 ph

4
3 if b � 0:

Proof. We note that if b 6= 0;

B 2 IB ,
�
h

4
3 jbj 13 0

0 h
2
3 jbj� 1

3

�
B 2 IBh

Thus

inf
B2IBh

sup
(x;y)2B

(x+ by2) = inf
B2IB

sup
(x;y)2B

(jbj 13 h 4
3 x+ b(jbj� 2

3 h
4
3 y2))

= jbj 13h 4
3 inf
B2IB

sup
(x;y)2B

(x+
b

jbjy
2)

= c+IBb
1
3 h

4
3 if b > 0;

= c�IB(�b)
1
3h

4
3 if b < 0:

Since p > 0, we deduce that

ISh(px+ by2) = pISh(x+
b

p
y2)
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= c+IB(
b

p
)
1
3 ph

4
3 if b > 0;

= c�IB(�
b

p
)
1
3 ph

4
3 if b < 0:

Let us now consider the case where b = 0. We �x a set B in IB and denote by R its diameter. Then B is

contained in [�R;R]� [�R;R] and therefore the set

�
h2� 0
0 ��1

�
B, which belongs to IBh, is contained

in [�R�h2; R�h2]� [�R
� ;

R
� ]. Thus

0 � ISh(px) � sup
[�R�h2;R�h2]�[�R

� ;
R
� ]

px � pR�h2

We can take � arbitrarily small and conclude that ISh(px) = 0: 2

The next lemma deals with the case where the function to which we apply ISh has a zero gradient at zero.

Lemma 15.3 Let IB be an aÆne invariant set of structuring elements, one of which is bounded and all

of which contain O. Then there is a continuous function G(Du;D2u) satisfying G(0; 0) = 0 such that for

every C3 function u, the scaled operators ISh and SIh associated with IB satisfy

0 � jIShu(x0)� u(x0)j � G(D2u(x0); Du(x0))h
4
3 + ox0

(h
4
3 );

where ox0
(h

4
3 ) is uniform on compact sets of IR2. In the same way, by the relation ISh(u) = �SIh(�u),

0 � jSIhu(x0)� u(x0)j � �G(D2u(x0); Du(x0))h
4
3 + ox0(h

4
3 ):

Proof. Since all elements of IB contain 0, we always have supy2x+B u(y) � u(x): Let B be a bounded

element of IB and let R = supx2B jxj: Then B is contained in [�R;R] � [�R;R] and therefore the set�
h

4
3 0

0 h
2
3

�
B,

which belongs to IBh, is contained in [�Rh 4
3 ; Rh

4
3 ]� [�Rh 2

3 ; Rh
2
3 ]. By making a Taylor expansion of

u in a neighborhood of x0, we have for the usual local coordinates (x; y),

u(x)� u(x0) = px+ ax2 + by2 + cxy + ox0
(jx� x0j3):

Thus

0 � IShu(x0)�u(x0) � sup
(x;y)2[�Rh 4

3 ;Rh
4
3 ]�[�Rh 2

3 ;Rh
2
3 ]

px+ax2+by2+cxy+Ox0
(jxj3) � (jpj+jaj+jbj+jcj)R2h

4
3+ox0

(h2):

We obtain

0 � IShu(x0)� u(x0) � h
4
3 (jjDu(x0)jj+ jjD2u(x0)jj)R2 + ox0

(h
4
3 ):

2

We are now in a position to state and prove the �rst main result of this chapter. We consider aÆne erosions

and aÆne dilations.
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Theorem 15.4 Let IB be a 1-localizable set of plane sets which is invariant by the special linear group

SL(IR2). Assume u(x) is a Lipschitz function and C3 in a neighborhood of x0. Then

(IShu)(x0)� u(x0)

h4=3
= jDujg(curv(u))(x0) + ox(h

4
3 );

where �x(h
4
3 ) � oK(h

4
3 ) on every compact set K of IR2 where Du(x) does not vanish and

where g(r) = c+IB(
r
2 )

1
3 if r > 0

= c�IB(� r
2 )

1
3 if r < 0:

Proof of Theorem 15.4. SIh being translation and isometry invariant, we can choose the origin 0 at

x0, and orthogonal axes (~i;~j) so that~i =
Du
jDuj (0) if Du 6= 0. In addition,since ISh(u�u(0)) = IShu�u(0),

we assume without loss of generality that u(0) = 0. With these conventions, since u is C3, we can write

again the relation (5.7) :

u(x) = px+ ax2 + by2 + cxy +O(jxj3); (15.1)

where p = jDuj(0) � 0, x = (x; y) = x~i+ y~j and, if p > 0,

b = 1
2
@2u
@y2 (0) =

1
2D

2u(~j;~j) = 1
2 jDujcurv(u)(0)

a = 1
2
@2u
@x2 (0) =

1
2D

2u(~i;~i)

c = @2u
@x@y (0) = D2u(~j;~i):

(15.2)

In the following, we consider a radius r = h
1
2 and the truncated operator ISrh already considered in

Localization Lemma 14.9. From (15.1) we deduce that for every x in D(0; r),

px+ ax2 + by2 + cxy �O(r3) � u(x) � px+ ax2 + by2 + cxy +O(r3):

Therefore,

(ISrhu)(0) = ISrh(px+ ax2 + by2 + cxy) +O(r3) (15.3)

(Recall that, by an anterior convention, ISrh(px+ ax2 + by2 + cxy) means ISrh(px+ ax2 + by2 + cxy)(0).)

� The case p = jDu(0)j = 0.

In this case we have, by the preceding lemma 15.3, ISh(ax
2+by2+cxy) = O(h2) and therefore h�

4
3 (IShu)(0) =

O(h
2
3 ); which proves the assertion in the case jDu(x0)j = 0.

� The case p = jDu(0)j 6= 0.

Setting " = h�, where � > 0 is a very small real number, we have

�jcj"y2 � jcj
"
x2 � cxy � jcj"y2 + jcj

"
x2:

Thus

(ISrh)u(0) � ISrh(px+ (a+ jcj"�1)x2 + (b+ "jcj)y2) +O(r3); (15.4)

(ISrh)u(0) � ISrh(px+ (a� jcj"�1)x2 + (b� "jcj)y2) +O(r3) (15.5)
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We are led to study expressions of the type

ISrh(px+ a(")x2 + b(")y2);

where a(") = O(h��) and b(") = O(1). (We shall only examine the case where b 6= 0, the case b = 0

leading to the same calculations and conclusion.) We now use the contrast invariance property of T :

g Æ T = T Æ g, where we �x g(s) = s� a
p2 s

2. This function is increasing in a neighborhood of zero. Thus,

since ISrh(px+ ax2 + by2) tends to zero as r and h tend to zero, using g Æ T = T Æ g,
ISrh(px+ ax2 + by2) =

g�1(ISrh(px+ by2 � a

p2
((ax2 + by2)2 + 2px(ax2 + by2))))

We then use the following relations (Lemma 15.2 and Localization Lemma 14.9 (iii))

g�1(t) = t+O("�1t2); ISh(px+ by2) = O(h
4
3 );

ISrh(px+ by2) = ISh(px+ by2) +O(h
3
2 ) = O(h

4
3 );

a(") = O("�1); b(") = O(1); r = h
1
2

to deduce that

ISrh(px+ ax2 + by2) = g�1(ISrh(px+ by2) + O("�2h
3
2 )) = g�1(ISh(px+ by2) +O("�2h

3
2 ))

= ISh(px+ by2) +O("�2h
3
2 + "�1h

8
3 );

and �nally

ISrh(px+ ax2 + by2) = ISh(px+ by2) +O("�2h
3
2 ):

Using Relations 15.4 and 15.5 and Localization Lemma 14.9, we obtain

ISh(px+ b�"y2)�O(h
3
2 "�2) � ISh(u)(0) � ISh(px+ b"y

2) +O(h
3
2 "�2);

where b" = (b+ jcj") and b�" = (b� jcj"). Using " = h�, Lemma 15.2 and the inequalities

(�+ �)
1
3 � �

1
3 + �

1
3 ; �

1
3 � �

1
3 � (�� �)

1
3

for �; � � 0, we get

ISh(u)(0) = c+IB(
b

p
)
1
3 ph

4
3 +O(h

3
2 � 2�) +O(h

4
3+

�
3 ) if b > 0;

= c�IB(�
b

p
)
1
3 ph

4
3 +O(h

3
2�2�) +O(h

4
3+

�
3 ) if b < 0:

In order to conclude the proof, we simply replace p by jDuj and b by 1
2 jDujcurv(u) in the above relations

and choose (e.g.) � such that 3
2 � 2� = 4

3 +
�
3 , i.e. � =

1
14 . We �nally argue that all of the asymptotic

behaviours involved in the proof are uniform in a, b, c, p, provided p does not approach 0 and a, b, c

remain bounded. Thus, we can write

(IShu)(x0)� u(x0)

h4=3
= jDujg(curv(u))(x0) + ox(h

4
3 );

where �x(h
4
3 ) � oK(h

4
3 ) on every compact set K of IR2 where Du(x) does not vanish. Indeed, on such a

compact set, Du, D2u and D3u remain bounded and so does 1
p =

1
jDu(x)j , which is present in the estimates

of the proof. 2
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15.1 Alternate schemes

In this section, we extend the preceding results to \alternate schemes", that is, products of the kind

IShSIh. We shall obtain for such alternate schemes a convergence theorem extending Theorem 15.4. The

alternate schemes are easier to implement and numerically more eÆcient if we want to get the following

natural property for a contrast invariant operator T : T (�u) = �T (u). Recall that, precisely because this
property is not satis�ed by erosion and dilation operators, it has been proposed with some experimental

success to build alternate operators like T = IShSIh (those alternate operators could be called \openings"

or \closings"). It is, in that case, not true that T (�u) = �T (u). We shall prove, however, that if we let

h! 0 and consider iterates (IShSIh)
n with n!1, then the limit operators do satisfy this property. It is

not possible to obtain directly an asymptotic result for IShSIh by applying twice Theorem 15.4. Indeed,

there is no guarantee (and it is in general false) that IShu is C3 whenever u is C3. The next lemma

explains how we can, however, extend to alternate operators convergence results like the ones given in

Theorem 15.4.

Lemma 15.5 Let Th and Sh be two inf sup operators. Let F1(A; p;x) and F2(A; p;x) be two functions

which are continuous for (A; p;x) in every compact set on which p 6= 0. Assume that for a suitable exponent

� we have

Thu(x)� u(x) = h�F1(D
2u;Du;x) + ox(h

�);

Shu(x)� u(x) = h�F2(D
2u;Du;x) + ox(h

�):

Assume that Sh is localisable, i.e. for a suitable exponent 
,

jShu(x)� Shu
h
u(x)j � ox(h

�)

for every Lipschitz function u. In these assumptions, ox(h
�) denotes any function of x and h� such that

ox(h
�) � oK(h

�) for x in a compact set K on which Du(x) 6= 0. Then the alternate operator satis�es

ThShu(x)� u(x) = h�(F1(D
2u;Du;x) + F2(D

2u;Du;x)) + ox(h
�)

and ox(h
�) � oK(h

�) on every compact set K on which Du(x) 6= 0:

Proof Fix a compact K on which Du 6= 0. Let x0 2 K and B(x0; r) a ball with r small enough

to ensure that we still have Du(x) 6= 0 on B(x0; r): Let f
+(r) = supx2B(x0;r) jF1(D2u;Du;x)j and

f�(r) = infx2B(x0;r) jF1(D2u;Du;x)j: We have

Thu(x)� u(x) = h�F1(D
2u;Du;x) + ox(h

�):

Let ox0;r(h) = supx2B(x0;r)
ox(h

�): Thus, for x 2 B(x0; r);

u(x) + h�f�(r) � ox0;r(h
�) � Thu(x) � u(x) + h�f+(r) + ox0;r(h

�):

By applying Sh



h at x0 to the members of this inequality, using the comparison principle, provided we set

h
 = r, and the commutation of Sh with the addition of constants :

Sh



h u(x) + h�f�(r) � ox0;r(h
�) � Sh




h Thu(x) � Sh



h u(x) + h�f+(r) + ox0;r(h
�) (15.6)
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Now, F being continuous,

f� = F1(D
2u(x0); Du(x0);x0) + o(1) (15.7)

and, from the assumptions,

Sh



h u(x0)� u(x0) = h�F2(D
2u;Du;x0) + ox0

(h�); (15.8)

(Sh



h Thu)(x0) = ShThu(x0) + ox0
(h�): (15.9)

>From (15.6)- (15.9), we obtain

ShThu(x0) = h�(F1(D
2u;Du;x0) + F2(D

2u;Du;x0)) + ofxx0(h
�):

It is noticeable that we can �x r independtly of x0 on K, in such a way that Du(x) does not vanish on

the dilated compact Kr. Thus, all convergences in the preceding proof are in fact uniform for x0 on K

and we can bound ox0(h
�) by some oK(h

�): 2

By repeating word for word the above proof, we can also prove the following, which will prove of use.

Lemma 15.6 Let Th and Sh be two inf sup operators. Let G1(A; p;x) and G2(A; p;x) be two continuous

functions. Assume that for suitable exponents 
 and � we have

0 � Thu(x)� u(x) � h�G1(D
2u;Du;x) + ox(h

�);

0 � Shu(x)� u(x) � h�G2(D
2u;Du;x) + ox(h

�):

Assume that Sh is localisable, i.e.

jShu(x)� Shu
h
u(x)j � ox(h

�)

for every Lipschitz function u. In these assumptions, ox(h
�) denotes any function of x and h� such that

ox(h
�) � oK(h

�) for x in a compact set K. Then the alternate operator satis�es

h�(G1(D
2u;Du;x) + ox(h

�) � ThShu(x)� u(x) � h�G2(D
2u;Du;x)) + ox(h

�)

and ox(h
�) � oK(h

�) on every compact set K.

We are now in a position to state an asymptotic behaviour theorem for the main aÆne invariant alternate

�lter, obtained by alternating aÆne erosions and dilations.

Theorem 15.7 Let IBaff the set of \aÆne structuring elements" and respectively ISh and SIh the asso-

ciated aÆne erosions and dilations as de�ned in De�nition ??. Then for every Lipschitz function u which

is C3 in a neighborhood of x0, we have

lim
h!0

(Thu)(x0)� u(x0)

h4=3
= cIB jDuj(curv(u))(x0) (15.10)

where g(r) = (r�)
1
3 if Th = SIh

= (r+)
1
3 if Th = ISh

= (r)
1
3 if Th = SIh ISh
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This convergence is uniform on all compact sets of IR2 on which Du(x) does not vanish. In addition, there

are continuous functions G�(D2u;Du) such that G�(0; 0) = 0 and

h
4
3G�(D2u;Du) + ox(h

4
3 ) � Thu(x)� u(x) � h

4
3G2(D

2u;Du)) + ox(h
4
3 ) (15.11)

and ox(h
4
3 ) � oK(h

4
3 ) on every compact set K of IR2.

Proof By Theorem 15.4, we know that (15.10) holds for Th = ISh or Th = SIh. Indeed, IBaff is a

1-localizable aÆne invariant family of structuring elements, as requested by Theorem 15.4. By Lemma

15.1, we know in addition that c+IBaff
� 1 and cIBaff

= 0. We then apply Lemma 15.5, with obviously

� = 4
3 and 
 = 1

2 , to obtain (15.10) for the alternate operator.

In order to prove (15.11), we simply apply Lemma ?? to ISh and SIh, which holds because IBaff is

aÆne invariant and all of its elements contain 0 and some are bounded. We apply in continuation Lemma

15.6 to extend (15.11) to the alternate operator IShSIh. 2

By way of principle, all aÆne invariant families of connected sets which contain all 0, some of which are

bounded, and whose area is bounded from above, are localizable and permit to de�ne alternate schemes

with the same properties as above. The next exercise examines some examples. Now, we have seen that

aÆne invariant dilations and erosions have magni�cent numerical and structural properties and are the

natural best candidates for aÆne invariant shape analysis.

Exercise 15.2 Check that the preceding proof and results apply to the aÆne invariant localizable families

considered in Exercice 14.1.

References.

Early versions of the results and proofs contained in this chapter are given in [191, 187, 190]. Our

version here is easier and shorter. Alternate sequential �lters are well introduced in Serra [379]. A

general axiomatic theory of Self-dual morphological operators is given by Heijmans [200]. Applications of

alternating sequential �lters are discussed in [338].
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Chapter 16

Monotone image operators:
\non
at" morphology

16.1 General form of monotone operator.

Theorem 16.1 Let T be a monotone function operator de�ned of F , invariant by translation and com-

muting with the addition of constant. There exists a family IF of functions of F such that

Tu(x) = sup
f2F

inf
y2IR

u(y)� f(x� y)

Proof We choose IF = ff 2 F ; T f(0) � 0g Then,

Tu(x) � �, 8� > 0; Tu(x) � �� �

, 8� > 0; ��x(T (u� �+ �))(0) � 0

, 8� > 0; T (��x(u� �+ �))(0) � 0

, 8� > 0; ��x(u� �+ �) 2 IF

, 8� > 0; 9v 2 IF ; inf
y
u(y)� �+ �� v(y � x) � 0

() is true by simply choosing v = u� �+ �. The converse implication is true due to the monotony of the

operator T and de�nition of IF which imply that if u � v and v 2 IF then u 2 IF .)

, 8� > 0; sup
v2IF

inf
y
u(y)� �+ �� v(y� x) � 0

, sup
v2IF

inf
y
u(y)� v(y� x) � �

2
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16.2 Asymptotic behavior of monotone operators

The aim of this section is to study the asymptotic behavior of a monotone operator. More precisely we

assume to have a base of functions IF and an operator T de�ned by

T (u)(x) = inf
f2IF

sup
y2IRN

u(y+ x)� f(y):

We want �rst to de�ne a local version of it Th and then to estimate Th(u)� u when h tends to 0.

16.2.1 The rescaling issue

As we have seen until now, the scale is related to the space by the following consideration: assume that u

and v are two functions such that v(x) = u(2x). (u corresponds somehow to a zoom of v). If we want to

smooth the two images similarly we have to change the scale of the �lter. For contrast invariant �lter, this

is quite straightforward, the scale is directly and uniquely linked to the size of the structuring elements.

E.g. if the �lter is the median �lter on a disk. The size of the disk (the scale) has to be chosen two

times bigger for u than for v. For such �lters, the down-scaling corresponds to a spatial shrinkage of the

structuring elements.

For linear �lter, (think the mean value to be simpler) the scaling was also straightforward. Indeed, the

mean value on u has to performed on a neighborhood two times larger than for v. But in that case, this

does not only mean a spatial shrinkage ! Indeed the kernel of the mean value on a disk of radius h centered

in 0 is given by

gh(x) = 1
�h2 for jxj � h

= 0 otherwise

That is that the structuring element is scaled also in amplitude. Here the amplitude-scaling factor h�2 is

so that
R
IR gh = 1 which was a assumption made for a linear smoothing.

As for the linear �lter, at this point we can guess that an amplitude-scaling factor might be needed

for a general monotone �lter. So that the structuring elements, that is the functions of IF will be scaled

as f(x) ! h�f(x), where � is a real number which will be discussed later. (To be noted that is all that

follow h� could be replace by a function of �).

We therefore de�ne the scaled operator Th associated to T by

Th(u)(x) = inf
f2IF

sup
y2IRN

u(x+ y)� h�f(y=h): (16.1)

16.2.2 Legendre Fenchel transform

De�nition 16.2 Let f be a function from IRN into �IR, we denote the Legendre conjugate of f by f� :

IRN ! �IR de�ned by

f�(p) = sup
x2IR

(p:x� f(x))

Let us note that if f is convex then the legendre transform is �nite for every p.
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16.2.3 Asymptotic theorem, �rst order case

Lemma 16.3 Let f be a function satisfying the following conditions:

9C > 0 and � > max(�; 1) such that lim inf
jxj!1

f(x)

jxj� � C and f(0) � 0 (16.2)

Then, for any C1 and bounded function u, if � < 2:

sup
y2IRN

(u(x+ y)� h�f(y=h))� u(x) = h�f�(h1��Du(x)) +O(h2(1�
��1
��1 ))

A interesting particular case is when � = 1:

sup
y2IRN

(u(x+ y)� hf(y=h))� u(x) = hf�(Du(x)) +O(h2)

Proof Without loss of generality we can choose x = 0 and u(x) = 0 so that we are looking for an estimate

of

sup
z2IRN

(u(z)� h�f(z=h))

when h tends to 0. Setting y = z=h, we have,

sup
z2IRN

(u(z)� h�f(z=h)) = sup
y2IRN

(u(hy)� h�f(y))

Let us �rst prove that we can discard from the preceding sup the y that goes too fast toward1 as h tends

to 0. We consider the subset Sh of IRN of the y such that

u(hy)� h�f(y) � u(0)� h�f(0) � 0:

We obviously have

sup
y2IRN

(u(hy)� h�f(y)) = sup
y2Sh

(u(hy)� h�f(y)):

Since u is bounded, we have 8y 2 Sh, f(y) � C1h
�� for some constant C1 depending only on jjujj1.

Assume that there exists yh 2 Sh tending to 1 as h tends to zero. For h small enough, condition (16.2)

gives f(yh) � Cjyhj�, which combined with the preceding inequality yields jyhj � C2h
��=�: Such a bound

holds if yh 2 Sh is bounded, so that we have

8y 2 Sh; jyj � C2h
��=�

As consequence, 8y 2 Sh we have jhyj = o(1) and we can do an expansion of u around 0, so that

sup
y2IRN

(u(hy)� h�f(y)) = sup
y2Sh

(hDu(0):y� h�f(y) +O(h2jyj2))

We can now �nd �ner bound for the set Sh repeating the same argument. 8y 2 Sh we have,

hp:y� h�f(y) +O(h2y2) � 0

which yields

jpj � h��1f(y)=jyj+O(hjyj)
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Assume that yh 2 Sh, satisfying the preceding inequation, tends to 1 when h tends to 0, then by (16.2),

we obtain jyhj = O(h�
��1
��1 ). Once again, if yh is bounded this estimate holds. So we have

sup
y2IRN

(u(hy)� h�f(y)) = h�( sup
y2Sh

(h1��p:y� f(y) +O(h2(1�
��1
��1 )��)))

= h�( sup
y2IRN

(h1��p:y� f(y)) +O(h2(1�
��1
��1 ))) = h�(f�(h1��p)) +O(h2(1�

��1
��1 ))

It is easily checked that O(h2(1�
��1
��1 )) = o(h�) for all � < 2. 2

Theorem 16.4 Let IF be a family of functions, all satisfying the condition (16.2) with a constant C non

dependant on the choice of a function within the family. Let Th be the rescaled operator associated with the

family IF and with a rescaling parameter � equal to 1. Then for all C1 and bounded function u we have:

(Th(u)� u)(x)

h
= H1(Du(x)) + o(1)

where

H1(p) = inf
f2IF

f�(p)

16.2.4 Second order case - some heuristics.

Theorem 16.4 gives the �rst order possible behavior of a non-
at monotone operator. Question occurs on

what happens if this �rst order term is 0, that is if H1(p) = 0 for all p. In that case, it is necessary to

push the expansion to the second order:

We have with p = Du(0) and A = D2u(0)=2,

sup
y2IRN

u(hy)� h�f(y) = sup
y2IRN

hp:y+ h2Ay:y� h�f(y) +O(jhyj3)

Since this last expression is increasing with respect to A it is then expected that the left side of the equality

converges when h tends to 0, to some function F (A; p) where F is non decreasing with respect to A. As

consequence, among second order operator only elliptic operator can be obtained as the asymptotical limit

of a general monotone operator.

16.3 Application to image enhancement: Kramer's operators
and the Rudin-Osher shock �lter

In [256], Kramer de�nes a �lter for sharpening blurred images. The �lter replaces the gray level value at

a point by either the minimum or the maximum of the gray level values in a neighborhood. This choice

depending on which is the closiest to the current value.

In [?], Rudin and Osher proposes to shapen blurred images by applying the following equation:

@u

@t
= sgn(�u)jDuj

As, we will see in the following section, this two �lters are asymptotically the same in 1D, but di�ers in

2D. The �rst one yields to the Canny di�erential operator for edge detection (sign of Du(Du;Du)), while

the second explicitely uses the sign of the laplacian.
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FILTER

16.3.1 The Kramer operator.

This �lter can be seen as a conditional erosion or dilation and an easy link can be made with the \shock

�lters" [?]. A �ner version of it, is proposed in [373] and proceed as follow: Let q(x) = x2=2, and IF+ = fqg.
Set T+

h the rescaled, (with � = 1), non-
at operator associated with the structuring elements set IF+ and

T�h its dual operator. We have

(T+
h u)(x) = sup

y2IRN

u(y)� hq((x � y)=h) = sup
y2IRN

u(y)� (x� y)2

2h

(T�h u)(x) = inf
y2IRN

u(y)� hq((x� y)=h) = inf
y2IRN

u(y) +
(x� y)2

2h

The Shock �lter Th is then de�ned by

(Thu)(x) =

8>>>><
>>>>:

(T+
h u)(x) if (T+

h u)(x)� u(x) < u(x)� (T�h u)(x)

(T�h u)(x) if (T+
h u)(x)� u(x) > u(x)� (T�h u)(x)

u(x) otherwise

(16.3)

The �gure ?? illustrates the action of such an operator. In order to understand mathematically the

action of Th, let us examine its asymptotical behaviour. The following exercise proposes to apply Theorem

16.4 to get the asymptotic of T+
h and T�h . It will however not permit to conclude for Th, this is done in

the next proposition.

Exercise 16.1 1. Check that 8u and 8x:

T�h u(x) � u(x) � T+
h u(x)

2. Using Lemma 16.3 Show that q�(p) = q(p) and that 8x where u is C2:

(T+
h u)(x)� u(x) = hjDu(x)j2=2 +O(h2) and

(T�h u)(x)� u(x) = �hjDu(x)j2=2 +O(h2)

So that

lim
h!0

(Thu)(x)� u(x)

h
= �jDu(x)j2=2

At this step, we remark that the di�erences (T+
h u)(x) � u(x) and u(x) � (T�h u) are equal at the �rst

order, and therefore the choice will be made based on second order estimates on u.

Proposition 16.5 Let Th be the \Kramer" operator (given by 16.3), one has for any function u 2 C3,

lim
h!0

(Thu)� u

h
=

1

2
sgn(D2u(Du;Du)) jDu(x)j2
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Figure 16.1: Shock Filter implemented by using non 
at morphogical �lters. Top, left :original image, right: blurred image
using Heat Equation, Middle-left: two iterations of the kramer �lter, Middle-right: two iterations of the Rudin-Osher �lter.
The scale parameter is chosen such that the parabola passes the range of the image at a distance of 6 pixels. Down: zoom
version of a detail, left: original image, middle: kramer �lter, right: Rudin-Osher �lter. We see a tendancy of this last to
smooth shapes toward circles.

Proof According to Exercise 16.1, one has to push the asymptotic of T+
h and T�h to the second order.

We have

T+
h (u)(x) = sup

y2IRN

u(y)� (x � y)2

2h
and T�h (u)(x) = inf

y2IRN
u(y) +

(x� y)2

2h

Since T+
h and T�h are translation invariant, we can limit our study at x = 0. Moreover, since u is bounded,

we can limit the sup to the y 2 B(0; h). If u is C3 at point 0, we can set u(y) = u(0)+p:y+A(y;y)+o(y)2
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FILTER

So that,

T+
h (u)(0)� u(0) = sup

y2B(0;h)
u(y)� jyj2

2h
� u(0) = sup

y2B(0;h)
(p:y+A(y;y)� jyj2

2h
+ o(h)2

Set Qh(y) = 2hp:y+ (2hA� Id)(y;y), so that we have

Th = sup
y2B(0;h)

(Qh(y)=(2h)) + o(h)2

For h small enough Bh = Id� 2hA is positive and inversible. Therefore, the sup of Qh over the y exists,

and is achieved for yh such that

2hp+ 2Byh = 0) yh = �hB�1(p)

Thus,

T+
h (u)(0)� u(0) =

h

2
(Id� 2hA)�1(p;p) + o(h2) =

h

2
(Id+ 2hA)(p;p) + o(h2)

We conclude that

T+
h (u)(0)� u(0) =

h

2
jpj2 + h2A(p;p) + o(h2) (16.4)

Similarly,

T�h (u)(0)� u(0) =
h

2
jpj2 � h2A(p;p) + o(h2) (16.5)

From these two last equalities we deduce that

((T+
h u)(x)� u(x))� (u(x)� (T�h u)(x)) = h2(D2u(x))(Du(x); Du(x)) + o(h2) (16.6)

We therefore have

Th(u)(x)� u(x) = jDu(x)j2 sgn( D2u(x) (Du(x); Du(x)) ) + o(h)

2

Let us remark that if u is a 1D function, then sgn(Du(Du;Du)) coincides with the sign of the laplacian.

That is that the Kramer operator corresponds, in 1D, asymptoticaly the Rudin Osher shock �lter.

16.3.2 The Rudin Osher Shock Filter.

Let us simply de�ne a scheme that yields asymptoticaly the Rudin Osher shock �lter equation.

Let Bh be a disk of radius h centered at 0. Let Mean be the mean value on the disk Bh. We de�ne

the operator Th by:

Thu(x) = miny2Bh
u(x+ y) if Mean(u)(x) > u(x)

= maxy2Bh
u(x+ y) if Mean(u)(x) < u(x)

= u(x) otherwise

Exercise 16.2 Prove that

lim
h!0

Thu� u = sgn(�u)jDuj
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16.4 Can we approximate a parabolic PDE by the iterations of
a monotone image operator ?

16.4.1 Approximation of �rst order equation.

Let us address the converse of theorem 16.4: being given the function G is it possible to construct a scaled

familly of structuring elements such that the associated scale space Th satis�es

Thu� u = hG(Du) +O(h2)?

As we shall see, the main diÆculty stands in the localization of the structuring elements when the scale

tends to 0. In all the following, we work with the scaling parameter � equal to 1.

Theorem 16.6 Let G be a convex function, such that G� satis�es condition 16.2, then choosing IF h =

fhG�(x=h)g one has for the operator Th associated to IF h and for any function u 2 C3, (Thu � u)(x) =

hG(Du(x)) +O(h2)

Proof This is a imediat consequence of Lemma 16.3 and of the fact that if a function G is convex then

G�� = G. An example of such function G is G(x) = jxj2. 2

When G is non convex, then exhibiting a function M such that M� = G is non straighforward. It is

better to consider G as the in�mum of a familly of convex functions fgqgq.

Theorem 16.7 Let G be a function being the in�mum of a familly of convex functions fgqgq, such that

for all q, g�q satis�es the condition 16.2, then choosing IF h = fhg�q (x=h)g one has for the operator Th

associated to IF h and for any function u 2 C3, (Thu� u)(x) = hG(Du(x)) +O(h2)

Note also that for negative function G, the same result work by switching the sup and the inf in the

de�nition of the operator Th.

Proof The proof of Theorem 16.7 is a straighforward consequence of Theorem 16.4. 2

Examples of functions G that �t the hypothesis of the theorem 16.7 are the positive and Lipschitz functions.

Indeed, if G is K-Lipschitz then setting for q 2 IRN ,

gq(x) = G(q) +Kjx� qj

We obviously have G(x) = infq2IRNgq(x). And,

g�q (p) =
�
pq �G(q) if jpj � K
+1 otherwise

So that g�q (p) satis�es the condition 16.2.

Remark 16.8 However, the hypotheses of Theorem 16.7 do not permit to construct any function G. The

main issue is in fact the condition 16.2, which localizes the �lter when h > 0 tends to 0, in the theorem

16.4.
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Fr�ed�eric Cao proposes in [73] a way to avoid such an issue for any positive l.s.c function G. His idea

is to de�ne a two scales family of structuring elements. He �rst set

gq(p) =

�
G(q) ifp = q
+1 otherwise

It is then obvious that G(p) = infq2IRN gq(p). He then set fq(x) = (g�q )(x) = �G(q) + qx and IF h =

ffq;h; q 2 IRNg where, for a � 2]1=2; 1[,

fq;h(x) =

� �hG(q) + qx if x 2 B(0; h�)
+1 elsewhere

The familly IF h is not a rescaling of the familly IF 1. There is indeed, two scales: the explicit one h, and

an implicit one, h� since the functions of IF h are truncated outside a ball of radius h�. This truncature

localizes the corresponding operator Th and makes the result of theorem 16.4 true, even if the functions of

IF h do not satisfy the condition 16.2.

16.4.2 Approximation of some second order equation.

Let us start with a simple remark. Set fq(x) = qx, 8x in B(0; h) and fq(x) = +1 otherwise. By an

imediat consequence of the Taylor expansion we have

q = Du(0), sup
x2IRN

u(x)� fq(x) = O(h2)

q 6= Du(0), sup
x2IRN

u(x)� fq(x) > C(q; u)h

This indicates that a way to get second order operator is to choose the familly of functions IF so that

8f 2 IF and 8q 2 IRN one has f + qx 2 IF .

The Heat Equation as the asymptotic of a non-
at morphological operator.

Lemma 16.9 Let A be in SM(IRN ) (set of the N �N symmetric matrices). Then,

Tr(A) = N inf
Q2SM(IRN );Tr(Q)=0

sup
x;jxj=1

(A�Q)(x;x) (16.7)

Proof We know that, since A and Q are symmetric, supx;jxj=1(A�Q)(x;x) is the largest eigenvalue of
A�Q. As consequence 8Q 2 SM(IRN ), Nsupx;jxj=1(A�Q)(x;x) � Tr(A�Q) = Tr(A). Thus

N inf
Q2SM(IR2);Tr(Q)=0

sup
x;jxj=1

(A�Q)(x;x) � Tr(A):

Choosing Q diagonalizable in the same base that diagonalizes A, and denoting by �1 � ::: � �N (resp. q1,

..., qN ) the eigenvalues of A, (resp. of Q), we have

sup
x;jxj=1

(A�Q)(x;x) = maxf�1 + q1; :::; �N + qNg

So that

inf
Q2SM(IR2);Tr(Q)=0

sup
x;jxj=1

(A�Q)(x;x) � inf
fq1;:::;qNg;q1+:::+qN=0

maxf�1+q1; :::; �N+qNg = (�1+:::+�N )=N

2
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Lemma 16.10 We set for p 2 IRN , Q 2 SM(IRN ), and h > 0,

fp;Q;h(x) = px+Q(x;x) if x 2 B(0; h)
= �1 otherwise

We then set IF h = ffp;Q;h;with Q 2 SM(IRN);Tr(Q) = 0 and p 2 IRNg which is to say that IF h

is made of the truncature around zero of all quadratic forms whose trace is zero. With Th(u)(x) =

inff2IFh
supy2IRN u(x+ y)� f(y), one has for any u 2 C3,

Th(u)(x)� u(x) =
1

2N
h2�u(x) + o(h2)

Proof We make the proof at point x = 0, we set A = 1
2D

2u(0). We have

Th(u)(0)� u(0) = inf
p2IRN ;Q2SM(IRN );Tr(Q)=0

sup
y2B(0;h)

u(y)� u(0)� py�Q(y;y)

= inf
p;Q

sup
y2B(0;1)

u(hy)� u(0)� hpy� h2Q(y;y)

= inf
p;Q

sup
y2B(0;1)

h(Du(0)� p)y� h2(A�Q)(y;y) + o(h2)

= h2 inf
Q2SM(IRN );Tr(Q)=0

sup
y2B(0;1)

(A�Q)(y;y) =
1

N
h2Tr(A)

2

References.

Non
at mathematical morphology

The basic theorem of the "non
at", or "grey level" mathematical morphology expresses any monotone

translation invariant operator as an inf-convolution with a family of structuring functions. We proved it

at the very beginning of this chapter. Its consequences are developped in Serra [379], Sternberg, [395],

Maragos [279]. An algebraic general framework is proposed by Heijmans [199]. The problematics of sim-

plifying the structuring set of functions is adressed in [164, 230, 97]. Jackway [227] develops the notion of

a scale space based on the inf-convolution of the image with quadratic forms at di�erent scales.

Hamilton Jacobi evolution equations associated with non
at Mathematical Morphology

The discovery of the asymptotics of morphological �lters is relatively recent. See [65] and [282], who

reinterpret in image analysis results like the Hopf-Lax formula, which were classical in the numerical

analysis of P.D.E.'s and in Optimal Control. See the books Evans [141] and Barles [53]. The use of the

Fenchel-Legendre of f transform for studying the equation @u
@t = f(jDuj) when f is convex. The "slope

transform" used in [198, 280] is nothing but a new name for the Fenchel-Legendre transform. For a general

study of the approximation of parabolic equations by sup-inf schemes see [74].

Deblurring and inverse heat equation, shock �lters
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Gabor seems to be the �rst to have introduced the problem of deblurring an image by inverting the

heat equation [266]. For more and more sophisticated attempts to perform this inverse heat equation, see

Hummel et al. [218, 219]. Nonlinear local �lters for image enhancement are proposed as early as 1970

[376, 375]. Kramer and Bruckner introduced in 1975 the nonlinear enhancement �lter which we called

Kramer �lter [256]. In [373], the Kramer �lter and its asymptotics is discussed in one dimension. We

extended this discussion to two dimensions in the present chapter and showed that the Kramer �lter is a

shock �lter where the Laplacian is replaced by the Canny operator D2u(Du;Du). Aubert and Kornprobst

independently proposed the use of Canny operator for shock �lters [?]. The term of shock �lter itself

was framed by Rudin in his PhD dissertation [358], inspired from the use of nonlinear �lters in shock

simulation for P.D.E.'s [134]. The shock �lter discussed in the text uses Osher-Rudin [359] Alvarez and

Mazorra [23] proposed to combine in restoration an anisotropic di�usion with a shock �lter. Price et al.

[346] propose instead closely related reaction-di�usion equations to the same aim. See also [12] for the use

of reaction-di�usion equations in image quantization : in some extent, quantization acts as a sharpening.

As noticed in [445], the Perona-Malik equation leads to the formation of step images, in the same way as

the studied shock �lters.
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Chapter 17

Viscosity solutions.

17.1 De�nition and main properties.

In what follows, we always consider functions u(t;x) which are continuous on [0;1[�IRN . We shall also

consider �rst and second derivatives of real functions. We recall that if u is C2, then we denote by Du

and D2u the �rst and second partial derivatives of u with respect to x. D2u(t;x) is a bilinear form, or, if

we choose an euclidean basis, a symmetric matrix. Symmetric matrices (or bilinear forms) can be ordered

in the following way. We say that a symmetric matrix A = (Aij)1�i;j�N is nonnegative if for all p 2 IRN ,

A(p; p) =t pAp =
NX

i;j=1

Aijpipj � 0:

We say that A � B if A�B � 0. The parabolic equations we shall consider in this chapter are associated

with a di�erential operator F (D2u;Du;x; t) where F is assumed to be continuous with respect to all of

its arguments (except, in some case, at Du = 0) and nondecreasing with respect to the �rst argument :

8 A;B; p; t; A � B ) F (A; p;x; t) � F (B; p;x; t): (17.1)

It will be convenient to consider the case where F (A; p;x; t) is not continuous at p = 0. This occurs

for one of the most relevant equations considered in this book, the curvature equation @u
@t = jDujcurv(u).

This equation corresponds to F (A; p;x; t) = A(p
?

jpj ;
p?

jpj ) which is not continuous at p = 0, but admits an

continuous bound.

De�nition 17.1 and assumption. We call admissible function F a function F satisfying (17.1), which

is continuous for all A; p 6= 0;x; t and such that there exists two continuous functions G+(A; p;x; t) and

G�(A; p;x; t), with

G+(0; 0;x; t) = G�(0; 0;x; t) = 0;

8A � 0; G+(A; 0;x; t) � 0 and G�(�A; 0;x; t) � 0 and

8A; p;x; t; we have G�(A; p;x; t) � F (A; p;x; t) � G+(A; p;x; t): (17.2)

Remark 17.2 Let us �rst note that if F is continuous everywhere and F (0; 0;x; t) = 0, then F is admis-

sible. (Choose, e.g. G� = F ).
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Remark 17.3 (Main example : the curvature equation)We remark that in the case of the curvature

equation that F is admissible, with e.g. G+(A; p;x; t) (resp. G�) equal to the largest (resp. smallest) of

the eigenvalues of A.

Returning to some examples which are of main interest for us, let us list

� F (A; p) = jpj or �jpj, which is the case of dilation and erosion with scale t, associated with @u
@t = jDuj

or �jDuj,
� F (A; p) = trace(A), which is the case of the heat equation @u

@t = �u,

� F (A; p) = p21A2;2�2p1p2A1;2+p
2
2A1;1

jpj2 , which corresponds to the curvature equation in dimension 2,

� F (A; p) = (p21A2;2�2p1p2A1;2+p
2
2A1;1)

1
3 which corresponds to an aÆne invariant and contrast invariant

smoothing which we call later on \AÆne Morphological Scale Space (AMSS)". The associated equation is

@u

@t
= jDuj(curv(u)) 13 : (17.3)

In this later case, notice that F is continuous at all points (A; p).

Remark 17.4 It would be comfortable to de�ne a solution of the preceding equations by stating that u is

C2 in x, C1 in t and satis�es the equation @u
@t = F (D2u;Du;x; t) at all points (t;x). In this case, we say

that u is a \classical" solution of the equation. Such a de�nition works (e.g.) for the heat equation, for

which we have shown the existence of classical solutions. There are however, equations among the ones

considered above for which a C2, or even a C1 solution is not to be expected. Let us give an example

where a seemingly \classical" solution is not the right one and violates the comparison principle. Set

u0(x) = �jxj. Then one is tempted to propose, as a solution for @u
@t = jDuj, the function ~u(t;x) = t� jxj.

For all t and all x 6= 0, we indeed have @~u
@t = 1 = jD~u(x)j. Now, this \solution" violates the comparison

principle. This can be checked by comparing this solution with the C1 solution of the same equation with

initial datum '0(x) � 0, which obviously is '(t;x) � 0. The right, comparison preserving, solution is

in fact u(t;x) = min(0; t � jxj). Notice that this last solution is not C1, so that it cannot be de�ned as

a classical solution. The diÆculty of de�ning a right concept of solution is still more challenging in the

case of equations like the mean curvature equation. A fast way to capt the diÆculty is to use the contrast

invariance : let g(r) be a nondecreasing continuous, but not C1 real function and u0(x) an initial datum in

IRN . Assume that we have been able to de�ne a \classical" solution u for a curvature equation like (17.3)

or the mean curvature motion with initial datum u0. By contrast invariance, it is to be expected that g(u)

will be a solution for the same equation with initial datum g(u0). Since g is not C1, it cannot, however,

be expected that this solution will be even C1. We only can assert that it is continuous.

Although we cannot write properly the equation for an expected solution because of its lack of regularity,

we can instead compare it with smooth, classical solutions. To this aim, we denote by C1b (IRN ) the set of

continuous, in�nitely di�erentiable bounded functions on IRN .

De�nition 17.5 Let us �rst assume that F is admissible. We shall say that u is a viscosity subsolution

at point x0 and scale t0 of
@u

@t
(t;x)� F (D2u(t;x); Du(t;x);x; t) = 0 (17.4)
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if u is a continuous function and if for all ' in C1b ([0; T ]�IRN) such that (t0;x0) is a local strict maximum

point of u� ', we have if D'(t0;x0) 6= 0

@'

@t
(t0;x0)� F (D2'(t0;x0); D'(t0;x0);x0; t0) � 0; (17.5)

and if D'(t0;x0) = 0 and D2'(t0;x0) = 0

@'

@t
(t0;x0) � 0: (17.6)

Similarly, u is a viscosity supersolution at point x0 and scale t0 if for all ' in C1b ([0; T ]� IRN ) such that

(t0;x0) is a local strict maximum point of '� u, we have if D'(t0;x0) 6= 0

@'

@t
(t0;x0)� F (D2'(t0;x0); D'(t0;x0);x0; t0) � 0: (17.7)

and if D'(t0;x0) = 0 and D2'(t0;x0) = 0

@'

@t
(t0;x0) � 0: (17.8)

We call u a viscosity solution at point x0 and scale t0 if it is both a viscosity subsolution and a

supersolution.

If u(t;x) is a viscosity solution of (17.4) at each point of IR+;? � IRN and if u(0;x) = u0(x), we say that

u is a viscosity solution of equation (17.4) with initial condition u0.

Figure 17.1: Erosions and dilations can create singularities. Top-left : original C1 image, and below : representation of
the intensity along the horizontal axis. Middle : dilation with a circle of 30 pixels : at the central point, the image is no
more C1 or even C1. Right : erosion with the same circle ; we also see some loss of regularity : the solution is no more C2.

Of course, this de�nition makes sense only if we prove that \classical" solutions of (17.4) also are

viscosity solutions ! This will be done in Proposition 17.10 below. The next lemmas yield a signi�cant

simpli�cation of the calculations when we check that a function is a viscosity solution. Of course, all

statements on subsolutions are also valid for supersolutions with the adequate changes.

Lemma 17.6 If u is a viscosity subsolution and u � ' has a (not necessarily strict) local maximum at

(t0;x0), then the same conclusion holds for (17.5 or 17.6).
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Figure 17.2: Erosion and dilation can generate singularities within the level-lines. Left : original image where the only
level-line, corresponding to the boundary of the black shape, is C2. Right : erosion with a circle of radius 10 : the resulting
level-lines have angles.

Proof Just replace '(t;x) by  (t;x) = '(t;x)+(t�t0)4+(x�x0)4. Then the �rst and second derivatives
of  are equal to those of ' and (t0;x0) is now a strict local maximum of u�  . 2

Remark 17.7 Let us note that the relations (17.5 - 17.8) do not give any bound of the partial derivaty of

' with respect to t, in the case where D' = 0 and D2' 6= 0. The next lemma proves that in fact (17.5) and

resp. (17.7) hold even in this case, with F replaced by any function G+ (resp. G�), where G� satis�es

17.2. In particular if F is continuous everywhere then (17.5) and (17.7) are satis�ed everywhere.

Lemma 17.8 Let us assume that F is admissible, and G+ and G� two continuous functions satisfying

17.2. A continuous function u is a viscosity subsolution (resp. supper-solution) at point (t0;x0) of (17.4)

if and only if it satis�es (17.5) and

@'

@t
(t0;x0)�G+(D2'(t0;x0); D'(t0;x0);x0; t0) � 0 (17.9)

(resp. it satis�es (17.7) and

@'

@t
(t0;x0)�G�(D2'(t0;x0); D'(t0;x0);x0; t0) � 0 (17.10)

An immediat consequence of this lemma is that if F is admissible and continous, and u a viscosity

subsolution (resp. supper-solution), then (17.5) (resp. (17.7)) holds even if the gradient is null.

Proof It is clear that if (17.9) holds then (17.6) holds. Let us prove the reciproque: Let u be a continuous

function satisfying (17.5) and (17.6). Let also ' be a C2 function such that (t0;x0) is astrict local maximum

of u � '. We have to prove that for any continuous G+ satisfying condition 17.2, if D'(t0;x0) = 0 and

D2'(t0;x0) 6= 0, (17.9) holds. (The others cases are immediat).

Let us consider the function  �(t;x;y) = u(t;x)� '(t;y)� jx�yj4
� . Since (t0;x0) is a maximum point

of u�', one proves easily that there exists a sequence (t�;x�;y�) of local maximum points of  � converging

to (t0;x0;x0). x� �xed,  is twice di�erentiable with respect to y, and has a local maximum for y = y�,

therefore one has

D'�(t�;y�) =
4(x� � y�)jx� � y�j2

�
;

and

D2'(t�;y�) � �
1

�
(4jx� � y�j2Id� 8(x� � y�)� (x� � y�)):

Two cases:
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1. D'(t�;y�) = 0, then x� = y�.

Now, �xing y = y�,  � has a local maximum at x� with respect to the x variable, using (17:6) we get

@'

@t
(t�;y�) � 0

and since D2'(t�;y�) � 0, for any continuous G+ satisfying 17.2, G+(D2'(t�;y�); 0;y�; t�) � 0, thus

@'

@t
(t�;y�) � G+(D2'(t�;y�); 0;y�; t�)

and letting � tends to zero, by continuity of G+, we deduce that (17.9) holds at point (t0;x0).

2. D'(t�;y�) 6= 0. We remark that (t�;x�) is a maximum point of

(t;x)! u(t;x)� '(t;x� (x� � y))� jx� yj4
�

Then using (17.5), we have

@'

@t
� F (D2'(t�;y�); D'(t�;y�);y�; t�) � G+(D2'(t�;y�); D'(t�;y�);y�; t�)

Letting � tends to zero, and using the continuity of G+ we conclude that (17.9) holds at point (t0;x0).

2

Lemma 17.9 If u satis�es the subsolution (resp. the supersolution) de�nition 17.5 for any C1b function

' of the form '(x; t) = f(x) + g(t), then it is a subsolution (resp. a supersolution).

Proof Let '(x; t) be a C1b function such that u� ' attains its maximum at (x0; t0). We wish to show

that (17.5) is satis�ed. Without loss of generality, we may assume that the origin is at (x0; t0), so that

(x0; t0) = (0; 0). By Taylor formula, we can write

'(x; t) = a+ bt+ �p;x� +ct2+ �Qx;x� +t �q;x� +o(jx2j+ t2);

where a = '(0), q = 1
2 (

@2'
@x1@t

(0); :::; @2'
@xN@t

(0)), etc.. We then set

f(x) = a+ �p;x� + �Qx;x� +"jxj2 + "jqjjxj2

and

g(t) = bt+
jqj
"
t2 + "t2 + ct2;

so that

'(x; t) = f(x) + g(t)� ("jqjjxj2 + jqj
"
t2 + t �q;x� +"(jxj2 + t2)) + o(jxj2 + t2):

Since, by Cauchy-Schwartz inequality, "jqjjxj2 + jqj
" t

2 + t �q;x�� 0; we have '(x; t) � f(x) + g(t) for

(x; t) small enough. Thus, in a neighborhood of 0, u(t;x) � '(x; t) � u(t;x) � f(x) � g(t). This means

that u� f � g attains its maximum at 0 and therefore, by assumption,
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1. if D'(0) = D(f + g)(0) 6= 0 then by (17.5)

@(f + g)

@t
(0) � F (D2(f + g)(0); D(f + g)(0); 0; t):

Noting that @(f+g)
@t (0) = @'

@t (0), D
2(f + g)(0) = D2'(0) � 2"jqjId and D(f + g)(0) = D'(0), we

�nally obtain
@'

@t
(0) � F (D2'(0)� 2"jqjId;D'(0); 0; t):

We let "! 0, use the continuity of F with respect to X and conclude.

2. if D'(0) = D(f + g)(0) = 0 then by (17.9),

@(f + g)

@t
(0) � G+(D2(f + g)(0); D(f + g)(0); 0; t):

Then letting "! 0, use the continuity of G+, yields (17.9) with '.

The same proof applies with obvious adaptations to the suppersolution property. 2

Exercise 17.1 Let F be admissible. Show that, in the de�nition of the viscosity solutions (associated with
@u
@t = F (D2u;Du;x; t)), we can enforce further the test function f to belong to any class C of C2 functions

having the following property: For any x 2 IRN and any quadratic form Q, there exists ' 2 C such that

f(y) = Q(y) + o((y � x)2):

(Indication: use the order 2 Taylor expansion of '.)

The next two propositions show that the notion of viscosity solution is a generalization of the concept of

\classical" solution.

Proposition 17.10 Let F (A; p;x; t) be admissible and continuous everywhere, and u be a classical, (i.e.

C2 with respect to x and C1 with respect to t), solution at point (x0; t0) of

@u

@t
(t;x) = F (D2u;Du;x; t):

Then u is a viscosity solution at this point.

Proof : We do the case whereDu 6= 0 at point (t0;x0). (The other case,Du(t0;x0) = 0 andD2u(t0;x0) =

0, is imediat). Let ' be a C1(IRN � IR+ ! IR) function such that (t0;x0) is a global maximum point of

u� ', that is

u(t0;x0)� '(t0;x0) � u(t;x)� '(t;x):

We want to prove that
@'

@t
� F (D2';D';x; t): (17.11)

We have

u(t;x)� u(t0;x0) � '(t;x)� '(t0;x0):
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Thus, by Taylor expansion of order 1,

(t� t0)
@u

@t
(t0;x0)+ �Du(t0;x0);x� x0� +o((x� x0)) + o(t� t0)) � (17.12)

(t� t0)
@'

@t
(t0;x0)+ �D'(t0;x0);x� x0� :

Setting x = x0, taking t > t0 and t < t0 and letting t! t0, we get

@u

@t
(t0;x0) =

@'

@t
(t0;x0):

Setting x� x0 = "y, and letting "! 0, we get

8y; �Du(t0;x0);y���D'(t0;x0);y� :

Thus Du(t0;x0) = D'(t0;x0). We now take t = t0 and do a Taylor expansion in x of order 2 of the

inequality

u(t0;x)� u(t0;x0) � '(t0;x)� '(t0;x0):

We obtain

�D2u(t0;x0)(x � x0); (x � x0)���D2'(t0;x0)(x� x0); (x� x0)� +o((x� x0)
2);

which yields

D2u(t0;x0) � D2'(t0;x0):

Thus,

@'

@t
(t0;x0) =

@u

@t
(t0;x0) = F (D2u(t0;x0); Du(t0;x0);x0; t0) � F (D2'(t0;x0); D'(t0;x0);x0; t0):

We deduce that u is a subsolution and we prove in the same way that u also is a supersolution. 2

Proposition 17.11 Let F (A; p;x; t) be admissible and continuous everywhere. Let u(t;x) be C2 in x and

C1 in t and assume that u is a viscosity solution of @u
@t = F (D2u;Du;x; t). Then u is a classical solution

of the same equation.

Proof : We assume that u is a viscosity solution, and is C2 at point (t0;x0). We note ~Du = (@u@t ; Du) 2
IRN+1. By Taylor formula,

u(t;x) = u(t0;x0)+ � ~Du(t0;x0); (t�t0;x�x0)� + � ~D2u(t0;x0)(t�t0;x�x0); (t�t0;x�x0)� +o(jx�x0j2+jt�t0j2):

For " 2 IR we set

'" = u(t0;x0)+ � ~Du; (t� t0;x� x0)� + �( ~D2u(t0;x0) + "Id)((t� t0;x� x0); (t� t0;x� x0)� :

Then, (t0;x0) is a local maximum of u� '", and a local maximum of '�" � u. Since F is continuous and

u is a viscosity solution at point (t0;x0), we have by lemma 17.8, at this point, (with G+ = F ),

@u

@t
=
@'"
@t

� F (D2'"; D'";x0; t0) = F (D2u+ "Id;Du;x0; t0)
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@u

@t
=
@'�"
@t

� F (D2'�"; D'�";x0; t0) = F (D2u� "Id;Du;x0; t0):

Letting "! 0, we obtain
@u

@t
(t0;x0) = F (D2u;Du;x0; t0):

2

17.2 Application to mathematical morphology.

Consider the dilation of a function u0(x) by balls with radii t, that is

u(t;x) = sup
y2B(0;t)

u0(x+ y); u(0;x) = u0(x):

In that case, we have shown that at points (t;x) where u(t;x) is C1, we have @u
@t = jDuj. Let us now show

that this same equation is satis�ed in the viscosity sense by u at all points. The following theorem and

proofs are immediately generalizable to dilations or erosions by an arbitrary convex set.

Theorem 17.12 The function u de�ned by u(t;x) = supy2B(0;t) u0(x+ y) is a viscosity solution of

@u

@t
= jDuj; u(0;x) = u0(x) (17.13)

Proof : We shall use the fact that u satis�es the recursive property

u(t;x) = sup
jyj�h

u(t� h;x+ y): (17.14)

Let ' 2 C1(IRN � IR+). Let (t0;x0) a local maximum point of u� '. In order to prove that u is a

subsolution of the equation (17.13) we have to prove that

@'

@t
(t0;x0)� jD'j(t0;x0) � 0:

We have, for h and y small enough,

u(t0 � h;x0 + y)� '(t0 � h;x0 + y) � u(t0;x0)� '(t0;x0):

We deduce that

sup
jyj�h

u(t0 � h;x0 + y) � u(t0;x0)� '(t0;x0) + sup
jyj�h

'(t0 � h;x0 + y)

and, using (17.14),

u(t0;x0) � u(t0;x0)� '(t0;x0) + sup
jyj�h

'(t0 � h;x0 + y):

Thus

'(t0;x0) � sup
jyj�h

'(t0 � h;x0 + y):
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Subtracting '(t0 � h;x0) on both sides, we get

'(t0;x0)� '(t0 � h;x0) � sup
jyj�h

�
'(t0 � h;x0 + y)� '(t0 � h;x0)

�
:

Dividing by h and letting h tends to 0 yields

@'

@t
(t0;x0)� jD'j(t0;x0) � 0:

Thus u is a subsolution and we prove in the same way that it is a supersolution of (17.13). 2

17.3 Approximation theory of viscosity solutions

In the following, we consider for simplicity a slightly less general kind of equation for which the second

member is independent of t, that is

@u

@t
(t;x)� F (D2u(t;x); Du(t;x);x) = 0: (17.15)

F (A; p;x) is assumed to be admissible (De�nition 17.1). For such equations, we can expect that the

operator St : u0 ! u(x; t) can be approximated by the iteration of a single operator Th, that is, (Th)
n ! St

in some sense as nh ! t. Of course, we have exactly St = (Sh)
n if t = nh. Now, we are concerned with

operators Th with a de�nition plainer than Sh. To be precise, we have in mind precisely the same scaled

\inf sup" operators which have been considered in the preceding chapter of this book (Chapters 11-15).

We shall now list some very reasonable properties which Th must have if it is asked to have the same

structure as Sh when h ! 0. It is immediately checked that those properties are true for the scaled

\inf sup" operators we have just mentioned.

De�nition 17.13 We say that a family of operators Th; h > 0 is uniformly consistent with Equation 17.15

if for every C3, Lipschitz function u we can assert that

if Du(x) 6= 0; (Thu)(x)� u(x) = hF (D2u;Du;x) + ox(h); (17.16)

where the convergence of ox(h) is uniform for x in every compact set K contained in the set fx; Du(x) 6=
0g. (That is ox(h) � Cu;K jhj, for a constant Cu;K depending only of u and K.)

if Du(x) = 0; j(Thu)(x)� u(x)j � hG(D2u; 0;x) + ox(h) (17.17)

for a continuous functions G, with G(0; 0;x) = 0, and, where the convergence of o(h) is uniform for x in

every compact set.

De�nition 17.14 We say that a family of operators Th; h > 0 satis�es a uniform local comparison prin-

ciple if for every L and all L-Lipschitz functions u and v such that u(y) > v(y) on a disk D(x; r) n fxg
deprived of its center, we can assert that

(Thu)(x) � (Thv)(x)� o(h); (17.18)

where the function o(h) only depends upon the Lipschitz constant L and r.
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De�nition 17.15 If Th, h > 0, is a family of operators consistent with Equation 17.15, We call ap-

proximate solutions of (17.4) with initial condition u0(x) the functions uh(t;x) de�ned for every h > 0

by

8n 2 IN; uh(nh;x) = (Tnh u0)(x);

8t 2 [(n� 1)h; nh[; uh(t;x) = uh((n� 1)h;x):

Proposition 17.16 (Convergence) Let (Th)h�0 be a family of operators uniformly consistent with (17.15),

satisfying a uniform comparison principle and commuting with the addition of constants (Th(u + C) =

Thu+C). Assume that a sequence of approximate L-Lipschitz solutions uhk converges uniformly on every

compact set to a function u. Then u is a viscosity solution of (17.4).

Before starting with the proof, let us state an obvious but useful lemma.

Lemma 17.17 Let vk be a sequence of continuous functions converging uniformly on a disk D(x; r) to a

function v. Assume that x is a strict maximum point for v on D(x; r). Let xk be a maximum point of vk

on D(x; r). Then xk tends to x as k ! +1.

Proof of Proposition 17.16 Without risk of ambiguity, we shall write uh instead of uhk . Let D =

D((x; t); r) be a disk and '(s;y) a C1 function such that (u � ')(s;y) attains its strict maximum on

D at (t;x). Without loss of generality, we can assume by Lemma 17.9 that '(t;y) = f(y) + g(t): Since

uh � '! u� ' uniformly on D, we know by Lemma 17.17 that a sequence (xh; th) of maxima of uh � '

on D converges to (x; t).

Thus we have in particular

uh((nh � 1)h;y)� '((nh � 1)h;y) � uh(th;xh)� '(th;xh): (17.19)

Assume that nhh � th < (nh + 1)h. Assume �rst that th 6= nhh. Then, by De�nition 17.15, we know

that @'
@t (th;xh) = 0. Since ' is C1 then we can write

'(th;xh) = '(nhh;xh) + o(h):

This relation still holds if th = nhh.

In addition, by De�nition 17.15 again, we have uh(th;xh) = uh(nhh;xh). Therefore we deduce from

the inequality (17.19) that

uh((nh � 1)h;y)� '((nh � 1)h;y) � uh(nhh;xh)� '(nhh;xh) + o(h):

for every y such that (y; (nh � 1)h) 2 D and therefore

uh((nh � 1)h;y) � uh(nhh;xh)� '(nhh;xh) + '((nh � 1)h;y) + o(h)

for h small enough (i.e. k large enough) and every y 2 D(x; r2 ). Applying on both sides Th and using the

local comparison principle and the commutation of Th with the addition of constants,

Th(uh((nh � 1)h; :))(xh) � uh(nhh;xh)� '(nhh;xh) + (Th'((nh � 1)h); :)(xh) + o(h):
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Since '(t;y) = f(y) + g(t) and Th(u((nh � 1)h); :)(x) = u(nhh;x), we get

0 � �f(xh)� g(nhh) + Thf(xh) + g((nh � 1)h) + o(h);

where we have used again the commutation of Th with the addition of constants.

Let us �rst assume that Df(x) 6= 0. By the uniform consistency assumption (17.16), since for h small

enough Df(xh) 6= 0,

(Thf)(xh) = f(xh) + hF (D2f(xh); Df(xh);xh) + o(h):

Thus

g(nhh)� g((nh � 1)h) � hF (D2f(xh); Df(xh);xh) + o(h):

Dividing by h, letting h! 0 so that (xh; nhh)! (x; t) and using the continuity of F , we get

@g

@t
(t) � F (D2f(x); Df(x);x);

that is to say
@'

@t
(t) � F (D2'(x); D'(x);x):

We treat now the case where Df(x) = 0 and D2f(x) = 0. The uniform consistency yields

j (Thf)(xh)� f(xh)

h
j � G(D2f(xh); Df(xh);xh) + o(1):

The right term, by continuity of G, tends to zero, when h tends to 0. Thus

@'

@t
(t) � 0

Thus u is a subsolution of Equation (17.15) and we prove in exactly the same way that it is a super-

solution and therefore a viscosity solution. 2

17.4 Uniqueness of viscosity solutions.

Theorem 17.18 Uniqueness.

We consider an admissible function F , u0 and v0 two continuous and bounded functions of IR
N . Assume

that u0 and v0 are de�ned on the hypercube [0; 1]N , and subsequently extended to C = [�1; 1]N by symmetry

across the coordinate hyper-planes and then periodized. Assume that so is x! F (A; p;x; t).

If u and v are continuous and viscosity solutions of

@u

@t
= F (D2u;Du;x; t) (17.20)

with initial conditions respectively u0 and v0. Then,

sup
x2IRN ;t2IR+

u(t;x)� v(t;x) � sup
x2IRN

u0(x)� v0(x) (17.21)

As consequence, if u0 = v0 then u(t;x) = v(t;x) for all x and t.
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Theorem 17.19 \Theorem on Sums". (revisited). [Crandal-Ishii-Lions Theorem 8.3]

Let u and v be continuous functions of IR+� IRN , and � be twice di�erentiable function of IR+� IRN .

Set w(t;x;y) = u(t;x) � v(t;y) � �(t;x � y), suppose that (t0;x0;y0) is a local maximum of w. Then,

there exist two sequences of points (tn;xn) and (sn;yn) converging respectively towards (t;x0) and (t;y0),

and two sequences of twice di�erentiable functions of (IR+ � IRN ): un and vn, such that

(tn;xn) is a local maxima of u� un; and

(
@un
@t

;Dun; D
2un)! (a;D�(t0;x0;y0); X) (17.22)

(sn;yn) is a local maxima of vn � v; and

(
@vn
@t

;Dvn; D
2vn)! (b;D�(t0;x0;y0); Y ) (17.23)

with X and Y 2 S(IRN ), such that

if D2�(t0;x0;y0) 6= 0 : X � Y (17.24)

if D2�(t0;x0;y0) = 0 : X � 0 and Y � 0 (17.25)

and with a� b =
@�

@t
(t0;x0;y0): (17.26)

Lemma 17.20 Set �(t;x � y) = (4�)�1jx � yj4 + �t, with � and � two positive numbers. We consider

equation (17.20), where F is assumed to be admissible. Let u and v be continuous and some viscosity

solutions of (17.20) with initial condition u0 and v0. Set w(t;x;y) = u(t;x) � v(t;y) � �(t;x � y). If

(t0;x;y) is a local maxima of w then t0 = 0.

proof Let us assume t0 > 0, we want to obtain a contradiction by using the theorem of the sums, and

the fact that u and v are viscosity solutions. We have for some @�
@t (t0;x0�y0) = � > 0, D�(t0;x0�y0) =

��1jx0�y0j2(x0�y0) = p. There exists two sequences of points (tn;xn) and (sn;yn) converging respectively

towards (t;x0) and (t;y0), and two sequences of twice di�erentiable functions of (IR+ � IRN ): un and vn,

and X;Y , a� b = � such that

(tn;xn) is a local maxima of u� un; and (
@un
@t

;Dun; D
2un)! (a; p;X) (17.27)

(sn;yn) is a local maxima of vn � v; and (
@vn
@t

;Dvn; D
2vn)! (b; p; Y ) (17.28)

Two cases :

1. if p 6= 0, then for n large enough, Dun 6= 0. Then, since u is a viscosity solution of (17.20), (17.27)

implies
@un
@t

(tn;xn) � F (D2un(tn;xn); Dun(tn;xn);xn; tn)

Letting n tends to1, and using the continuity of F when its second argument is not zero, we obtain

a � F (X; p;x0; t0) (17.29)
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Similarly with vn, (17.28) implies

@vn
@t

(tn;xn) � F (D2vn(tn;xn); Dvn(tn;xn);xn; tn)

And at the limit

b � F (Y; p;x0; t0) (17.30)

(17.29) and (17.30) gives � = a� b � 0, which is a contradiction.

2. if p = 0, then x0 = y0. In that case D2� = 0, then X � 0 and Y � 0. We de�ne ~un(t;x) =

un(t;x)+ �X(xn � x);xn � x�, and ~vn(t;x) = un(t;x)+ �Y (xn � x);xn � x�. We then have

(tn;xn) is a local maxima of u� ~un; and (
@~un
@t

;D~un; D
2~un)! (a; 0; 0) (17.31)

(sn;yn) is a local maxima of ~vn � v; and (
@~vn
@t

;D~vn; D
2~vn)! (b; 0; 0) (17.32)

By (17.9) we have, since F is admissible, for a continuous function G satisfying 17.2:

@~un
@t

(tn;xn) � G(D2~un(tn;xn); D~un(tn;xn);xn; tn)

and
@~vn
@t

(tn;xn) � �G(D2~vn(tn;xn); D~vn(tn;xn);xn; tn)

Letting n tends to1, one obtains a � 0 and b � 0, which is again in contradiction with a�b = � > 0.

2

Proof of Theorem 17.18 We consider w(t;x;y) = u(t;x) � v(t;y) � �(t;x � y), with � given in

the preceding lemma. Since u and v are assumed to be bounded, w tends to �1 when t increases.

The periodicity of u, and v with respect to x insures existence of a maxima of w for a point (x;y; t) 2
IRN � IRN � IR+. According to lemma 17.20, t = 0, so we have

u(t;x)� v(t;y)� (4"�1jx� yj4 � �t) � sup
x;y2IRN

�
(u0(x)� v0(y))� (4")�1jx� yj4�

Letting � tend to 0, we �nally get

u(t;x)� v(t;x) � sup
x2IRN

(u0(x)� v0(x))

2
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The proof of uniqueness for viscosity solutions of second order parabolic or elliptic solutions is the
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namely the nonlinear semigroup theory and the barrier theory are respectively discussed in [175] and [137].

Working version subject to errors, only for personal use. No di�usion authorized. All rights reserved. (Version: 15/07/2000)



Chapter 18

Curvature equations and iterated
contrast invariant operators

18.1 Main curvature equations for image processing

In this chapter, we study the convergence of contrast invariant operators to equations of the kind

@u

@t
= jDuj�(curv(u)); (18.1)

or, in dimension N , of the kind

@u

@t
= jDuj�(�1(u); �2(u); :::�N�1(u)); (18.2)

where � is a continuous real function nondecreasing with respect to its variables and �1; :::; �N�1 denote

the principal curvatures of the level surface of u. In other terms, they are the eigenvalues of the restriction

of D2u to the plane orthogonal to Du (Proposition 5.16).

We shall deduce from the convergence results for approximate solutions the existence of viscosity

solutions to these equations, wherever approximate solutions uh have been constructed. There are other

methods for proving existence of viscosity solutions (the so called \vanishing viscosity" method, and the

Perron method). Now, we shall obtain, besides existence, a proof that the main iterated contrast invariant

operators considered in the preceding chapters converge to equations of the kind (18.2). Let us list the

main examples we have in mind : this will orient us as for the assumptions we shall make on �. In

dimension 2, we have put in evidence as relevant for image processing the equations

@u

@t
= jDujcurv(u) (18.3)

and
@u

@t
= jDujcurv(u) 13 ; (18.4)

as well as variants like
@u

@t
= jDuj(curv(u)+) 13 (18.5)

which correspond to aÆne erosions. In dimension 3, we shall be concerned with

@u

@t
= jDujcurv(u) = jDuj(�1(u) + �2(u)); (18.6)
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which is the classical \mean curvature motion", important because it arises as a limit of iterated median

�lters (Theorem 12.2). What we'll state also applies to variants, like

@u

@t
= jDujcurv(u) = jDujmin(�1(u); �2(u)); (18.7)

an equation which performs a less destructive smoothing of the 3D images than the mean curvature

motion. Finally, let us mention the Gaussian curvature motion, as a particularly important equation in

3D : it performs an aÆne invariant smoothing (see Theorem 21.8), and can also be used in movie smoothing

because of its galilean invariance (Chapter 23) :

@u

@t
= jDujsgn(�1(u))((�1(u)�2(u))+) 14 : (18.8)

In the next section, we shall �x a common formal framework for these equations.

Figure 18.1: Scale-space based on iterations of the median �lter. From left to right and up to down : original shape, the
size of the disk used for the median, and the result of the iterated median �lter for an increasing number of iterations.

Figure 18.2: Comparison of the iterated median �lter and of the curvature motion. Numerically, the iterated median �lter
and the curvature motion are very close, when the curvatures of the level lines are not too small. Indeed, the iterated median
�lter converges towards the viscosity solution of the curvature motion. Left : simple shape smoothed by a �nite di�erence
scheme of the curvature motion, middle : smoothing by a median �lter a the same scale, right : di�erence between left and
middle images. The di�erence is not larger that one pixel width.

18.2 Contrast invariance and viscosity solutions

In this section, we check that the contrast invariance requirement for the solutions of the equations con-

sidered in the preceding chapters is compatible with the concept of viscosity solution.
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Lemma 18.1 Equations (18.4-18.5-18.8-18.3-18.6-18.7) can be written as @u
@t = F (D2u;Du) where F (A; p)

is an admissible function (see de�nition 17.1) of A and p and satis�es

where Du 6= 0 F (D2(g(u)); D(g(u))) = g0(u)F (D2u;Du) (18.9)

for any C2 nondecreasing function g and any C2 function u, and where

where Du = 0 and D2u = 0; F (D2(g(u)); D(g(u))) = F (0; 0) = 0 (18.10)

Proof If Du 6= 0, we know that curv(g(u)) = curv(u) and �i(g(u)) = �i(u) (Proposition 5.13). Thus

F (D2(g(u)); D(g(u)) = jD(g(u)j�(�1(g(u)); :::�N�1(g(u))) =

g0(u)jDuj�(�1(u); :::�N�1(u)) = g0(u)F (D2u;Du);

as announced. Let us now consider the case of the mean curvature equations when Du = 0. We only treat

the case of the mean curvature motions (18.3) and (18.6), the case of (18.7) being similar. In that case,

F (A; p) = Tr(A)�A( p
jpj ;

p
jpj )p and therefore F (0; 0) = 0.

In addition, if we take A = D2(g(u)) = g0(u)D2u + g00(u)Du 
 Du and D2u = Du = 0, we have

D(g(u)) = 0 and D2(g(u)) = g0(u)D2u = 0, so that we immediately obtain F (D2(g(u)); D(g(u))) = 0,

when Du = 0 and D2u = 0. 2

Proposition 18.2 If u is a viscosity solution of one of the equations (18.4-18.5-18.8-18.3-18.6-18.7) and

g a continuous nondecreasing function, then g(u) also is a viscosity solution of the same equation.

Proof Let us �rst assume that g is C1 and strictly increasing and set for commodity f = g�1. Let (t;x)

be a local strict maximum of g(u)�'. Then (t;x) also is a local strict maximum of u�g�1(') = u�f(').
Since f(') is C1, and u a viscosity subsolution, we deduce that if D(f('))(t;x) 6= 0:

@(f('))

@t
(t;x) � F (D2(f('))(t;x); D(f('))(t;x));

which yields by Lemma 18.1

f 0(')
@'

@t
(t;x) � f 0(')F (D2';D')(t;x);

and, taking into account that f 0 > 0,

@'

@t
(t;x) � F (D2';D')(t;x):

And if D(f(')) = 0, and D2(f(')) = 0

@(f('))

@t
� 0 and so

@'

@t
(t;x) � 0

Thus, g(u) is a viscosity subsolution and, in the same way, a viscosity supersolution. Let us now consider

the case where g is not C1 and increasing. In this case, we replace g(s) by g"(s) =  "(s) � (1 + "s)g(s),

where  is a compactly supported C1 real function such that
R
IR
 = 1,  � 0. It is easily seen that g"
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converges uniformly on every compact subset of IR to g, is C1 and satis�es g0" � ". If (t;x) is a local strict

maximum of g(u)�', we deduce from Lemma 17.17 that we can �nd a sequence (t";x")! (t;x) of local

maxima of g"(u)� '. Thus when D'(t;x) 6= 0, so is D'(t";x") for � small enough, and then

@'

@t
(t";x") � F (D2'(t";x"); D'(t";x"));

and if D'(t;x) = 0, and D2'(t;x) = 0, using lemma (17.8) for a continuous function G+ such that

G+(0; 0) = 0,
@'

@t
(t";x") � G+(D2'(t";x"); D'(t";x"))

and in both cases by passing to the limit as " ! 0 and using the continuity of F in the �rst case, and

of G+ in the second case, we conclude that g(u) is a viscosity subsolution. The same arguments apply of

course for proving that g(u) is a viscosity supersolution. 2

18.3 Uniform continuity of approximate solutions

Lemma 18.3 Let IB be a family of structuring elements in IRN and T its associated operator Tu(x) =

infB2IB supy2x+B u(y). If u is a Lipschitz function with Lipschitz constant L, then so is Tu.

Proof Same as Lemma 7.5 and the joint Remark 7.4 2

Lemma 18.4 Assume that there exist a continuous real function, k(t) satisfying k(0) = 0 and such that

for nh � t, ((Th)
n(Ljxj))(0) � Lk(t) and ((Th)

n(�Ljxj))(0) � �Lk(t). Assume that the operators Th are

monotone, and commute with the addition of constants and with translations. Then for every L-Lipschitz

function u0, one has �Lk(t) � ((Th)
nu0)(x)� u0(x) � Lk(t).

Proof Since the operators Th commute with translations, we can prove the statements in the case of

x = 0 without loss of generality. Since u0 is L-Lipschitz, we have

�Ljxj � u0(x)� u0(0) � Ljxj

Applying (Th)
n, using its monotonicity and its commutation with the addition of constants and taking the

value at 0,

((Th)
n(�Lx))(0) � ((Th)

nu0)(0)� u0(0) � ((Th)
n(Lx))(0);

that is, by assumption if nh � t,

�Lk(t) � ((Th)
nu0)(0)� u0(0) � Lk(t):

2

Lemma 18.5 Let u0(x) be a lipschitz function on IRN . Let Th be a family of operators satisfying the

assumptions of Lemmas 18.3 and 18.4 with a function k(t) satisfying k(t) � t� for some � > 0 if t is small
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enough. Then the approximate solutions uh(x; t) associated with Th are uniformly equicontinuous when we

restrict t to the set nh. More precisely, for all n;m 2 IN and all x;y in IRN ,

juh(x; nh)� uh(y;mh)j � Ljx� yj+ k(jn�mjh): (18.11)

As a consequence, we can extract sequences uhn, with hn ! 0, which converge uniformly on every compact

subset of IRN � IR+.

Proof Since by de�nition uh(x) = ((Th)
nu0)(x), the result is a direct consequence of Lemmas 18.3 and

18.4 : By the �rst mentioned lemma, juh(x; nh) � uh(y; nh)j � Ljx � yj and by the second one applied

with (Th)
n�m,

juh(x; nh)� uh(x;mh)j = j((Th)n�muh(:;mh))(x)� uh(x;mh)j � k(jn�mjh):

In order to end with the argument, we simply notice that

juh(x; nh)� uh(y;mh)j � juh(x; nh)� uh(y; nh)j+ juh(y; nh)� uh(y;mh)j:

Consider the linear interpolation of uh,

~uh(x; t) =
t� nh

h
uh(x; (n+ 1)h) +

(n+ 1)h� t

h
uh(x; nh):

It is easily checked that

~uh(y; t)� ~uh(y; s)j � k(h)

h
jt� sj � jt� sj� for jt� sj � h

and

j~u(y; t)� ~u(y; s)j � k(2jt� sj) for jt� sj � h:

Thus, by the same argument as above, we conclude that the family of functions ~uh is uniformly equicontin-

uous on all of IRN � [0;+1]. In addition, ~uh(x; 0) = u0(x) is �xed. We can therefore apply Ascoli-Arzela

Theorem ([]) which asserts that under such conditions, the family of functions ~uh(x; t) has subsequences

converging uniformly on every compact of IRN � [0;+1] towards a uniformly continuous function u(x; t).

Same conclusion holds for uh(x; t). 2

18.4 Convergence of iterated median �lters to mean curvature
motion

We prove here one of the main practical and theoretical results of this book : the iterated median �lters

converge to the mean curvature motion equation.

Lemma 18.6 (median �lter) Let k be a radial, nonnegative, compactly supported bounded function and

kh(y) = 1
hN
h(xh ) the associated scaled function. Assume, without loss of generality, that the support

of kh is B(0; h) and consider the weighted median �lter associated with kh, Thu(x) = medkhu(x). Set

v0(x) = v0(jxj) = v0(r) = Lr. Then, if nh2 � t,

(Tnh v)(0) � L
p
2t:
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0

B(x,h)

h

xr

Figure 18.3: Illustrating the inequality (18.12).

Proof Let us �rst estimate Thv(r) when v(x) = v(jxj) = v(r) is any radial nondecreasing function. To

this aim, let x be such that jxj = r. By the triangular inequality, the sphere with center 0 and radiusp
r2 + h2 divides the ball B = B(x; h) into two parts such that

measkh(fy; jyj �
p
r2 + h2g \ B � x) � measkh(fy; jyj �

p
r2 + h2g \ B � x): (18.12)

As a consequence, v being nondecreasing, we have

medkhv � v(
p
r2 + h2): (18.13)

Let us set for brievety fh(r) =
p
r2 + h2 and rn+1(r) = fh(rn), r0 = r. Then we obviously have from

(18.13) and the monotonicity of Th

(Tnh v)(r) � v(rn(r)): (18.14)

In addition, since
p
r2 + h2 � r+ 1

2rh
2 and rn is an increasing sequence, we obtain rn+1 � rn+

h2

2rn
� rn+

h2

2r0

and therefore

rn � r +
nh2

2r
: (18.15)

Let us assume that nh2 � t. Taking into account that v is a nondecreasing function, (18.14-18.15) yield

(Tnh v)(r) � v(r +
t

2r
): (18.16)

Since (Tnh v)(r) is a nondecreasing function of r, we deduce that (Tnh v)(r) � v(
p
2t) if r �

q
t
2 . Thus, if

v(r) = Lr, we have for nh2 � t

(Tnh v)(0) � L
p
2t

as announced.

2

Theorem 18.7 Convergence of iterated weighted median �lter. Let kh be as in Lemma 18.6 and set again

(Thu)(x) = medkhu. Let u0 be a Lipschitz function de�ned on IRN . Then the approximate solutions uh

converge to a viscosity solution u of the associated equation @u
@t = F (D2u;Du;x) = ckjDujcurv(u).
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Proof We know (Theorems 11.3-12.2) that the weighted median is consistent in any dimension with

the equation @u
@t = F (D2u;Du) = ckjDujcurv(u). Bounds for the result of the iterated �lter (Th)

n ap-

plied to +Ljxj and �Ljxj have been computed in Lemma 18.6, so that the assumption of Lemma 18.4

is true. In addition, we know that medh is monotone, satis�es a local comparison principle (Relation

17.18), commutes with translations and the addition of constants. Thus, we can apply Lemma 18.5 which

asserts that if u0 is a Lipschitz function, then a subsequence of uh converges uniformly on compact sets

of IRN � IR+ to a function u. In addition, by Proposition 17.16, u is a viscosity solution of the equation
@u
@t = F (D2u;Du;x) = ckjDujcurv(u). Since by Theorem 17.19, this solution is unique, we deduce that

all of (Th)
nu0 converges to u. We have thus proved both existence of a viscosity solution and convergence

of the iterated median �lter. 2

18.5 Convergence of iterated aÆne invariant operators to aÆne
invariant curvature motion

The most important case in dimension 2 for which we analyze convergence of iterated contrast invariant

�lters is the equation @u
@t = jDuj(curv(u)) 13 , which is associated with aÆne invariant inf-sup operators

Thu(x) = infB2B supy2x+h 2
3B

u(y); where B is a family of structuring elements invariant by every linear

transform of IR2 with determinant 1. We also set

SIhu(x) = sup
B2IBs

inf
y2B

u(y)

IShu(x) = inf
B2IBs+x0

sup
y2B

u(y)

where, here again, the relation s = h
3
2 is imposed. SIh is understood as an \aÆne erosion" of u and ISh

as an \aÆne dilation" and we also consider the alternate scheme : SIh(IShu) Denoting by Th one of the

schemes ISh, SIh or SIhISh, we set

uh(x; (n+ 1)h) = Thuh(x; nh)

uh(x; 0) = u0(x)

Theorem 18.8 There exists a constant cIB > 0 such that if u0(x) is any Lipschitz function on IR2, then

uh(x; nh) tends uniformly on every compact set to u(x; t), where u(x; t) is the unique viscosity solution of

@u

@t
= jDujg(curv(u)) (18.17)

where g(r) = cIB(r
�)

1
3 if Th = SIh

= cIB(r
+)

1
3 if Th = SIh

= cIB(r)
1
3 if Th = SIh ISh

Theorem 18.8 is somehow a consequence of theorem 15.4, which states a consistency result for the

schemes SIh, ISh, SIhISh. In order to achieve the proof of Theorem 18.8, we need to check that the

assumptions of Lemma 18.4 are satis�ed.
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A

T

A
T

-1

Figure 18.4: AÆne invariance of (AMSS). We check the aÆne invariance of the aÆne and morphological scale space
(AMSS). A simple shape (top-left) is smoothed using a �nite di�erences discretization of (AMSS) followed by thresholding
(bottom-left). We apply on the same shape an aÆne transform, with determinant equal to 1, (top-right), then the same
smoothing process (middle-right), and �nally the inverse of the aÆne transform (down-right). The �nal results of both
processes are experimentally equal.

Figure 18.5: Checking the aÆne invariance of an aÆne "inf-sup". We display the �nal outcomes of the same comparison
process as in Figure 18.4, with an aÆne \infsup". The chosen structuring set is an approximately aÆne invariant set IB of
49 ellipses, all with same area. This implementation is heavy and proves to be less aÆne invariant as the one obtained by a
�nite di�erence scheme. This is due to grid e�ects.

Lemma 18.9 Let IB be a family of subsets of IR2 invariant by SL(IR2). Assume that the convex hull of

each element B of IB is contained in a rectangle with area a2. Set for any real function v de�ned in IR2.

Thv(x) = inf
B2IB

sup
y2h 3

2B+x
v(y):
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x

r
1/2ah

ah

Figure 18.6: Illustration of the proof of the inequality (??).

Consider the radial function v(x) = v(jxj) = v(r) = Lr. Then for nh � t,

(Tnh v)(0) � L(at+ 2a
p
t):

Proof We �rst assume that v(x) = v(jxj) = v(r) is an arbitrary radial nondecreasing function and

estimate (Tnh v)(r). Let x = (r; 0). By assumption, we can enclose any of the elements B of h
3
2B by a

rectangle Rh with area h
3
2 a2. By the Euclidean invariance of IB, we can choose this rectangle to have its

sides parallel to the axes, and by the SL2(IR2) invariance of IB we can further choose B in such a way

that its side parallel to the x-axis has length ah and the other one a2h
1
2 . Since B � Rh, we have

Thv(x) � sup
x+B

v(y) � sup
x+Rh

v(y):

Thus

Thv(x) � v((r +
ah

2
)2 + a2h)

1
2 ) (18.18)

We set for conciseness fh(r) = ((r + ah
2 )

2 + a2h)
1
2 and rn+1(r) = fh(rn); r0 = r. Notice that Thv is a

radial nondecreasing function, so that we can replace v by Thv in (18.18). By the monotonicity of Th, we

obtain

(Tnh v)(r) � v(rn(r)) (18.19)

In addition, since (r2 + ")
1
2 � r + 1

2r " for all r; " > 0, we have for h � 1

fh(r) � (r2 + ahr + a2h+
1

4
a2h2)

1
2 � (r2 + 2a2h+ ahr)

1
2 � r +

1

2r
(2a2h+ ahr):

Finally,

fh(r) � r + ah+
a2h

r
: (18.20)
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Thus rn+1 = fh(rn) � rn + ah + a2h
rn

� rn + ah + a2h
r , because rn is an increasing sequence. Finally,

rn � r + n(ah+ a2h
r ) and, by (18.19),

(Tnh v)(r) � v(r + n(ah+
a2h

r
)):

Let us assume that nh � t. Then

(Tnh v)(r) � v(r + (a+
a2

r
)t):

Considering that the minimum value of r ! r + (a+ a2

r ) is attained at
p
t, we �nally obtain

(Tnh v)(r) � v(2a
p
t+ at)

if r � a
p
t. Thus if v(r) = Lr, we obtain

(Tnh v)(0) � L(at+ 2a
p
t)

for nh � t, as announced. 2

Proof of Theorem 18.8 By Theorems 15.4 and 15.7, the operators Th are consistent with their correspond-

ing partial di�erential equations @u
@t = F (D2u;Du) and satisfy a uniform local maximum principle. Being

contrast invariant, they commute with the addition of constants. Thus, by Proposition 17.16, if a sequence

of approximate L-Lipschitz solutions uhn converges uniformly on every compact set to a function u, then

u is a viscosity solution of (17.4).

Now, since by Lemmas 18.5 and 18.9 the approximate solutions uh are equicontinuous on every compact

set of IRN � IR+ and therefore have subsequences which indeed converge to a function u on every compact

subset of IRN�IR+. Thus, u is a viscosity solution. In addition, we know that a viscosity solution is unique

(Theorem 17.18). Thus the limit u does not depend on the particular considered subsequence. Thus the

whole sequence uh converges to u. So we have fully proven both the existence of a viscosity solution and

the convergence of the iterated Thu0 to it, under the assumption that the initial function u0 is Lipschitz. 2

18.6 Solutions of curvature equations for nonsmooth initial im-
ages

Preceeding sections give existency and uniqueness of solution (in sense of viscosity) to the curvature

equations when the initial image is continuous. Curvature equations yield contrast invariant operator

de�ned on continuous function. Then, using the theorem 8.16 yields to two unique contrast invariant

extensions to semi-continuous images: one in case of upper semi continuous initial images, the other in

case of lower semi-continuous images.

Existence and uniqueness in the case of upper or lower semi-continuous images is then a immediat

consequence of this Theorem.

References.

The existence and uniqueness theory of viscosity solutions for the Motion by Mean Curvature and

the relationship of these solutions with other types of solutions (classical, variational) was developped

Working version subject to errors, only for personal use. No di�usion authorized. All rights reserved. (Version: 15/07/2000)



18.6. SOLUTIONS OF CURVATURE EQUATIONS FOR NONSMOOTH INITIAL IMAGES

independently by Evans, Spruck [138, 392, 393, 394] and Chen, Giga, Goto. [100, 101]. We do not follow

their existence proofs, but rather the elegant numerical approximation (the iterated gaussian median �lter

!) invented by Bence, Merriman and Osher [291] and the subsequent convergence proof to the viscosity

solution by Barles and Georgelin [50]. Other proofs of the gaussian iterated median �lter towards the

Mean Curvature Equation are given by [136], using semigroup theory and Ishii [225]. Let it be recalled

how relevant the iterated median �lter is for denoising applications [35, 224]
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Chapter 19

A snake from A to Z...

19.1 An active contour model

Let us consider an edge as a curve located mostly on high gradient points. Indeed, in some cases, boundaries

of objects induce some discontinuities in the gray level, resulting in high gradient. The aim of the active

contour methods is to �nd such edge around an initial curve given e.g. by hand. The curve is moved from

its original location until it maximizes the amount of gradient along its path.

This can be formulated as an optimization problem. We choose a function g from IR2 into IR repre-

senting for each point x a penalty for the curve to pass by the point x. Ideally, g has to be chosen small

when the magnitude of the image gradient is large. E.g. one could choose

g =
1

jDI j+ �

Given an image I , and an initial curve C0 = x0(s), we want to �nd a curve C = x(s) that minimizes

the following energy:

E(C) =

Z L

0

g(x(s))ds (19.1)

around x0, where s is the arc length and L the total length of the curve C.

In all the following, we will assume g to be di�erentiable with respect to x.

Proposition 19.1 Let C(t) = x(t; s) the curve resulting from a gradient descent of the energy (19.1).

While C(t) is regular and denoting by n its normal, C(t) satis�es the following equation

@x(t; s)

@t
= g(x(t; s))Curv(x(t; s))n(t; s)� (Dg(x(t; s)):n)n (19.2)

and x(0; s) = x0(s) that is (C(0) = C0)

Proof Let us �rst change the parameterization of the curve C so that its length is not a parameter of the

energy. We parameterize the curve with z 2 [0; 1]. We have ds = jx0(z)jdz, where 0 denotes the derivate
with respect to z. Thus

E(C) =

Z 1

0

g(x(z))jx0(z)jdz
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Then,

E(C + dC) �E(C) =

Z 1

0

Dg(x(z))jx0(z)jdx(z)dz +
Z 1

0

g(x(z))
x0(z)
jx0(z)jdx

0(z)dz + o(jdCj)

Integrating by parts the last integral, we have

E(C + dC) �E(C) =

Z 1

0

Dg(x(z))jx0(z)jdx(z)dz �
Z 1

0

(Dg(x(z))x0(z))
x0(z)
jx0(z)jdx(z)dz

�
Z 1

0

g(x(z))Curv(x(z))jx0(z)jndx(z)dz + o(jdCj)
The two �rst integrals can be merged so that E(C + dC)�E(C) =Z 1

0

(Dg(x(z)):n)jx0(z)jndx(z)dz �
Z 1

0

g(x(z))Curv(x(z))jx0(z)jndx(z)dz + o(jdCj)

The intrinsic scalar product between two vectorial functions f and h de�ned on the curve x(z) is given by

f:g =

Z 1

0

f(x(z))g(x(z))jx0(z)jdz

So that

E(C + dC) �E(C) = dC : ((Dg(x(z)):n)n� g(x(z))Curv(x(z))n) + o(jdCj)
We therefore have

rE(C) = (Dg(x(z)):n)n� g(x(z))Curv(x(z))n

As consequence the gradient descent is described by the following equation

@x(t; z)

@t
= �(Dg(x(t; z)):n)n+ g(x(z))Curv(x(z))n

2

Unfortunately, there is no guaranty that such an evolution yields a regular curve for all t. In fact, it is

in general false, since topological changes can appear.

19.2 Study of the Active Contour Equation

We study in this section the following equation

@u

@t
= gjDujcurv(u) +Dg:Du (19.3)

Admissibility of the equation and uniqueness of solutions. Given a vector p of IR2, we denote by

p� a vector orthogonal to p and with norm equal to 1. We de�ne the function F from SM(IR2) � IR2 �
IR2 � IR+ into IR by

F (A; p;x; t) = g(x)A(p�; p�) +Dg(x)p

Equation 19.3 can be obviously write as

@u

@t
= F (D2u;Du;x; t)

It is easy to check that F is admissible (see De�nition 17.1). As consequence Theorem 17.18 ensures

uniqueness of viscosity solutions of 19.3 for any Lipschitz initial condition.
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Existence of solutions by approximation. Let us now construct a approximation scheme to the

solution of equation (19.3). Even if it is possible to construct a family of structuring elements having as

asymptotic behavior the two terms in the right part of the equation (19.3), it is simpler to consider for

each term one family of structuring elements and to alternate their corresponding �lters. To be noted

that, due to g, the equation is not invariant by translation. As consequence, the families of structuring

elements are depending on x.

Approximation of �DgDu. We consider the family made of a single element:

IBh(x) = ffh2Dggg

We then have, for each point where u is C2:

(Shu)(x) = inf
B2IBh(x)

sup
y2B

u(x+ y) = u(x+ h2Dg) = u(x) + h2Dg(x)Du(x) +O(h4)jD2u(x)j

The consistency is in fact uniform on any compacts K where u is C2 ; there exists a O(h4;K) that does

not depend on x where

(Shu)(x)� u(x) = �h2Dg(x)Du(x) +OK(h
4)

Approximation of gjDujcurv(u). We consider the structuring elements of the median �lter (See

Chapter 10):

IB0h(x) = IB06g(x)h = fB;B � B(0; 6g(x)h) and meas(B) � �(6g(x)h)2=2g

We set

(S0hu)(x) = sup
B2IB0

h
(x)

inf
y2B

u(x+ y)

Thanks to Theorem 11.3, we immediately have, on any compact K where u is C2 and where jDuj 6= 0,

(S0hu)(x)� u(x) = h2g(x)jDu(x)jcurv(u)(x) +OK(h
3)

and on any compact K of IR2,

(S0hu)(x)� u(x) = OK(h
2)jD2u(x)j

Alternating the two �lters. We set Th = ShS
0
h. S

0
h is an inf-sup operator, with uniform consistency.

In addition, its asymptotic is continuous, that is that we have

(S0hu)(x)� u(x) = h2g(x)jDu(x)jcurv(u)(x) = h2F (D2u;Du;x)

for a continuous function F with respect to its arguments. (g is assumed to be derivable). So that, the

Lemma 15.5 insures that we have for any compact set K where jDu(x)j 6= 0

(Thu)(x)� u(x) = h2(g(x)Du(x)curv(u)(x) +Dg(x)Du(x)) +OK(h
3)

And on any compact K:

(Thu)(x)� u(x) = OK(h
2)jD2u(x)j

As consequence the �lter Th is uniformly consistent (see De�nition 17.16) with equation 19.3.
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Construction of the approximate solutions. We consider an K-Lipschitz initial function u0. We

then de�ne uh(t;x) for every h > 0 by

8n 2 IN; uh(nh;x) = (Tnh u0)(x);

8t 2 [(n� 1)h; nh[; uh(t;x) = uh((n� 1)h;x):

Since Sh and S0(h) are \inf-sup" operator they transform any K-Lipschitz function into a K-Lipschitz

function (See Remark 7.4). We therefore have that for all t, uh(t;x) is K-Lipschitz.

Uniform continuity in t of the approximate solutions. Let us bound operator Th by two

isotropic and translation invariant operators. Let C1 be the upper bound of g and C2 the upper bound of

jDgj. For any K-Lipschitz function u, one has

u(x)�Kh2jDgj � (Shu)(x) = u(x+ h2Dg) � u(x) +Kh2jDgj

u(x)�Kh2C2 � (Shu)(x) � u(x) +Kh2C2

Then due to the fact that S0h(u+ c) = S0h(u) + c for any constant c, we also have

(S0hu)�Kh2C2 � Thu = S0hShu � (S0hu) +Kh2C2 (19.4)

Let us consider v(y) = Kjx � yj. The family IB0h(x) of structuring elements of the �lter S0h is made

of the subsets of the disk of center 0 and radius 6g(x)h � 6C1h. For any B 2 IB06g(x)h there exists

B0 2 IB06C1h, such that

inf
y2B

v(x� y) = inf
y2B0

v(x� y)

So that

(S0hv)(x) = sup
B2IB0

6g(x)h

inf
y2B

v(x� y) � sup
B2IB0

6C1h

inf
y2B0

v(x � y)

That is

8x; (S0hv)(x) � (M6C1hv)(x) (19.5)

with M the median �lter, as de�ned in Chapter 10. Similarly, for w(y) = �Kjx� yj, we have

8x; (M6C1hw)(x) � (S0hw)(x) (19.6)

We deduce from (19.5), (19.6) and (19.4) the following inequalities

(Thv)(x) � (M6C1hv)(x) +Kh2C2 (M6C1hw)(x)�Kh2C2 � (Thw)(x) (19.7)

By monotony of Th and of the median operator, we thus have for all n 2 IN , and for all x 2 IR2,

(Tnh v)(x) � (Mn
6C1hv)(x) + nKh2C2 (Mn

6C1hw)(x)� nKh2C2 � (Tnh w)(x) (19.8)

Now, since u0 is Lipschitz, one has

u(x)�Kjx� yj � u(y) � u(x)�Kjx� yj
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So

u(x) + (Tnhw)(x) � (Tnh u)(x) � u(x) + (Tnh v)(x)

Using (19.8), we obtain

(Mn
6C1hw)(x)� nKh2C2 � (Tnh u)(x)� u(x) � (Mn

6C1hv)(x) + nKh2C2

Lemma 18.6 tells us that for h small enough and for nh2 � t, one has

(Mn
6C1hv)(x) � L

p
t

for some constant L depending only on C1. Similar inequality obviously holds for w, so that for h small

enough

8t;8n;nh2 � t � (L
p
t+KC2t) � Tnh u� u � +(L

p
t+KC2t)

This yields the uniform continuity in t of the approximate solutions.

Convergence of the approximate solutions toward viscosity solutions. The operator Th is

monotone (and therefore satis�es the uniform local maximum principle), is uniformly consistent to (19.3)

and commutes with the addition of constant. Its associated approximate solutions h! uh(t;x) is uniformly

in h Lipschitz in x and Holderian in t for any initial Lipschitz function. So a sub-sequence of the sequence

h ! uh is uniformly converging on every compact set towards a function u(t;x). Thus, by Proposition

(17.16), we obtain that u is a viscosity solution of (19.3). In others words, we get the existence of a viscosity

solution for any initial Lipschitz function, and that the iteration of the operator Th converges toward this

solution. We therefore have prove:

Theorem 19.2 We consider a derivable function g from IR2 into IR+ satisfying

9C1; C2; such that 8x; 0 � g(x) � C1 and jDg(x)j � C2

Then for any Lipschitz function u0, there exists an unique viscosity solution u(t;x) of

@u

@t
= F (D2u;Du;x; t) = gjDujcurv(u) +Dg:Du u(0;x) = u0(x)

In addition, u(t;x) is Lipschitz in x and holderian in t.

Moreover, when h tends to 0 and nh2 ! t, (Tnh u0)(x) converges towards u(t;x).

19.3 Curve evolution and Image evolution

Assume that u(t;x) viscosity solution of (19.3) is C2 around point (t0;x0) and Du(t0;x0) 6= 0. Then, for

some t1 > t0, there exists x(t) a unique C1 function satisfying for t 2 [t0; t1], u(t;x(t)) = u(t0;x0) and

such that @x(t)
@t is colinear to Du(t;x). x(t) is the normal 
ow (see De�nition (6.6)).

@x

@t
= �(@u

@t

Du

jDuj2 )(t;x(t)) = gcurv(u)n� (Dgn)n (19.9)

where n is the gradient of u direction, that is the normal of the level line passing through the considered

point.
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Parametrizing the level line of level u(t0;x0) around point (t0;x0) by x(t; s) so that x(t; 0) = x(t).

We deduce that x(t; s) satis�es the Active contour evolution equation (19.2). Therefore the following

proposition holds:

Proposition 19.3 Let u(t;x) a viscosity solution of

@u

@t
= F (D2u;Du;x; t) = gjDujcurv(u) +Dg:Du

Assume that u is C2 around point (t0;x0), and that Du(t0;x) 6= 0. Then, the level line x(t; s) passing

through this point satis�es locally around the point:

@x(t; s)

@t
= g(x(t; s))Curv(x(t; s))n(t; s)� (Dg(x(t; s)):n)n

The curve evolution equation and the image evolution equation are so strongly related.

We now consider the operator Tt which associates to any Lipschitz function u0, u(t; :) the viscosity

solution of (19.3) with initial condition u0. It is clearly a monotone operator. According to Lemma 18.2,

Tt is also constrast invariant.

Proposition 19.4 The monotone and contrast invariant image operator Tt, de�ned on Lipschitz function,

de�nes a unique set operator Tt on de�ned on the set of the compact sets. We have in addition, for any

Lipschitz function u:

X�Tt(u) = Tt(X�u)

Proof Let us use the Evans-Spruck extension (see Section 8.3). We consider the family of functions F
made of the Lipschitz functions on which we apply any continuous and increasing change of contrast. The

family F is obviously stable under contrast change. The levelsets of the functions of F is the set of the

compacts. Since Tt is contrast invariant and is de�ned on Lipschitz functions, it is also de�ned and a

monotone contrast invariant operator on F . According to the Evans-Spruck Theorem (see Section 8.3),

we know that it de�nes an unique monotone set operator T such that

X�Tt(u) = Tt(X�(u))

This means that Tt modi�es the level sets of u independantly from each others. 2

The snake algorithm...

Given a closed curve C = c(s). The curve C surrounds a compact set X of IR2. We de�ne the

generalized \curve" evolution of C by the following algorithm:

Step 1 We construct a function u0 so that:

� X0u0 = X

� u0 is Lipschitz or di�er from a Lipschitz function by a continuous and increasing contrast change.

Such a function u can e.g. be obtained by considering the signed distance function to the set X .

That is ju(x)j = �dist(x; C).

Step 2 We construct the viscotity solution u(t;x) of equation (19.3) with initial condition u0.
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Step 3 We set X(t) = X0u(t; :) and C(t) = X(t) \ �X(t)c. (That is C(t) is the boundary of X(t).)

According to all preceding considerations, the algorithm is valid. That is it de�nes for any curve C and for

any t � 0 an unique set of points C(t). C(t) is independant from the choice of the intermediate function

u. And it corresponds to a generalization of the equation (19.2). However, the so de�ned C(t) is not

necessarly a curve of IR2. It is therefore diÆcult to check if the energy estimated on C(t) is decreasing.

Conjecture

We conjecture that 8u Lipschitz,

Eu(t) = lim sup
�!0

Z
x2IR2;u(t;x)2]��;�[

g(x)dx

is a decreasing function of t. We conjecture also that for any analytic functions g,

E(t) =

Z
x2C(t)

g(x)dH1

is �nite and is a decreasing function of t.

19.4 Implementation.

We consider an image I . We choose the function g decreasing with respect to the magnitude of the gradient

of I . That is g large where the gradient of I is small, and conversely. If one expects to have large gradient

at the edges of I , then one can consider that g is small one the edges of I .

Let us now �rst make a simple heuristical study of the equation.

@u

@t
= gjDujcurv(u) +Dg:Du

The �rst term is the well known mean curvature motion. As we have seen, its tends to shrink the level

line towards points. The speed of this motion is related to the amplitude of g. At edge, g is small and

thus the motion is slow down, but do not stop.

The second term is the erosion term. It tends to move the level lines towards the edges (see �gure

??), creating, by that, shocks around edges. However, in contrary to the �rst term, on 
at zones it is

inactive. Even worse, due to noise, little gradient of I will induces non negligeable variation of amplitude

of g, resulting in non negligeable Dg with random like direction. In others words, on 
at zone, one can

expect to have creation of small shocks, with random shapes.

g(x)

x

Dg
u(x)

x

Figure 19.1: Convection term of the active contour equation. The convection term of the active contour equation tends to
create shocks aroung values where g is small. Indeed, the level lines of u are moved in the direction opposite to the gradient
of g.

More precisely, we have:
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0

1

2

Figure 19.2: A diÆculty : the local minima of the active contour energy. Left image: assume that g is null on the shape
(drawn in bold) and that the initial contour is the line #0. From the initial line to the contour of the shape, the intermediate
state #1 consisting of the convex hull of the polygon shows a smaller energy than the intermediate state #2 (drawn on the
right). This illustrates the diÆculties arising with such an equation when we wish to land the active contour onto concave
parts of the desired contour.

near an edge The �rst term moves the level line slowly across the edge. The second term moves the level

line towards the edge. Their e�ect are opposit and therefore a balance between the two terms needs

to be found so that the second term wins.

far from an edge The �rst term moves the level line fastly. The second term attract the level line towards

little oscillation of the image creating little shocks. Here again, a balance between the two terms

needs to be found so that the �rst term wins.

Even if the equation, does not show any scale parameter between the two terms, a weight between the

two terms is in fact hidden in the choice of the function g. Finding a function g that makes the correct

balance both near an edge and far an edge is somehow complex and in anycase non-generic.

Assuming such a balance could be �nd, relying on the single (weighted) mean curvature motion to

shrink the level line is not good. Indeed, a weighted mean curvature motion will never modify a convex

level line to a general non-convex one. That is starting with a circle, it is impossible to recover e.g. a star,

see Figure (19.2).

To cope this problem, we have added, in our experiments, an extra term to the equation, yielding the

balance between now three terms more complex to �x. This term is a classical erosion with the same

weight than than the curvature motion. So that we have applied

@u

@t
= gjDuj(curv(u) + 1) +Dg:Du

We have chosen for the function g: g(x) = �2=(�2 + jDI(x)j2), with �2 the estimated variance of the

noise and texture around the object. So that g is between 0 and 1. Our scheme is the following:

un+1(x) = un(x) + dtg(x)(E1(u
n)(x) +M2(u

n)(x)� un(x)) + dtjDg(x)j(E1(u
n)(x�Dg(x))� un(x))

Where E denotes the erosion, and M the median �lter. The scheme is not contrast invariant, but satis�es

the maximum principle, provided dtjDg(x)j � 1 and dtg(x) � 1. Figure ?? illustrates the extraction of

the bird shape on a textured background.

Exercise 19.1 Construction of another inf-sup scheme converging towards viscosity solution of the equa-

tion (19.3). We consider the following family of structuring elements:

IBh = fB;B � B(+Dgh2; h) and meas(B) � �h2=2g
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Figure 19.3: Silhouette of a bird by active contour. Left: original image, middle: initial contour, right: �nal contour
(steady state of the snake equation).

Figure 19.4: Active contour with topological change. Top, left: original image, middle: initial contour, right: intermediate
state. Down, left and middle: successive intermediate states, down-right: �nal contour (steady state). Original image is "Vue
d'esprit 3", by courtesy of e-on software.
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And we de�ne

Thu(x) = inf
B2IB

sup
y2B

u(x+ y)

1. Interpret the operator Th as a shifted median �lter.

2. Show that Th is uniformly consistent with equation (19.3).

3. Show that the iteration of Th yields towards viscosity solutions of (19.3).
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Chapter 20

Scale spaces and Partial Di�erential
Equations

20.1 What basic principles must obey a scale space?

In this chapter, we introduce an abstract framework, the \scale space", which at the end boils down, from

the algorithmic viewpoint, to iterated �ltering. This framework will make it easier to classify and model the

possible asymptotic behaviors of iterated �ltering. We de�ne a \scale space" as an abstract family of image

smoothing operators Tt, depending on a scale parameter t. Given an image u0(x), (Ttu0)(x) = u(t;x) is

the \image u0 analyzed (in fact : smoothed) at scale t". Formal, but natural and classical, assumptions

on the smoothing process follow.

The pyramidal structure. We assume that the output at scale t can be computed from the out-

put at a scale t� h for very small h. This is natural, since a coarser view of the original picture is likely

to be deduced from a �ner one without any dependence upon the original picture. By that way the �nest

picture smoothing is the identity. Tt is obtained by composition of \transition �lters", which we denote

by Tt+h;t.

De�nition 20.1 We shall say that a scale space is pyramidal if

Tt+h = Tt+h;tTt; T0 = Id: (20.1)

A strong version of the pyramidal structure assumption is the semigroup property

De�nition 20.2 We shall say that a scale space is recursive if

T0 = Id; Ts Æ Tt(u) = Ts+t(u) on IR
N ; for all s; t � 0 and u in F : (20.2)

If the recursivity is satis�ed, Tt can be deduced from the n-times iteration of Tt=n. Let us continue

with an intuitive requirement which is called in image processing "causality". Since the visual pyramid is

assumed to yield more and more global information about the image and its features, it is clear that when

the scale increases, no new feature should be created by the scale space : the image at scale t'>t must be

simpler than the image at scale t. Furthermore, the operators (or transition �lters) Tt+h;t are assumed
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Figure 20.1: A multiscaled world ... This series of images is an experiment in the relative stability of perception of objects
seen at di�erent distances. Each photograph has been taken in a park by stepping forward and taking each snapshot at a
much closer distance than the former one. We display by a rectangle in each image the part of the object which has been
photographed in the next image. As one can appreciate, when getting closer, the visual aspect of objects changes and new
structures arise. Thus, the computing of primitives in an image is always a scale-dependent task, quite dependent on the
distance to objects. When we look at a certain distance at an object, we do not perceive the too much �ner structure : for
instance, leaves cannot be seen in the two �rst photographs. We do not see them either in the two last ones, since we got too
close ! Multiscale smoothing tries to emulate this physical and perceptual fact by de�ning a smoothing of a digital image at
di�erent scales which gets rid of the �ner structures, but minimally modi�es the image at scales above the desired scale.
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The scale-space visual pyramid

t

space

light

scale ortime

sensor

image
analysed at
scale s

brightness u(t,x)

u(0,x) local

u(s,x)

0 s

x

T

T

Ts,0

t,0

t,s

Figure 20.2: The scale-space visual pyramid : perception is thought of as a 
ow of images passing through transition
operators Tt;s. These operators receive an image previously analysed at scale s and deliver an image analysed at a larger
scale t. The scale t = 0 corresponds to the original percept. In this simple model, the perception process is irreversible (no
feedback from coarse scales to �ne scales).

to act \locally", that is, to look at a small part of the processed image. In other terms, (Tt+h;tu0)(x)

must essentially depend upon the values of u0(y) when y lies in a small neighborhood of x. We condense

the locality and the simpli�cation assumptions in a local comparison principle : if an image u is locally

brighter than another v, then this order must be conserved some time by the analysis (prevalence of local

order on global order).

De�nition 20.3 A scale space satis�es the Local Comparison Principle , if for all u and v such that

u(y) > v(y) for y in a neighborhood of x and y 6= x, then for h small enough we have

(Tt+h;tu)(x) � (Tt+h;tv)(x)

and if for all u and v such that 8y 2 IRN , u(y) � v(y), then

8x;8h > 0; (Tt+h;tu)(x) � (Tt+h;tv)(x): (20.3)

In order to propose a classi�cation of scale spaces, we �nally need some assumption stating that a very

smooth image must evolve in a smooth way with the scale space. As we shall prove, it is enough to make

this assumption for quadratic functions. From the mathematical viewpoint, the next assumption implies

the existence of an in�nitesimal generator for the semigroup Tt (see [?], [?]). In this chapter, we shall

denote for clarity the scalar product between two vectors of IRN by �x;y�= x:y =
PN

1 xiyi:

De�nition 20.4 Let u(y) = 1
2 �A(y � x);y � x� + � p;y � x� +c be a quadratic form of IRN .

(A = D2u(x) is a n � n matrix, p = Du(x) a vector of IRN , c = u(x) a constant.)

We shall say that a scale space is regular if there exists a function F (A; p;x; c; t), continuous with

respect to A, such that
(Tt+h;tu� u)(x)

h
! F (A; p;x; c; t) when h! 0: (20.4)
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Since we shall in the following constantly assume that the considered scale spaces are pyramidal, regular,

and satisfy the local comparison principle, it is opportune for this set of basic properties to be given a

single name.

De�nition 20.5 We call causal any scale space which satis�es the Local Comparison Principle and

is pyramidal and regular.

Exercise 20.1 Consider the extrema killer operator de�ned in Section 7.4, Tt where t denotes the area

threshold. Show that the family (Tt)t2IR+ is pyramidal, satis�es the global comparison principle, but not

the local comparison principle. Show that the family is, however, regular at t = 0 and more precisely,

F (A; p; 0) = 0; if p 6= 0:

As we shall prove in the next section, the causality assumption is enough to imply that the scale space

is governed by a partial di�erential equation.

20.2 Why Scale Spaces are governed by PDE's

Theorem 20.6 If a scale space Tt is causal, (that is, pyramidal, regular and satisfying the local comparison

principle), then there exists a function F such that

((Tt+h;tu� u)=h)(x)! F (D2u(x); Du(x); u(x);x; t) (20.5)

as h tends to 0+ for all u and x where u is C2. In addition, F is a continuous and non-decreasing function

with respect to its �rst argument, that is

If A � ~A; for the ordering of symmetric matrices ; (20.6)

then, F (A; p; c;x; t) � F ( ~A; p; c;x; t)):

Once this theorem is proved, the classi�cation of all iterated nonlinear low pass �ltering (or, in other

words, of all scale spaces) will be reduced to the classi�cation of all interesting functions F . In dimension

2, these real functions have nine arguments. This number, however, will be drastically reduced when we

impose obvious and rather necessary and useful invariance properties to the associated scale space. After

the proof, we shall list these properties and give the resulting classi�cation of \interesting" functions F .

Proof of Theorem 20.6 Let w(x) = 1
2 �Ax;x� + �p;x� +c be a quadratic form of IRN . We have

assumed, by regularity, that (Tt+h;tw � w)(x)=h converges towards F (A; p;x; c; t) when h tends to zero,

for a function F , continuous with respect to its �rst argument. Let u be a function of IRN into IR such that

u is C2 at point x. We shall prove that (20.5) is true for u at point x for the same function F introduced

in the regularity assumption. Since u is C2 at x, we write

u(y) = u(x)+ �Du;y� x� +
1

2
�(D2u)(y� x);y� x� +o(jx� yj2);
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where Du and D2u mean Du(x) and D2u(x) respectively. We de�ne, for " > 0, the quadratic forms

Q+(y) = u(x)+ �Du;y� x� +
1

2
�(D2u)(y� x);y� x� +

1

2
�(x� y)2

Q�(y) = u(x)+ �Du;y� x� +
1

2
�(D2u)(y� x);y� x� �1

2
�(x� y)2

When y 6= x and jy� xj is small enough,

Q�(y) < u(y) < Q+(y)

Then using the local comparison principle (De�nition 17.18),

Tt+h;tQ
�(x) < Tt+h;tu(x) < Tt+h;tQ

+(x):

Therefore, using Q+(x) = u(x) = Q�(x),

(Tt+h;tQ
�)(x)�Q�(x) < (Tt+h;tu)(x)� u(x) < (Tt+h;tQ

+)(x)�Q+(x):

We divide by h, and let h tend to zero. Since Tt is regular, we obtain

lim
h!0

(Tt+h;tQ
�)(x)�Q�(x)
h

� lim inf
h!0

(Tt+h;tu)(x)� u(x)

h
�

lim sup
h!0

(Tt+h;tu)(x)� u(x)

h
� lim

h!0

(Tt+h;tQ
+)(y)�Q+(y)

h

Thus

F (D2u� �Id;Du; u;x; t) � lim inf
h!0

(Tt+h;tu)(x)� u(x)

h
�

lim sup
h!0

Tt+h;t(u(:))(x)� u(x)

h
� F (D2u+ �Id;Du; u;x; t)

When � tends to zero, using again the fact that Tt is regular (continuity of F with respect to its �rst

argument), we obtain

lim
h!0

(Tt+h;tu)(x)� u(x)

h
= F (D2u;Du; u;x; t)

We now prove that F is nondecreasing with respect to its �rst argument. Setting now for any vector p

and any matrices A � ~A,

Q+(y) = c+ �p;y� x� +
1

2
�A(y� x);y� x� +

1

2
�(x� y)2;

Q�(y) = c+ �p;y� x� +
1

2
� ~A(y� x);y� x� �1

2
�(x� y)2;

and applying, as above, the local comparison principle to Q+ and Q� around x, the regularity and letting

"! 0, we obtain F (A; p; c;x; t) � F ( ~A; p; c;x; t). 2

In the next section, we shall start drawing consequences from askable invariance properties for a scale

space. We shall immediately impose, and always assume in the following, a basic one. Any smoothing

process should leave untouched the constant functions and, a little more generally, should not be altered

by the addition of a constant.
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De�nition 20.7 We shall say that a scale space Tt;t+h is invariant by grey level translation if

Tt;t+h(0) = 0; Tt;t+h(u+ C) = Tt;t+h(u) + C for any u and any constant C: (20.7)

This axiom is equivalent, in the case where Tt;t+h is a linear �lter, de�ned by Tt;t+hu = u � �, toZ
�(x)dx = 1:

Let us state the consequence on F .

Proposition 20.8 Let Tt be a causal scale space, invariant by grey level translation. Then its associated

function F (A; p;x; c; t) does not depend on c.

Proof Let C be an arbitrary real number. Consider the quadratic form u(y) = 1
2 �A(y � x);y � x�

+ �p;y� x� +c. By the regularity assumption (20.4),

(Tt+h;t(u+ C)� (u+ C))(x)

h
! F (A; p;x; c+ C; t) when h! 0: (20.8)

Using the grey level translation invariance (20.7) and again (20.4),

(Tt+h;t(u+ C)� (u+ C))(x)

h
=

(Tt+h;t(u) + C � u� C)(x)

h
! F (A; p;x; c; t) (20.9)

when h! 0: Combining (20.8) and (20.9), we obtain

F (A; p;x; c+ C; t) = F (A; p;x; c; t):

2

Because of the assumed commutation of Tt with the addition of constants, we shall remove in the following

the c-dependence of F .

20.3 Why multiscale analyses compute viscosity solutions.

In this section, we prove that the concept of viscosity solution is the right concept for de�ning solutions

of partial di�erential equations associated with a scale space. In one sentence, if Tt is a causal scale space

then Ttu0 is the viscosity solution of the equation

@u

@t
= F (D2u;Du; t) (20.10)

which is canonically associated with the scale space. To be precise, we shall prove the following theorem.

Theorem 20.9 Let Tt be a scale space which is causal and commutes with grey level tranlations u! u+C.

We also assume that u(t;x) = (Ttu0)(x) is a bounded uniformly continuous function on [0;+1] � IRN .

Assume �nally that the function F (A; p;x; t) associated with Tt by the regularity assumption is continuous

with respect to t. Then u(t;x) = Ttu0(x) is a viscosity solution of Equation (20.10).

We have taken the assumption that u(t;x) = (Ttu0)(x) is uniformly continuous, i.e.

ju(t;x)� u(s;y)j � f((t� t0)2 + (x� y)2) (20.11)

for some nondecreasing nonnegative continuous real function f .
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Exercise 20.2 Show if (20.11) holds, then there exists another nonnegative nondecreasing continuous

function h such that

ju(t;x)� u(s;y)j � h(jt� t0j) + h(jx� yj) (20.12)

Show that if u is bounded, then we can assume that h is itself uniformly continuous and bounded.

Lemma 20.10 Let ~f(x), ~g(t) be two C1 functions and u(t;x) a uniformly continuous function such that,

for some r > 0,
~f(x) + ~g(t) � u(t;x) (20.13)

on B((t0;x0); r): Then there exist two continuous functions f(x) and g(t) which coincide with ~f and ~g on

B((t0;x0); r) and satisfy a global comparison relation with u,

f(x) + g(t) � u(t;x): (20.14)

Proof Without loss of generality, we can assume that B((t0;x0); r) = B(t0; r)�B(x0; r). By the result

of Exercise 20.2, we can assume that (20.12) holds. We then associate with every t 2 IR its projection p(t)

on the interval B(t0; r) and its distance to the interval, jt�p(t)j. In the same way, we associate with every
x 2 IRN its projection p(x) on the ball B(x0; r) and its distance to the ball, jx � p(x)j. We then simply

set

g(t) = ~g(p(t)) � h(jt� p(t)j)
and

f(x) = ~f(p(x))� h(jx� p(x)j):
Then f(x) + g(t) simply coincides with ~f(x) + ~g(t) on B(t0; r)�B(x0; r). Let us show that (20.14) holds.

By the uniform continuity assumption on u,

u(t;x) � u(p(t); p(x))� h(jt� p(t)j)� h(jx� p(x)j):

By (20.13) and the de�nition of f and g we then obtain

u(tx) � ~f(p(x)) + ~g(p(t))� h(jt� p(t)j � h(jx� p(x)j) = g(t) + f(x);

which yields (20.14). 2

Proof of Theorem 20.9 In order to prove that u(t;x) = Tt(u0)(x) is a viscosity solution of (20.10),

we only to check that u is a viscosity subsolution of (20.10), the supersolution property being shown

in the same way. Let (t0;x0) in [0;1] � IRN be a strict local maximum point of u � � where � is in

C1b (IRN � [0; T ]) for any T <1. (We denote by C1b the set of C1 bounded functions). We need to show

that

@�

@t
(t0;x0)� F (D2�(t0;x0); D�(t0;x0);x0; t) � 0: (20.15)

Without loss of generality, we may assume that u(t0;x0) = �(t0;x0). Without loss of generality again,

we may assume by Lemma 17.9 that � is of the form �(t;x) = f(x)+g(t) where g(t0) = 0, f(x0) = u(t0;x0)
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and f is in C1b (IRN ), g is in C1([0;1[). By Lemma 20.10 we can assume (w.l.o.g.) that the inequality

between u and � is global, i.e. u � � on [0;1]� IRN . Let h > 0. We set u(t) = u(t; :) for all functions

u on IRN � [0;1[. We have u(t) � �(t), then u(t0 � h;x) � �(t0 � h;x) for all h < t0 and x. Using the

global comparison principle (20.3), we obtain

Tt0;t0�h(u(t0 � h))(x0) � Tt0;t0�h(�(t0 � h))(x0)

Now, by the commutation of Tt with the addition of constants and since �(t;x) = f(x) + g(t) we have

Tt0;t0�h(u(t0 � h))(x0) � Tt0;t0�h(�(t0 � h))(x0) � Tt0;t0�h(f)(x0) + g(t0 � h):

We deduce that

u(t0;x0)� (Tt0;t0�h(f)(x0) + g(t0 � h)) � 0

Since u(t0;x0) = �(t0;x0) and then

g(t0)� g(t0 � h) � Tt0;t0�h(f)(x0)� f(x0)

Then,

(g(t0)� g(t0 � h))=h � (Tt0;t0�h(f)(x0)� f(x0))=h

and letting h go to 0, using (i), we recover

@g

@t
(t0 � h)� F (D2f(x0); Df(x0);x0; t0 � h) � 0

Using the facts that � and g are in C1b in a neighborhood of (t0;x0) and that F is continuous with respect

to t, letting h tends to zero, we �nally deduce

@g

@t
(t0)� F (D2f(x0); Df(x0);x0; t) � 0

and (iii) is shown since @�=@t(t0;x0) = g0(t0) and D��(t0;x0) = D�f(x0) for j�j = 1, 2. We conclude

that Ttu is the unique viscosity solution of (20.10). 2

20.4 Scale space and invariance properties

In this section, we shall do a �rst classi�cation of the admissible functions F , depending on the invariance

assumptions made on the associated scale space.

20.4.1 Geometric invariance axioms

We shall �rst list a series of axioms which traduce the invariance of scale space with respect to the respective

positions of the percipiens and perceptum in the image generation process. This leads us to de�ne more

and more precisely which functions F are admissible for a general purpose, and therefore invariant, scale

space. We de�ne the translation operator �z by :

(�z:u)(x) = u(x� z) (20.16)

where z is in IRN .
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De�nition 20.11 We shall say that the scale space is translation invariant if

Tt+h;t(�y:u) = �y:(Tt+h;tu) for all y in IRN ; t � 0; h � 0: (20.17)

Proposition 20.12 Let Tt be a causal and translation invariant scale space. Then its associated function

F (A; p;x; c; t) does not depend on x.

Proof Consider the quadratic forms u(y) = 1
2 �Ay);y� + �p;y� +c and �xu(y) =

1
2 �A(y�x);y�x�

+ �p;y� x� +c. By the regularity assumption (20.4),

(Tt+h;tu� u)(0)

h
! F (A; p; 0; c; t) when h! 0: (20.18)

and
(Tt+h;t(�xu)� �xu)(x)

h
! F (A; p;x; c; t) when h! 0: (20.19)

On the other hand, by the translation invariance (20.17),

(Tt+h;t(�xu)� �xu)(x)

h
= �x(

(Tt+h;tu� u)(x)

h
) =

(Tt+h;tu� u)(0)

h
(20.20)

Combining (20.18, 20.19, 20.20) we obtain

F (A; p;x; c; t) = F (A; p; 0; c; t):

2

If R is an isometry of IRN , we denote by Ru the function Ru(x) = u(Rx).

De�nition 20.13 We shall say that a scale space Ts;t is Euclidean invariant if for every isometry R

of IRN ,

RTt+h;t = Tt+h;tR (20.21)

Lemma 20.14 If a translation invariant causal scale space is Euclidean invariant (isotropic), then its

associated function F satis�es for every linear isometry R 2 ON ,

F (RAtR;Rp; t) = F (A; p; t) (20.22)

Proof Let us �rst recall the chain rules :

D2(u ÆR) =t R(D2u ÆR)R; D(u ÆR) =t RDu ÆR: (20.23)

We have Tt+h;tR = RTt+h;t. We apply this relation to a quadratic form u such that D2u(x) = A,

Du(x) = p and deduce

Tt+h;t(Ru) = R(Tt+h;tu); that is, Tt+h;t(u ÆR) = (Tt+h;tu) ÆR

Di�erentiating this relation with respect to h at h = 0, which is licit by the regularity of the scale space,

we get
@

@h jh=O
(Tt+h;t(u ÆR)(x)) = @

@h jh=O
(((Tt+h;tu) ÆR)(x)):
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Using on both sides the regularity formula (20.5) and taking into account that, by the chain rules (20.23),

D2(Ru) =t RAR and D(Ru) =t Ru, we obtain

F (tR(D2u ÆR)R;tRDu ÆR; t) = F (D2u;Du; t) ÆR;

which yields

F (tRAR;tRp; t) = F (A; p; t):

Relation (20.22) follows by changing R into tR. 2

20.4.2 Contrast invariance

De�nition 20.15 We shall say that a scale space is contrast invariant if

g Æ Tt+h;t = Tt+h;t Æ g; (20.24)

for any nondecreasing continuous function g from IR into IR.

We now seek for a relation traducing for F the \contrast invariance".

Lemma 20.16 If a causal scale space is contrast invariant, then its associated function F satis�es

F (�A+ �p
 p; �p; t) = �F (A; p; t); (20.25)

for every real values �, �, every symmetric matrix A and every two-dimensional vector p.

By p 
 p we mean the tensorial product, or in a more intuitive way, the matrix product ptp, where p

is thought of as a column matrix, that is

p
 p =

�
p21::: p1pN
p1pN ::: p2N

�
:

Proof By taking g(s) = 0, and g(s) = s + C, we see that the scale space is invariant by grey level

translations. Thus, by Proposition 20.8, F (A; p;x; c; t) does not depend on c. We have by contrast

invariance Tt+h;t Æ g = g Æ Tt+h;t. We apply this relation to an arbitrary quadratic form u such that

D2u(x) = A, Du(x) = p and to an arbitrary C2 function g. We deduce that

Tt+h;t(g Æ u) = g Æ (Tt+h;tu):

Di�erentiating this relation with respect to h at h = 0 (which is licit by Theorem 20.6), we get

@

@h jh=O
(Tt+h;t(g Æ u)(x)) = @

@h jh=O
(g Æ (Tt+h;tu)(x)): (20.26)

Using Formula (20.5) on both sides of (20.26), we deduce that

F (D2(g(u)); D(g(u));x; t) = g0(u)F (D2u;Du;x; t):
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By the chain rule,

D2(g(u)) = g0(u)D2u+ g00(u)Du
Du; D(g(u)) = g0(u)Du:

Thus, considering thatDu = p, D2u = A, h(u), h0(u), h00(u) can take arbitrary values, we obtain (20.25). 2

20.4.3 Scale invariance : How to �x a relation between scale and space

This subsection is devoted to a study of the e�ect of the scale invariance axiom, and more generally of

the aÆne invariance on the scale space, in order to establish a normalized link between scale and space.

We shall assume, for avoiding spurious cases, that the scale space is not cyclic, that is, Tt = Ts implies

t = s. This is no serious restriction for a scale space ! In fact, we shall need no other assumption on

the family Tt, except for the scale invariance assumptions which follow. So all statements to come will

be true for any scale invariant one to one family of operators Tt, which depend upon a scale parameter.

The consequences of the scale/space normalization results are therefore wide and can be stated as a general

principle, according to which, \the relation between scale and space can be normalized", and more precisely

normalized so that t0 = �t if we denote by t the scale parameter before zooming with a factor � and t0 the

smoothing scale after zooming.

In order to perform such a scale/space normalization, we need to state the scale invariance in a more

precise way : we need some technical regularity assumptions on the scale relation. De�ne H�(x) = �x for

any x 2 IRN .

De�nition 20.17 We shall say that a family of operators Tt is scale invariant if for any positive � and

t, there exists t0 > 0 such that H�Tt0 = TtH� and if, in addition, t0(t; �) is di�erentiable with respect to �

at � = 1, and the function �(t) = @t0=@�(t; 1) is continuous and positive for t > 0.

De�nition 20.18 We say that a family of operators Tt is scale invariant if there exists a rescaling

function t0(t; �), de�ned for any � > 0 and t � 0, such that

H�Tt0 = TtH� (20.27)

and, more generally :

H�Tt0;s0 = Tt;sH�: (20.28)

where we note t0 = t0(t; �) and s0 = t0(s; �). In addition, t0(t; �) is assumed to be di�erentiable with respect

to � at � = 1, and the function �(t) = @t0=@�(t; 1) is continuous and positive for t > 0.

Remarks. In fact, (20.28) implies (20.27) and must be considered as a slightly stronger form which will

make easier our classi�cation of scale invariant scale spaces in the following chapters. Now, as we shall

see in Section 20.4.3, (20.27) is enough to ensure a normalization of the function t0(t; �). We cannot �x a

priori the form of t0 because it can vary in concrete examples of scale spaces. We shall prove in Section

20.4.3 that it can be \normalized", which means that we always can, by an adequate rescaling of any scale

space, set t0 = �t.
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The scale invariance means that the result of the scale space Tt is independent of the size of the an-

alyzed features : this is very important in \natural images", since the same object can be photographed

at very di�erent distances and therefore at very di�erent scales. Thus, it is essential for the stability of

shape analysis that the result of an analysis of this object should not yield a di�erent \shapes" at di�erent

distances. Thus, the sequence of the shapes obtained by scale space must be independent of the (a priori

unknown) size of the object in the picture. Of course, we cannot impose t0 = t because scale of smoothing

and scale of the image are covariant, as can be appreciated by considering the examples of linear �ltering

and the heat equation.

The assumption g(t) = @t0=@�(t; 1) > 0 can be interpreted by looking at the relation H�Tt0 = TtH�

when the scale � increases, i.e. when the size of the image is reduced before analysis by Tt. Then, the

corresponding scale before reduction is increased. In more informal terms, we can say that the scale of

analysis increases with the size of the picture. This is a natural assumption, and satis�ed by all classical

models. The continuity and di�erentiability assumptions on t0 are also satis�ed by all classical models and

seem natural. Notice that no condition has been imposed on the relation between t0 and (t; �).

In order to �x ideas, let us examine which function t0 is associated with several classical scale spaces. In

the case of the basic morphological operators, dilation and erosion, it is easily seen that t0(t; �) = �t. In

the case of the heat equation and of the mean curvature motion equation, one has t0(t; �) = �2t.

Finally, we state a general invariance axiom which implies the euclidean and the scale invariances, and

also the invariance of the scale space under any orthographic projection of a planar shape. Combining

those transformations leads to an arbitrary linear transform A of the plane. Set, for any such transform,

Af(x) = f(Ax). With the same formalism as for scale invariance, we get :

De�nition 20.19 We shall say that a family of operators Tt is aÆne invariant if it is scale invariant

and if the associated function t0(t; �) can be extended into a function t0(t; A), de�ned for every t > 0 and

any linear application A of IRN with det(A) 6= 0, and satisfying

t0(t; �) = t0(t; �Id)

and, for every A, s > t > 0,

ATt0;s0 = Tt;sA; (20.29)

where we note t0 = t0(t; A) and s0 = t0(t; A).

This relation means that the result of the scale space Tt is independent of the distance and orientation in

space of the analyzed planar image. Indeed, any aÆne map u! Au can be interpreted as the anamorphosis

of a planar image u when it is presented to the eye at any distance large enough with respect to its size

and with an arbitrary orientation in space.

The fact that the scale-space function t0(t; �) can be a priori di�erent for each scale space looks

mysterious. We shall �x it in the next lemma by proving that we can, without loss of generality, impose

all scale spaces to have the same scale-space function. It may be anyway convenient to keep a di�erent one

from the normalized one we propose here. Now, as we shall see in the chapters devoted to the identi�cation

of all scale spaces of a certain kind, the next lemma is an essential tool to perform this identi�cation, which

will then be made \up to a rescaling".
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Lemma 20.20 (Normalization of scale.)

(i) Assume that t ! Tt is a one to one, scale invariant, family of operators acting on real functions

de�ned in IRN and satisfying T0 = Id. Then there exists an increasing di�erentiable rescaling function

� : [0;1] ! [0;1], such that t0(t; �) = ��1(�(t)�). If we set St = T��1(t), we then have t0(t; �) = t� for

the rescaled analysis.

(ii) Assume that the family of operators Tt is aÆne invariant. Then the function t0(t; B) only depends

on t and jdetBj: t0(t; B) = t0(t; jdetBj1=N ) and is increasing with respect to t. Moreover, there exists an

increasing di�erentiable rescaling function � : [0;1]! [0;1], such that t0(t; B) = ��1(�(t)jdetBj1=N ) and
if we set St = T��1(t) we have t0(t; B) = tjdetBj1=N for the rescaled analysis.

Before proving this lemma, we shall state a very useful consequence : the characterization of aÆne invariant

scale spaces by a simple relation regarding their associated function F .

Lemma 20.21 If a causal scale space is aÆne invariant, then, after the adequate renormalization yielded

by Lemma 20.20, its associated function F satis�es

F (BAtB;Bp; t) = jdetBj 1N F (A; p; jdetBj 1N t): (20.30)

for any linear map B. If a causal scale space is scale invariant, then, after the adequate scale renormal-

ization (Lemma 20.20), its associated function F satis�es

F (�2A; �p; t) = �F (A; p; �t): (20.31)

Proof We have Tt+h;tB = BT�(t+h);�t, where � = jdetBj 1N . We apply this relation to a quadratic form

u such that D2u(x) = A, Du(x) = p :

Tt+h;t(Bu) = B(T�(t+h);�tu); that is, Tt+h;t(u ÆB) = (T�(t+h);�tu) ÆB:

Di�erentiating with respect to h at h = 0 on both sides yields

@

@h jh=O
(Tt+h;t(u ÆB)) = @

@h jh=O
(T�(t+h);�tu) ÆB):

Taking into account that D2(u ÆB) =t B(D2u ÆB)B and D(Bu) =t B(Du ÆB) and using Formula (20.5),

we get

F (tB(D2u ÆB)B;t B(Du ÆB); t) = �F (D2u ÆB;Du ÆB; �t);

which yields

F (tBAB;tBp; t) = jdetBj 1N F (A; p; jdetBj 1N t):

The relation (20.30) follows by changing B into tB. The second part of the lemma is obtained by replacing

in the preceding proof B by �IN , where IN is the identity of IRN . 2
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Proof of Lemma 20.20. We directly prove (ii), and will then say how to simplify the proof of (ii) in

order to get (i). First we notice that for any linear transforms B and C and any t one has the semigroup

property

t0(t; BC) = t0(t0(t; B); C): (20.32)

Indeed, we have BCTt0(t;BC) = TtBC = BTt0(t;B)C = BCTt0(t0(t;B);C). The map which associates Tt with

t being one to one, we deduce (20.32). Next, we show that

t0(t; A) is increasing with respect to t: (20.33)

Let us prove that t0(t; A) is one to one with respect to t for any A. Indeed, if not, there would be some A

and some (s; t) such that t0(t; A) = t0(s; A). Thus TtA = ATt0(t;A) = ATt0(s;A) = TsA and therefore t = s

because Tt is one to one. Notice that this implies, in particular, that

t0(0; A) = 0 (20.34)

Indeed, ATt0(0;A) = T0A = A. Thus Tt0(0;A) = Id = T0 and therefore t0(0; A) = 0. As a consequence, since

t0(t; A) is nonnegative (by de�nition), one to one, and continuous with respect to t, we can deduce that it

is increasing with respect to t.

Let us now show that t0(t; A) satis�es

t0(t; R) = t for any orthogonal transform R: (20.35)

Iterating the formula of (20.32) we have

t0(t0(t0(t0(:::t0(t; R):::; R); R); R) = t0(t; Rn)

Remark that there is a subsequence of (Rn)n2IN tending to Id. (Indeed, there is a subsequence Rnk

which converges to some H , orthogonal, because the orthogonal group is compact. Therefore, the sub-

sequence Rnk+1�nk converges to Id.) Since there exists a subsequence of Rn tending to Id and since

t0 is continuous we have for this subsequence lim t0(t; Rn) = t0(t; Id) = t. Assume by contradiction

that t0(t; R) = t" with t" < t. Then t0(t0(t; R); R) = t0(t"; R) � t0(t; R) = t" and by recursion,

t0(t; Rn) = t0(t0(t0(t0(:::t0(t; R):::; R); R); R) � t" < t. This yields a contradiction. Thus t0(t; R) � t.

We prove the converse inequality in the same way and we obtain t0(t; R) = t.

We note that any linear transform B of IRN can be obtained as a product of orthogonal transforms and

of linear transforms of the kind A(�): (x1; x2:::; xN ) ! (�x1; x2; :::; xN ) where � is nonnegative. We only

need to make a singular value decomposition [?] of B: B = R1DR2, where R1 and R2 both are orthogonal

transforms and D is a transform of the kind (x1; x2:::; xN ) ! (�1x1; �2x2; :::; �NxN ) where �i are non

negative. Now, it is clear that D itself can be decomposed as D = A(�1)R2A(�2)R
�1
2 :::RNA(�N )R

�1
N

where Ri is the orthogonal transform: (x1; :::; xi:::; xN ) ! (xi; :::; x1:::; xN ) which exchanges x1 and xi.

Using Relation (20.32), t0(t; Ri) = t (which comes from (20.35)), the singular value decomposition and the

obvious relation A(�1)A(�2) = A(�1�2), we obtain that t0 only depends on t and jdet(B)j = �1:::�N . So

we can write

t0(t; B) = t0(t; jdetBj1=N ):
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Using (20.32) and (20.33), we have

t0(t; ��) = t0(t0(t; �); �) (20.36)

for any positive � and �. Di�erentiating this relation with respect to � at � = 1 yields

�
@t0

@�
(t; �) =

@t0

@t
(t; �)

@t0

@�
(t; 1) (20.37)

We consider the function �(t) = @t0

@� (t; 1), which is positive by assumption. We then choose � such that

��0 = � (20.38)

in such a way that

�(t) = exp(

Z t

1

ds=�(s)):

Let us �nally set

G(x; y) = t0(x;
y

�(x)
)

, so that

t0(t; �) = G(t; �(t)�):

By (20.37) and (20.38) and the di�erentiability assumption on t0 (De�nition 20.18),

@G

@x
(x; y) =

@t0

@t
((x;

y

�(x)
)� @t0

@�
(x;

y

�(x)
)
y�0(x)
�(x)2

= 0:

Thus G(x; y) = �(y) for some di�erentiable nondecreasing function �. We obtain

t0(t; �) = �(�(t)�): (20.39)

Returning to the de�nition of �(t) and using (20.38), we have �(t) = @t0

@� (t; 1) = �(t)�0(�(t)) = �(t)�0(t)�0(�(t)).

Dividing both sides by �(t), we obtain
@(�(�(t)))

@t
= 1:

Integrating this last relation between 0 and t yields �(�(t)) = t + �(�(0)). Now, by (20.34), t0(0; �) = 0.

This implies by (20.39) that �(�(0)) = 0 and therefore � = ��1, so that

t0(t; �) = ��1(��(t)):

In order to complete the proof, we set St = T��1(t) and we prove that the aÆne invariance is true for St

with t0(t; �) = �t. We have

StB = T��1(t)B = BTt0(��1(t);�) = BT��1(��(��1(t))) =

BT��1(�t) = BS�t:

Proof of (i). The proof of the �rst item of the scale normalization lemma is identical to the proof of

the second, which we have just performed. We only need to replace \B" and \C" by �, � everywhere. 2
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20.5 First application : axiomatization of linear scale space

We shall now deduce from Theorem 20.6 a characterization of the heat equation @u=@t = �u as the

unique linear and isotropic scale space. As a consequence for image smoothing models, linearity and

contrast invariance are incompatible, and we obtain an explanation for the coexistence of (at least) two

di�erent schools in image processing : contrast invariant mathematical morphology on the one side and

classical linear scale spaces (convolution with gaussians) on the other side.

Theorem 20.22 Let Tt be a causal, translation invariant scale space de�ned on a space of functions F
having the following having the following property P :

For all x 2 IRN ; p 2 IRN and A symmetric N�N matrix, there is u 2 F such that Du(x) = p, D2u(x) = A.

If the operators Tt;s are linear and Euclidean invariant, then (up to a rescaling t0 = h(t)), the function

u(t;x) = (Ttu0)(x) is the solution of the heat equation

@u=@t��u = 0 in IRN � [0;1[; u(0; :) = u0(:) in IR
N : (20.40)

Exercise 20.3 Our axiomatic for causal scale spaces assumes that Ttu0 is well de�ned when u0 is a

quadratic form. Now, we have de�ned the solution of the heat equation in Chapter 2 only when u0 is

bounded. One can show that this solution is easily extended to quadratic forms with the same convolution

formula, u(t) = Gt �u0. Show, by using the fact that Gt(x) has exponential decay at in�nity, that u(t;x) =

Gt � u0 is well de�ned and C1 when there exist C and k > 0 such that

ju0(x)j � C(1 + jxjk):

Show that u(t;x) is then a classical solution of the heat equation.

Proof. Since the scale space is translation invariant in space, we know that F (A; p;x; c; t) = F (A; p; c; t)

does not depend on x and since it is invariant with respect to grey level translations, F (A; p; c; t) =

F (A; p; t) does not depend upon c (Propositions 20.8 and 20.12). Since, if u is any C2 function, by

Theorem 20.6, F (D2u;Du; t) = limh!0(Tt+h;tu � u)=h, we deduce from the linearity of Tt+h;t that F is

linear in u and therefore satis�es

F (rD2u+ sD2v; rDu+ sDv; t) = rF (D2u;Du; t) + sF (D2v;Dv; t):

for any real numbers r and s and any C2 functions u and v. In the arguments which follow, we �x t

and we therefore omit to mention it and write F (A; p) instead of F (A; p; t), etc.. Since the values of

Du;Dv;D2u;D2v are by Property P arbitrary and can be independently taken to be 0, we obtain for any

vectors p; p0 and symmetric matrices A;A0 that

F (rA+ sA0; rp+ sp0) = rF (A; p) + sF (A0; p0)

and F (A; p) = F (A; 0) + F (0; p):

Thus we can set F (A; p) = F1(p) + F2(A) and F1 and F2 are linear. >From the invariance of the scale

space by linear isometry, we also obtain F (tRAR;tRp) = F (A; p) for any isometry R of IRN .

Taking A = 0, we deduce from the preceding relations that F1(Rp) = F1(p) and therefore F1(Rp) = F1(p)
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for any isometry R. Since F1 is linear, this is only possible if F1(p) = 0 for any p. Thus F (A; p) = F2(A).

By the isometry invariance again, we have F2(
tRAR) = F2(A) for any isometry R and any symmetric

matrix A. Since every symmetric matrix can be diagonalized in an orthonormal basis and every pair

of orthonormal bases can be exchanged by an isometry, we see that F2 only depends on the eigenvalues

�1; :::; �n of A. Thus we can write F2(A) = F2(�1; :::; �n). Since the eigenspaces can also be exchanged

by isometries, F2(�1; :::; �n) must be invariant under any permutation of the eigenvalues. Thus F only

depends on the symmetric functions of the eigenvalues.

Now, the only linear symmetric function of n variables is, up to multiplicative constant, the sum. Thus

F2(A) only depends (linearly) on the trace of A and therefore F2(A) = c trace(A) for some constant c.

We conclude that F (D2u;Du) = c�u. Since F must be increasing in A, the constant c is nonnegative.

We now remember that all of this argument has been made with the omission of the t-dependence of F .

Thus our real conclusion is F (D2u;Du; t) = c(t)�u for some continuous nonnegative function c(t). Doing

the rescaling t0(t) de�ned by @t0(t)=@t = c(t), we again obtain a heat equation @u=@t0 ��u = 0: 2

20.5.1 Further invariance properties of the linear scale space.

We now list some invariance properties of the operator Ttu0 = Gt�u0. These properties follow immediately

from the properties of Gt, so that we essentially leave them as exercises to the reader.

Exercise 20.4 Prove, by using the convolution formula, that The linear scale space is scale invariant.

More precisely, for any homothety H�, � > 0, one has H�T
0
t = TtH�, with

t0 = t�2: (20.41)

Prove that the scale space also is isotropic, i.e.

Tt(Ru0) = R(Ttu0)

for any isometry R of IRN . (Use the fact that if R is a linear isometry, then Gt(Rx) = Gt(x).

Lemma 20.23 The scale space de�ned by the heat equation (20.40) is invariant by grey level translations,

but not contrast invariant.

Proof : Let @u=@t = �u and u = h(v), where h is a C2 nondecreasing function. Then

h0(v)@v=@t = h0(v)�v + h00(v)jDvj2

If the equation were contrast invariant, then v would satisfy @v=@t = �v. Combining these equations

yields h00(v)jDvj2 = 0, and since v is arbitrary, h00 = 0. Thus, the equation is only invariant under aÆne

transforms of the grey level scale. 2
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20.5.2 Non causal linear scale-spaces

It is important to notice that the axioms we have considered can be weakened and that, in particular, other

linear scale-spaces can be derived from slightly di�erent principles. As an instance of axiomatics leading

to the heat equation but also to other convolution kernels let us mention that E.J. Pauwels, P. Fiddelaers,

T. Moons, and L.J. Van Gool have explored linear operators Tt satisfying the recursivity assumption as

well as the scale invariance. They proved in [337] the following theorem

Theorem 20.24 [Pauwels and al. 94] N=2. Assume that Tt is recursive, and that Ttu0 = kt Æ u0, for a
continuous function kt from IR2 into IR. If Tt satis�es also the scale invariance, commutes with grey level

translations and rotations, then kt is of the form

kt(x) =

Z 1

0

J0(r�) exp(����t)�d� with r = jxj;

where � > 0 and J0 is the zeroth order Bessel function,

J0(x) =
1

2�

Z 2�

0

exp(�ix cos(�))d�

We obtain that scale-invariance reduces the possible linear and recursive scale-spaces to a family with

only one free parameter �.

Choosing � = 2 leads to the gaussian kernel which is, as we have seen, the unique linear scale-space

satisfying also the local maximum principle.

For � > 2, kt is sometimes negative, then contredicts the comparison principle.

For � < 2, kt violates the locality condition included in the local maximum principle. Roughly speaking,

this is due to the fact that the function kt does not decrease fast enough to zero when jxj tends to in�nity.

References.

The presentation of this chapter and of the next one mainly follows the Alvarez et al. papers [21, 20, 15]

whose claim was "We describe all multiscale causal, local, stable and shape preserving smoothing oper-

ators. This classi�cation contains the classical \morphological" operators, and some new ones." Several

survey papers present this axiomatics with increasingly simple sets of axioms, Lions [267], Alvarez [18],

[185] and the PhD [190] which actually is an early version of the present book.

Linear scale space

The scale space theory was founded (in a linear framework) by Witkin [440], Marr [287] Koenderink. An

earlier development of the linear scale space has been traced in Japan [424, 425]. The work of Lindeberg

[264] represents a high state of sophistication in the use of Linear Scale Space. Many works of Florack, ter

Haar Romeny, Koenderink and Viergever focus on the computation of partial derivatives of any order in

an image and their use in image analysis [154, 155, 156, 158]. The concept of causality, used by all of these

authors is crucial and has reinterpreted in this chapter as the combination of two requirements: pyramidal

structure and a comparison principle. De Giorgi [174] founded on similar principles his mathematical

theory of barriers for geometric motions. There are many axiomatic characterizations of the linear scale

space by its invariance, conservativeness and causal properties. A particular mention is due to the early

Babaud, Witkin, Baudin and Duda [42] and to Hummel [216]. A slight relaxation of the initial axioms led
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Pauwels et al. [337] to discover other possibilities for the linear scale space, less local though. There have

also been several attempts to de�ne non linear scale spaces, understood as nonlinear invariant families of

scaled smoothing operators. In Mathematical Morphology, let us mention Chen [98] and Toet [406, 407]

and Jackway [228] who emphasizes the scale space properties of multiscale erosions and dilations. After

[15], several di�erent axiomatics have been proposed for nonlinear scale-spaces. Weikert[421, 423] insists

on grey level conservation (which excludes all mathematical morphology operators) and proposes a line

of conservative parabolic nonlinear P.D.E.'s. The axiomatic presentation of Olver et al. [326] deduces

the various scale spaces as invariant heat 
ows. See also [319] and [405] for a book with miscellaneous

contributions to the subject of geometric di�usion.

Extensions

Caselles et al. [303] have questionned the very soundness of applying any of the proposed scale spaces

to natural images : they argue following the Kanisza psychophysical theory that occlusion generates T-

junctions in images and that these T-junctions should be detected before any smoothing is performed.

In [84], the same authors propose the set of level lines of the image, the so called topographic map, as

an alternative multiscale structure for describing images. Geraets et al. propose a generalization of scale

space to discrete pointsets [169].

Contrast invariance

The invariance of image analysis with respect to changes of illumination is stated in perception theory by

[435], as early as 1923. In Mathematical Morphology, the contrast invariance is commented and used in

Serra [378]. Koenderink [251] insist a lot on this requirement and devise photometric invariants. A study

of contrats invariant di�erential operators is made in Florack [157]. See also [348] and Romeny et al. [404],

where third order contrast invariant operators are constructed for T-junction detection.

Scale invariance

[56] is one of the �rst discussions about rotation invariant image operators. See also [261] [43] discusses

scale invariant shape representation. Alvarez and Gousseau [14] con�rm by numerical experiments on

natural images their scale invariance.

AÆne invariance

AÆne invariance is viewed as an approximate projective invariance [103], an obvious requirement in 3D

object recognition [61, 453]. The work of Forsyth, Mundy and Zissermann [159, 307, 308] has been seminal

and lunched a wide discussion on this theme and many contributions on the computation and use of aÆne

and projective di�erential invariants in image processing [362, 60, 412, 431].
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Figure 20.3: Hyperdiscrimination of textures by nonlinear scale space. According to Julesz' theory of textons, textures
are discriminable to the human perception if their average behaviour in terms of "texton" density is di�erent. As shown in
its mathematical formalization, proposed by C. Lopez, some of the texton densities can be interpreted as densities of the
positive and negative parts of the image curvature at di�erent scales. In this remarkable experiment, C. Lopez proved that
one of the simplest contrast invariant scale spaces beats by far the human discrimination performance. From left to right
and up-down :
1-an original preattentively undiscriminable texture pair. The central square of the image is made of rotated "10's" and the
rest of rotated "S's". Those patterns are di�erent, but have the same number of bars, angles, etc.
2-curvature motion applied to the original up to some scale 3-negative part of the curvature at the same scale 4-positive part
of the curvature at the same scale 5-multichannel segmentation of the multiimage made of the curvatures 6-negative part of
the curvature at scale 0. As seen in 2, 3, 4 and 5, this nonlinear scale space permits to discriminate easily the undiscriminable
textures.
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Figure 20.4: An euclidean invariant �lter and a non-euclidean one. The left frame contains simple shapes that can be
deduced from each other by rotations. The middle image is the closing of the left image by a horizontal rectangle of size
6*2 pixels. This non euclidean �lter produces di�erent results, depending on the shapes orientations. The right image is the
closing of the left image by a circle of radius 4 pixels (same area up to the pixel precision as the rectangle used in the middle
image). This �lter is euclidean, therefore the resulting shapes can also be deduced from each other by rotations.

Figure 20.5: The heat equation is not contrast invariant. This experiment shows that the linear scale-space is not contrast
invariant. First row : original image. Second row : two di�erent contrast changes have been applied to this image. Third
row : a convolution by a gaussian is applied to both images of the second row. Fourth row : the inverse contrast change is
applied to the images of the third row. If the linear scale-space were contrast invariant, these images should be equal : this
is not the case, since the di�erence (displayed in the �fth row) is not null.
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Figure 20.6: Same geometric �gures, di�erent evolutions under smoothing. 1st row : four T-junctions that only di�er by
the grey-level order between the three regions.
2nd row : result of a smoothing by the AMSS model. We see that two di�erent evolutions are possible : if the regions of the
image keep the same order, then the geometric evolution is identical. If, instead, a non monotone contrast change has been
applied, the evolutions di�er.
3rd row : result of a smoothing by the linear scale-space : all of the T-junctions give di�erent evolutions. The evolution
depends on the gray-level values of the three level sets, and not only on their order.
4rd row : quantization of the 3rd row in order to display the shapes of some level lines.
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Figure 20.7: Contrast invariance of the aÆne morphological scale space (AMSS). First row : original image. Second row
: two contrast changes applied to the original. Third row : AMSS applied to both images of the second row, by the �nite
di�erence scheme (FDS) explained in Chapter 24. Fourth row : inverse contrast change applied to the �ltered images. A
visual check shows that they are almost identical. Bottom image : numerical check by taking the di�erence of the images in
the fourth row. Compare with the same experiment performed with the linear scale space, Figure 20.5.
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Chapter 21

All contrast invariant and aÆne scale
spaces

21.1 The two dimensional case

In this section, we give a characterization of two-dimensional contrast invariant scale spaces as \curvature

evolution equations". We prove that if a two-dimensional scale space Tt is causal and invariant by isometries

and contrast changes (contrast invariance), then it obeys an equation of the kind

@u

@t
= jDujG(curv(u); t): (21.1)

How to choose G ? If we impose aÆne invariance and reverse contrast invariance for Tt, that is, Tt(�u) =
�Ttu, then there is a single equation left : the so called AÆne Morphological Scale Space (AMSS),

@u

@t
= (curv(u))

1
3 jDuj:

This study can be generalized to any dimension. For simplicity, we �rst treat \�a la main" the case of

dimension 2, because the computations are in that case more intuitive.

By Theorem 20.6, we were led to study scale space models de�ned by a partial di�erential equation

@u

@t
= F (D2u;Du; u; x; t); u(0) = u0

where u0 is the image to analyze (the datum), u(t) is the image analyzed at scale t and F (A; p; c; x; t)

depends on a symmetric 2*2 matrix A, a two-dimensional vector p, a constant c, a point of the plane x

and a real positive scale t. If we assume :

� The translation invariance, then F does not depend upon x (Proposition 20.12).

� The invariance by translation of grey level u ! u + C, then F does not depend upon c (Proposition

20.8).

� The isotropy, that is, the euclidean invariance assumption, then we obtain a further constraint on F ,

which is given by Lemma 20.14: F satis�es, for every linear isometry R 2 ON ,

(20:22) F (RAtR;Rp; t) = F (A; p; t)
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� The contrast invariance : we know by Lemma 20.16 that it implies

(20:25) F (�A+ �p
 p; �p; t) = �F (A; p; t);

for every real values �, �, every symmetric matrix A and every two-dimensional vector p. By p 
 p we

mean the tensorial product, or in a more intuitive way, the matrix product ptp, where p is thought of as a

column matrix. In dimension 2, this yields

p
 p =

�
p21 p1p2
p1p2 p22

�
:

We shall now draw from Relations (20.22) and (20.25) a huge reduction of F , which will appear

to depend upon only two real parameters ~a1;1(A; p) and ~a1;2(A; p). These parameters are de�ned by

considering the rotation matrix

Rp =
1

jpj
�
p1 p2
�p2 p1

�
:

Rp has been chosen so that it sends p
jpj onto the unit vector e1 =

t (1; 0), that is

Rpp = jpje1: (21.2)

Then we set

1

jpjRpA
tRp =

�
~a1;1 ~a1;2
~a1;2 ~a2;2

�
: (21.3)

An easy computation yields (setting p? = (�p2; p1), a vector orthogonal to p)

~a1;2 =
1

jpj3 ((p
2
1 � p22)a1;2 + p1p2(a2;2 � a1;1)) =

A(p; p?)
jpj3 ; (21.4)

~a2;2 =
1

jpj3 (a1;1p
2
2 � 2a1;2p1p2 + a2;2p

2
1)) =

A(p?; p?)
jpj3 ; (21.5)

Lemma 21.1 If F (A; p; t) satis�es (20.22) and (20.25), then there is a function G, depending on three

real variables only, such that

F (A; p; t) = jpjG(~a1;1; ~a1;2; t): (21.6)

Of course, we must always keep in mind that A represents D2u and p represents Du so that the result

above and the calculations below, though purely algebraic, have a di�erential geometry interpretation. In

particular, we have

~a2;2(D
2u;Du) = div(

Du

jDuj ) = curv(u) and

~a1;2(D
2u;Du) = div(

Du?

jDuj ) = anticurv(u);

Exercise 21.1 Interpretation of anticurv(u). Show that anticurv(u)(x) can be interpreted as the curva-

ture of the gradient lines of u. Those lines are the lines tangent to the gradient of u at every point. They

form a bunch of lines orthogonal to the isolevel lines of u.

Working version subject to errors, only for personal use. No di�usion authorized. All rights reserved. (Version: 15/07/2000)



21.1. THE TWO DIMENSIONAL CASE

Proof of Lemma 21.1 We �rst use (20.25), setting � = 1
jpj . Thus

F (A; p; t) = jpjF ( Ajpj + �p
 p;
p

jpj ; t)

for any real value �. Then, we apply (20.22) with R =t Rp:

F (A; p; t) = jpjF (Rp(
A

jpj )
tRp + �Rp(p
 p)tRp; e1; t);

for any real number �. It is easily checked that

Rp(p
 p)tRp =

� jpj2 0
0 0

�
:

Thus, by (21.3),

F (A; p; t) = jpjF (
�
~a1;1 + �jpj2 ~a1;2
~a1;2 ~a2;2

�
; e1; t)

for any �. Consequently, we see that F only depends upon ~a2;2 and ~a1;2, which proves the assertion (21.6).

2

Lemma 21.2 The function G only depends upon ~a2;2 and t.

Proof Here we use the fact that F (A; p; t) is a nondecreasing continuous function with respect to A (one

of the conclusions of Theorem 20.6). Recall that by Relations (21.4) and (21.5),

~a1;2 =
A(p; p?)
jpj3 ;

~a2;2 =
A(p?; p?)
jpj3 :

A vector p 6= 0 being �xed, let us consider two matrices A and B such that A � B. We have

F (A; p; t) = G(
A(p; p?)
jpj3 ;

A(p?; p?)
jpj3 ; t)

In order to simplify notations, we set as above ~a2;2 = 1
jpj3A(p

?; p?), ~b2;2 = 1
jpj3B(p

?; p?), ~a1;2 =
1
jpj3A(p

?; p), ~b1;2 = 1
jpj3B(p

?; p), and analogs for ~a1;1 and ~b1;1. Since the system (p; p?) is orthonormal,

one has A � B if and only if for every pair of real numbers (x; y),

(~a1;1 � ~b1;1)x
2 + 2(~a1;2 � ~b1;2)xy + (~a2;2 � ~b2;2)y

2 � 0 (21.7)

We �x ~a2;2�~b2;2 = " > 0 and we notice that if �~b1;1 is chosen large enough in correspondence of arbitrarily
�xed values of ~a1;1, ~a1;2, ~b1;2 and ", then (21.7) is satis�ed for every (x; y). Thus F (A; p; t) � F (B; p; t)

and therefore

G(~a1;2; ~a2;2; t) � G(~b1;2; ~a2;2 � "; t);
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this relation being true for every ~a1;2, ~b1;2, ~a2;2 and ". We can let " ! 0 in the last inequality, since F is

continuous with respect to A. It follows that

G(~a1;2; ~a2;2; t) � G(~b1;2; ~a2;2; t);

for any value of the three variables. Thus G only depends on its second and third argument. 2

We can summarize what we have proved in the following theorem.

Theorem 21.3 If a two-dimensional scale space Tt is causal and invariant by isometries and contrast

changes, then it obeys an equation of the kind

@u

@t
= jDujG(curv(u); t); (21.8)

where G is nondecreasing and continuous with respect to its �rst argument.

We have not yet used the scale and aÆne invariances. This is to come now.

Theorem 21.4 Let Tt be a causal, isotropic constrast invariant scale space. Assume that it is, in addition,

scale invariant (that is, invariant with respect to zooms) and normalized according to Lemma 20.20. Then

its equation is

@u

@t
= jDuj�(tcurv(u)) (21.9)

where � is a nondecreasing continuous function.

If we impose a full aÆne invariance to the scale space and assume again that the scale is normalized

(Lemma 20.20), then its equation is

@u

@t
= jDuj
(tcurv(u); (21.10)

where for some positive constants C and D, 
(s) = Cs
1
3 if s > 0, 
(s) = �Djsj 13 if s < 0. Conversely,

this equation de�nes an aÆne invariant scale space.

Remark 21.5 In order to have C = D, it is enough to impose the "reverse contrast invariance", which

extends the contrast invariance Tt+h;t Æ g = g Æ Tt+h;t to nondecreasing contrast functions g.

Proof. By Lemma 20.21, if a causal scale space is aÆne invariant, then, after the adequate renormalization

(Lemma 20.20), its associated function F satis�es

F (BAtB;Bp; t) = jdetBj 12F (A; p; jdetBj 12 t): (21.11)

for any linear map B. We �rst apply Relation (21.11) to the case of a zoom B = cId. Then

~a2;2(BA
tB;Bp) = ~a2;2(c

2A; cp) = ~a2;2(
c2A(cp?; cp?)

jcpj3 ) = c~a2;2(A; p):

Thus, by relation (21.11),

cjpjG(c~a2;2(A; p); t) = cjpjG(~a2;2(A; p); ct):
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Since this relation holds for arbitrary values of A, p, c, t, we have for any c, s and t � 0, G(cs; t) = G(s; ct).

Choosing c = t�1, we get

G(s; t) = G(st; 1) = �(st)

for a continuous nondecreasing function �. This proves the �rst statement of the theorem. Let us now

pass to the general aÆne invariance. In order to identify the power 1
3 , we only need to express the aÆne

invariance in the particular case of orthogonal aÆnities with determinant 1,

B(�) =

�
� 0
0 ��1

�
:

Indeed, every linear map of the plane is a product of isometries and such aÆnities and we already have

fully used the invariance by isometries. We �rst compute

BAtB =

�
�2a1;1 a1;2
a1;2 ��2a2;2

�
;

Bp = (�p1;
p2
�
):

Therefore, using (21.5),

~a2;2(
tBAB;Bp) =

a1;1p
2
2 � 2a1;2p1p2 + a2;2p

2
1

(�2p21 + ��2p22)
3
2

: (21.12)

We know that F (A; p; t) = �(t~a2;2(A; p; t))jpj. Plugging this relation into the aÆne invariance relation

(21.11) yields

jBpj�(t~a2;2(BAtB;Bp)) = jpj�(t~a2;2(A; p)): (21.13)

We impose p2 = 0, p1 = 1, a2;2 = 1, so that from (21.12) and (21.13) follows

j�j�( t
�3

) = �(t);

which achieves the proof. 2

21.2 General form of contrast invariant scale-space equations in
dimension N .

We do the same general assumptions on the considered scale spaces as in the preceding section : we

consider a scale space de�ned by an equation @u=@t = F (D2u;Du; t) and we assume that F (A; p; t) is

nondecreasing with respect to A, that is F (A; p; t) � F (B; p; t) if A � B (comparison principle). The

considered F 's will always be continuous with respect to A, at least for p 6= 0. Our aim is to deduce from

the contrast invariance the general form of the function F in dimension N . We shall prove that if we

assume also the isometry invariance, then the scale space is described by an equation

@u

@t
= G(�1; :::; �N�1; jDuj; t)
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where �1, ..., �N�1 are the principal curvatures of the level hypersurface of u andG is a real function de�ned

on IRN�1�[0;+1[�[0;+1[ which is symmetric with respect to (�1; :::; �N�1), positively homogenous with

respect to (�1; :::; �N�1; jDuj) and nondecreasing with respect to each �i(1 � i � N�1) for all t in [0;+1[.

The main axiom which we introduce in this section is the contrast invariance, Tt Æ h = h Æ Tt for all t � 0,

where h is any nondecreasing real function. In the calculations below, we shall forget the t-dependence of

F because it does not change calculation and results and write F (A; p) instead of F (A; p; t). By Lemma

20.16, the function F associated with a contrast invariant scale space satis�es (Relation (20.25))

F (�A+ �p
 p; �p; t) = �F (A; p; t); (21.14)

for all real values �, � � 0, every symmetric matrix A 2 SN and every vector p 2 IRN . Taking � = 0, this

yields in particular that F is positively homogeneous,

F (�A; �p) = �F (A; p) for all � � 0; A 2 SN ; p 2 IRN ; p 6= 0: (21.15)

(In particular, F (0; 0) = 0). Now, provided (21.15) holds, the contrast invariance reduces to

F (A+ �p
 p; p) = F (A; p) for all � 2 IR;A 2 SN ; p 2 IRN ; p 6= 0: (21.16)

If N = 1, this implies that F depends only on p and in view of (21.15), F is necessarily given by

F (A; p) = ap+ + bp� for some a; b 2 IR; (21.17)

where p+ = max(p; 0) and p� = min(p; 0). Less trivial situations occur if N � 2, an assumption which

we make in all that follows. If p 2 IRN , we denote by Qp the matrix of the projection onto the hyperplane

p? orthogonal to p.

Theorem 21.6 (Giga, Goto [?]) Let Tt be a scale space satisfying the contrast invariance. Then the

associated F satis�es

F (A; p) = F (QpAQp; p) for all A 2 SN ; p in IRN ; p 6= 0; (21.18)

where Qp is the projection matrix, Qp = IN � p
 p=jpj2.

Proof of Theorem 21.6. In order to show (21.18), we �x p in IRN , p 6= 0 and we select a co-

ordinate system such that p = jpj(0; :::; 0; 1), in which case QpAQp becomes A0 = (a0ij)1�i;j�N where

a0ij = aij if 1 � i; j � N � 1, a0ij = 0 otherwise and p 
 p = jpj2(ÆNiÆNj)1�i;j�N : (As usual, we set

Æk;l = 0 if k 6= l and Æk;l = 1 otherwise.) Relation (21.16) implies that F (A; p) does not depend on

aNN . Set M = a2N;1 + ::: + a2N;N�1 and I� = �IN + (M=� � �)(ÆNiÆNj)1�i;j�N . One easily checks that

QpAQp � A+ I� and A � QpAQp + I�. Using F (A; p) � F (B; p) if A � B, and letting � tend to zero, we

obtain, since F does not depend on aNN and is continuous for p 6= 0, F (A; p) = F (QpAQp; p). 2

We need to introduce some notations. Since QpAQp leaves invariant (IRp)? (for p 6= 0 �xed) and

QpAQp vanishes on IRp, QpAQp admits N real eigenvalues which include 0 and (�1; :::; �N�1) which are

the real eigenvalues of the restriction of QpAQp to (IRp)
?. We set, where jpj 6= 0; �i = �i=jpj for each i

between 0 and N�1. When A = D2u and p = Du, the �i are by Proposition 5.16 the principal curvatures

of the level hypersurface of u. If N = 2, by De�nition 5.12, �1 = tr(QpAQp)=jpj = curv(u).
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Corollary 21.7 Let N � 2. Let Tt be a scale space satisfying the contrast and the euclidean invariance,

then

F (A; p) = jpjG(�1; :::; �N�1); (21.19)

for all A 2 SN ; p 2 IRN ; p 6= 0;

for some continuous function G de�ned on IRN�1�[0;+1[ which is symmetric with respect to (�1; :::; �N�1)

and nondecreasing with respect to each �i (1 � i � N � 1):

Proof of Corollary 21.7. By Lemma 20.14 the function F associated with the scale space satis�es

F (tRAR;tRp) = F (A; p) for all A 2 SN ; p 2 IRN ; p 6= 0; R 2 ON ; (21.20)

where ON denotes the group of orthogonal transforms of IRN , that is the linear transforms preserving the

euclidean and therefore satisfying R�1 =t R.

The �rst step consists in showing that for p 6= 0 �xed, (21.20) implies that F is a function of

(�1; :::; �N�1). In order to do so, we consider the subgroup of ON de�ned by those transforms R that

leave p invariant i.e. Rp = p so that tRpR�1 = p. Then, clearly Qp and R commute and thus (21.20)

implies that F (tRQpAQpR;
tRp) = F (QpAQp;

tRp) = F (QpAQp; p). There therefore is a function G

such that F (A; p) = G1(�1; :::; �N�1; p), where (�1; :::; �N�1) are the eigenvalues of QpAQp. Let R

in ON and q =t Rp. We notice that Qt
qRARQq =t RQpAQpR. We deduce that Qt

qRARQq and

QpAQp have the same eigenvalues. Thus, by using the euclidean invariance (21.20) again, F (A; p) =

F (tRAR;tRp) = G1(�1; :::; �N�1; q). Thus F only depends on the modulus of p and therefore we can

write F (A; p) = G1(�1; :::; �N�1; jpj). We use again (21.15), which yields

G1(��1; :::; ��N�1; �jpj) = �G1(�1; :::; �N�1; jpj):

Choosing � = jpj�1, we obtain F (A; p) = jpjG1(�1=jpj; :::; �N�1=jpj; 1) = jpjG(�1; :::; �N�1). In addition,

G is a symmetric function of (�1; :::; �N�1), and, since F is monotone, G is clearly nondecreasing with

respect to each �i for 1 � i � N � 1. 2

21.3 AÆne morphological scale spaces (N � 3).

Theorem 21.8 (N � 2). Let Tt be an aÆne and contrast invariant scale space satisfying Tt(�u) = Tt(u).

Assume that it is renormalized according to Lemma 20.20. Then its associated equation is

@u

@t
= jDuj�� Y

1�i�N�1
t�i
�� 1
N+1 H

� X
1�i�N�1

sgn(�i)
�

(21.21)

where the �i are the mean curvatures of the level hypersurface, sgn(�i) denotes the sign of �i and H is

de�ned by

H(N � 1) = �H(�(N � 1)) = 1 and 8i 2 ZZ; jij 6= N � 1; H(i) = 0

In other terms, H is equal to zero if all the �i have not the same sign.
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Proof We begin by using the result of Corollary 21.7. The contrast and euclidean invariances imply that

the scale space is associated an equation

@u

@t
= F (D2u;Du; t)

with

F (A; p; t) == jpjG(�1; :::; �N�1; t);
and G is symmetric with respect to the �i. If p 6= 0, we have set �i =

�i
jpj , where �i are the eigenvalues

of the restriction of A to the hyperplane orthogonal to p, p? (see Corollary 21.7). In order to simplify the

proof, we prefer to use here a more general form for the function F

F (A; p; t) = G1(�1; :::; �N�1; jpj; t) (21.22)

Of course, jpjG(�1; :::; �N�1; t) is a particular instance of such a function G1. Since the restriction of A to

the hyperplane p? is a symmetric matrix, we can choose a set of orthogonal vectors e1; :::; eN�1 such that

�i = A(ei; ei). (0 � i � N � 1). Notice that each ei is orthogonal to p. Then, in order to have a complete

basis of IRN , we set eN = p=jpj. Let Bi, (for 1 � i � N � 1), be the linear transform from IRN into IRN

de�ned by

Bi(e1; :::; ei; :::; eN�1; eN ) = (e1; :::; �ei; :::; eN�1; ��1eN);

for � 2 IR, so that det(Bi) = 1. By (20.30) in Lemma 20.21, applied with B = B1,

F (A; p; t) = G(�1�
2; �2; :::; �N�1; ��1jpj; t):

By choosing � = j�1j�1=2 we obtain

F (A; p; t) = G(sgn(�1); �2; :::; �N�1; j�1j 12 jpj; t):

Iterating the same argument with B = Bi for i = 2 to i = N � 1 yields

F (A; p; t) = G
�
sgn(�1); :::; sgn(�N�1); jpj j

Y
0�i�N�1

�ij 12 ; t
�
: (21.23)

We now use again the scale invariance relation (20.30) in Lemma 20.21 and lemma 20.20, which yields

F (�2A; �p; t) = �F (A; p; �t)

and therefore

G
�
sgn(�1); :::; sgn(�N�1); �jpj�N�1j

Y
1�i�N�1

�ij 12 ; t
�
= �G

�
sgn(�1); :::; sgn(�N�1); jpj

Y
1�i�N�1

j�ij 12 ; �t
�
:

We deduce that

��1G
�
sgn(�1); :::; sgn(�N�1); �N jpj

Y
1�i�N�1

j�ij 12 ; t��1
�
= G

�
sgn(�1); :::; sgn(�N�1); jpj

Y
1�i�N�1

j�ij 12 ; t
�
:

Setting � = t, we obtain

F (A; p; t) = t�1G
�
sgn(�1); :::; sgn(�N�1); tN jpj

Y
1�i�N�1

j�ij 12 ; 1
�
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= t�1G1

�
tN jpj

Y
1�i�N�1

j�ij 12 ; sgn(�1); :::; sgn(�N�1)
�
:

Now, by the contrast invariance relation (20.25) in Lemma 20.16, we also have

F (��1A; ��1p; t) = ��1F (A; p; t);

so that

�G1

�
��1tN jpj

Y
1�i�N�1

j��1�ij 12 ; :::
�
= G1

�
tN jpjj

Y
1�i�N�1

�ij 12 ; :::
�
:

Choosing � =
�
tN jpjQ1�i�N�1 j�ij

1
2 )
� 2
N+1 , the function F is reduced to a power function

F (A; p; t) = t
N�1
N+1 jpj 2

N+1 j
Y

1�i�N�1
�ij 1

N+1 G1

�
1; sgn(�1); :::; sgn(�N�1)

�

= t
N�1
N+1 jpj 2

N+1 j
Y

1�i�N�1
�ij 1

N+1 H1

�
sgn(�1); :::; sgn(�N�1)

�

for some function H1. Since �i (= �i=jpj), we �nally obtain

F (A; p; t) = t
N�1
N+1 jpj 2

N+1 jpjN�1
N+1 j

Y
1�i�N�1

�ij 1
N+1 H1

�
sgn(�1); :::; sgn(�N�1)

�
;

which yields

F (A; p; t) = jpjtN�1
N+1

Y
1�i�N�1

j�ij 1
N+1 H1

�
sgn(�1); :::; sgn(�N�1)

�
:

Now, H1 must satisfy some properties : Since Tt is invariant by rotation,H1 must be symmetric with re-

spect to its variables. Because of the term (
Q

1�i�N�1 j�ij
1

N+1 , we are allowed to setH(sgn(�1); :::; sgn(�N�1)) =

0 if some �i vanishes. If all �i are nonzero, H1(sgn(�1); :::; sgn(�N�1)) therefore only depends on the num-

ber of �i's which are negative and therefore upon the sum :
P

1�i�N�1 sgn(�i)). Thus

H1

�
sgn(�1); :::; sgn(�N�1)

�
= H

� X
1�i�N�1

sgn(�i)
�
:

It is �nally easy to see, by changing u into �u and using the assumption Tt(�u) = �Tt(u) and the regula-
rity relation (20.4), that H satis�es H(i) = �H(�i). At last, we know that H is a nondecreasing function,

since F is nondecreasing with respect to A.

To summarize, we have

F (A; p; t) = jpjtN�1
N+1

Y
1�i�N�1

j�ij 1
N+1 H

� X
1�i�N�1

sgn(�i)
�
; (21.24)

where H is a nondecreasing real function such that H(i) = �H(�i).

the case N = 2.

In that case, N � 1 = 1 and we deduce from (21.24),

F (A; p; t) = t
1
3 jpj( 1jpjA(

p?

jpj ;
p?

jpj ))
1
3 :
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Returning to the scale space equation, we have p = Du, A = D2u and curv(u) = 1
jDujD

2u(Du
?

jDuj ;
Du?

jDuj ), so

that the associated scale space equation is

@u

@t
= F (D2u;Du; t) = jDuj(curv(u)) 13 :

We retrieve, as was to be expected, the equation (18.4).

The case N = 3.

The equation we obtain is
@u

@t
= jDujt 12 j�1�2j 14H

�
sgn(�1) + sgn(�2)

�
where �1 and �2 are the principal curvatures of the level surface. Their product is nothing but the Gauss

curvature G(u) of the level surface of u, so that we can write

@u

@t
= jDujt 12 jG(u)j 14H�sgn(�1) + sgn(�2)

�

Since sgn(�1) + sgn(�2) can only take three values : -2, 0, 2, and using H(�2) = �H(2), we can write

H(2) = �H(�2) = b � 0 H(0) = a and jaj � b

Now, F (A;Du; t) must be nondecreasing with respect to A and therefore with respect to the curvatures

�1 and �2. It is easy to check, by taking particular values for �1 and �2 that a must be equal to 0. Indeed,

if we choose two pairs of �i : (�1; �) and (�; �), for some � real and positive, then F must be larger for

the second pair than for the �rst one, so that

�H(0) � �2H(2)

Letting � tend to 0, we obtain H(0) = a � 0. By choosing the two pairs (��; �) and (��; 1) we obtain
in the same way H(0) = a � 0. Thus a = 0. The consequence is that when the principal curvatures have

opposite signs, then F (A;Du; t) is equal to zero. At last, we obtain, up to a multiplicative constant for

the second member, the equation

@u

@t
= sgn(�1) jDujt 12

�
(G(u))+

� 1
4 (21.25)

where x+ stands for sup(0; x). This equation describes the unique multiscale analysis in dimension 3 which

is both aÆne and contrast invariant and satis�es Tt(u) = �Tt(�u).

The case of arbitrary dimension N . The same argument as dimension 3 is easily extended in any

dimension and yields Equation (21.21), where H is de�ned by

H(N � 1) = �H(�(N � 1)) = 1 and 8i 2 ZZ; jij 6= N � 1; H(i) = 0

In other terms, H is equal to zero if all the �i have not the same sign. 2
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simpli�ed version of the original [15, 190] Other axiomatics for the aÆne scale spaces have been proposed
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two dimensions a scale space still more invariant than the aÆne scale space, namely a projectively invariant
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projective invariant : we pointed out that asking aÆne invariance exhausted all degrees of freedom in the

choice of the partial di�erential equation. Thus, one of the requirements must be given up. Faugeras and

Keriven [147, 144, 146, 145] and Bruckstein and Shaked [68] give up the maximum principle, but get higher

order partial di�erential equations which can hardly be considered as smoothing equations. Mathematical
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Olver et al. [328]. Dibos [124, 122] does not give up locality or causality and is able to simulate numerically

her scale space. This scale space does not depend anymore upon a single scale parameter, but on two.

Geraets et al. [169, 170] propose aÆne invariant scale spaces for discrete sets and applications to object

recognition. One of the �rst attempts to use the AMSS model for aÆne invariant shape recognition is

Cohignac et al. [106]. A more complete and sophisticate attempt is [268] which performs image comparison

by applying the aÆne scale space to all level lines of each image. Alvarez and Morales [17] used the aÆne

scale space for corner and T-junction detection in digital images.
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Chapter 22

Scale spaces of shapes

22.1 All shape scale spaces.

In this section, we shall list four principles which a shape scale space (identi�ed with a curve scale space)

should satisfy. We shall prove that a shape scale space must, according to these principles, be a curvature

motion equation whose form is slightly more general than the intrinsic heat equation. For some of the

principles discussed here, it will be useful to consider both a Jordan curve and the bounded set X sur-

rounded by the Jordan curve. So we call shape or silhouette any bounded closed set X whose boundary is

a Jordan curve of IR2. We denote by Tt(X) the shape of X analysed at scale t. We call shape scale space

any family of operators (Tt)t�0 acting on shapes and set X(t) = Tt(X).

As in Chapter 20, we suppose that the operators Tt satisfy a pyramidal assumption, Tt = Tt;sTs. We

now consider a translation in the shape analysis framework of the other basic assumptions made for image

scale space. The next assumption is an adaptation to shape analysis of the local comparison principle.

We denote by B(x; r) the open disk with center x and radius r, and for a shape X, by @X the boundary

of X. Assume that X and Y are two compact shapes and that for some x 2 @Y and some r > 0, one has

X \ B(x; r) � Y \ B(x; r). Assume further that the inclusion is strict in the sense that @X and @Y only

meet possibly at x. Then we shall say that the shape X is included in shape Y around x.

De�nition 22.1 We say that Tt satis�es the [Shape local inclusion principle] , if for all X and

Y subsets of IR2 such that X is included in Y around x, then for h small enough, Tt+h;t(X) \ B(x; r) �
Tt+h;t(Y) \ B(x; r).

This axiom has two aspects : First, it implies that the value of Tt+h;t(X) for h small, at any point

x, is determined by the behaviour of X near x. Second, taking two shapes X � Y, it implies for r large

enough that Tt+h;t(X) � Tt+h;t(Y), that is, a Global inclusion principle. Both preceding principles

allow, as we shall see, to localize the shape analysis process in space and scale. In order to totally specify

a scale space, we only need, as we shall prove, to say what the scale space makes of very simple shapes.

We add two principles which state what happens to disks. Thanks to the local inclusion principle, disks

will appear as the \basis" on which every more complex shape can be decomposed : When we know what

happens to disks in scale space, we can deduce the destiny of every other shape !
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X
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Figure 22.1: Local Inclusion Principle (De�nition 22.6).

[Isotropy] Let D = D(x; 1=r) be a disk with curvature 1=r and center x. Then Tt+h;t(D) is a disk with

radius �(t; h; 1=r) and center x.

[Regularity] For all t; r; h > 0, function h! �(t; h; 1=r) is di�erentiable with respect to h at h = 0 and

the derivative g(t; 1=r) = @�
@h (t; 0; 1=r) is continuous with respect to 1=r and has a limit g(t; 0) as r !1.

The last assumption, that g(t; 0) exists, is no serious restriction in view of the next lemma.

Lemma 22.2 The function g(t; �) = @�
@h (t; 0; �) is nondecreasing with respect to �.

Proof Let r > r0, set 0 = (0; 0) and a = (r� r0; 0) and consider the disks D = D(0; r) and D0 = D(a; r0),

which are tangent at x = (r; 0). By the isotropy principle, Tt;t+hD is a disk with center 0 and radius

�(t; h; 1r ) and Tt;t+hD
0 a disk with center a and radius �(t; h; 1

r0 ). By the shape local inclusion principle,

the second disk is contained is the �rst, which implies r0� �(t; h; 1
r0 ) � r� �(t; h; 1r ). Dividing this relation

by h and letting h! 0 yields by the regularity assumption

g(t;
1

r0
) =

@�

@h
(t; 0;

1

r0
) � @�

@h
(t; 0;

1

r
) = g(t;

1

r
):

Setting �0 = 1
r0 and � =

1
r we obtain

�0 � �) g(t; �0) � g(t; �):

2

The last shape preserving principles which we shall consider here are the scale invariance and the aÆne

invariance of the shape scale space. De�ne AX = f Ax;x 2 Xg for any linear map A.

[Affine invariance]. There exists a C1 function t0(t; A) � 0 de�ned for any A and t � 0, such that

ATt0(t; A);t0(s; A) = Tt;s A. In case where we restrict this last relation to homotheties, we shall say that

the scale space is scale invariant. By using Lemma 20.20, we can always take t0(t; A) = t:jdet Aj1=2 up to
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a rescaling, so that we �nally write.

ATt:jdet Aj1=2;s:jdet Aj1=2 = Tt;s A: (22.1)

Let x(s) be a curve parameterized by length. We recall that in De�nition 5.2 we have de�ned an

intrinsic curvature vector Curvx(s)). The modulus of the curvature vector can be interpreted as the

inverse of the radius of the osculatory circle to the curve at x(s). The curvature is zero if the radius is

in�nite. When Curvx(s) 6= 0, the intrinsic normal vector n(x)(s) = Curvx(s)
jCurvx(s)j has norm one and can be

de�ned in more geometric terms as the unit vector normal to the curve and pointing towards the concavity

of the curve.

Theorem 22.3 (i) Let Tt be a shape scale space satisfying the four shape analysis principles (pyramidal

architecture, shape local inclusion, isotropy and regularity). Consider an initial Jordan curve x0(s). Then

at each point (t; s) around which x(t; s) = (Ttx0)(s) is di�erentiable with respect to t and C2 with respect

to an euclidean parameter s, x(t; s) satis�es a curvature equation

@x

@t
(t; s) = g(t; jCurvx(t; s)j)n(t; s): (22.2)

where �! g(t; �) is a nondecreasing function.

(ii) If in addition the scale space is aÆne invariant, then the equation of the scale space is

@x

@t
(t; s) = (tjCurvx(t; s)j) 13n(t; s): (22.3)

With obvious abbreviations, we shall write this last equation

@x

@t
= (t:Curv(x))

1
3n(x) (22.4)

and call it AÆne Scale Space (A.S.S.)

Proof The proof of (i) is essentially identical to the proof of Theorem 20.6 : Instead of inserting locally

the image function between two quadratic forms, we shall insert locally the curve s! x(t; s) between two

circles (surosculator and subosculator) for which we know the in�nitesimal evolution by the isotropy and

regularity principles. Denote byX(t) the compact plane set whose boundary is the curve x(t; s). Let x be a

point of this curve. We shall also when convenient denote this point by x(t). Let us consider a subosculatory

and a surosculatory disk to the curve at x. One is the closed disk D0 with radius r = 1
��� and the other one

the closed disk D with radius r = 1
�+� and both are tangent to the curve x(t; s) at x. (In the case where

� = 0, we simply take for D0 the half plane tangent to the shape at x containing D . This does not alter

what follows). Let B(x; r) be a disk with r small enough so that D\B(x; r) � X(t)\B(x; r) � D0\B(x; r)
and @D, @D0 and the curve x(t; s) only meet at x inside B(x; r). Applying the local inclusion principle,

we deduce that

Tt+h;t(D) \B(x; r) � Tt+h;t(X) \B(x; r) � Tt+h;t(D
0) \ B(x; r):

Thus, denoting by x(t+ h) the point of @Tt+h(X) such that x(t+ h)� x(t; s) is parallel to n(x(t; s)), we

obtain

�(t; h; �� �)� �(t; 0; �� �) � (x(t+ h)� x(t)):n(x(t)) � �(t; h; �+ �)� �(t; 0; �+ �)
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Dividing by h and passing to the inf- and sup-limits when h tends to 0 yields

@�

@h
(t; 0; �� �) � lim inf

h!0

x(t+ h)� x(t)

h
:n(x(t)) �

lim sup
h!0

x(t+ h)� x(t)

h
:n(x(t)) � @�

@h
(t; 0; �+ �)

By the regularity principle, �! @�
@h (t; 0; �) is continuous. Passing to the limit when � tends to 0,

@x(t)

@t
(:n(x)(t) = g(t; jCurvx(t)j); (22.5)

which yields Equation 22.2 because by assumption @x(t)
@t is colinear to n(x(t)).

(ii) After renormalization, we can use the identity

Tt+h;tD� = D�T(t+h)�;t�

, where D� = �Id. We deduce that the function � of the basic principle must satisfy �(t; h; �r ) =
1
��(�t; �h; 1=r) After di�erentiation with respect to h at 0, we obtain

g(t; �s) = g(�t; s)

for any t > 0, � > 0 and s 2 IR. Changing t in t=� and taking � = 1=t we get g(t; s) = g(1; ts) = �(ts), �

being de�ned as �(x) = g(1; x). Let us now use the full aÆne invariance. After renormalization, we can

use the identity Tt+h;tA = ATt+h;t, where A is the linear transform with determinant equal to 1,

(x; y)! (�x;
y

�
); � > 0

Let us apply the identity Tt+h;tAD = ATt+h;tD to the unit disk D = D(0; 1).Consider the point x0 = (1; 0)

on the boundary of D. The velocity by Tt of x0 is (��(t); 0), and this velocity is transformed by A into

���(t). Since AD is an ellipse with curvature �3 at point Ax0, the velocity of Ax0 is (��(t:�3); 0). So we
obtain �(t:�3) = ��(t). Taking t = 1, we get �(x) = a:x1=3 with(a = �(1)). 2

22.2 From curve motion to image motion and viscosity solutions.

Theorem 22.4 If u is a viscosity solution of

@u

@t
= jDujF (curv(u))

and if x(t) is a C1 (in time and space) level line of u, then this level line also is a classical solution of

@x

@t
= F (Curv(x))n

Lemma 22.5 Let u(t;x) be a continuous function whose isolevelset C(t) = @fx; u(x) � �g = @fx; u(x) <
�g, is, for some level � and some interval of time around t0, a �nite union of disjoint closed C1 Jordan

curves. Then there exists � > 0, a C1 function '(t;x) and a continuous non decreasing contrast change

g, such that

� ' � g(u), for all [t0 � �; t0 + �] and x 2 IR2,

� '(t0;x0) = u(t0;x0),

� C(t) is a isolevelset of both g(u) and ' for t 2 [t0 � �; t0 + �].
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Proof of lemma 22.5 We consider for x 2 IR2,  (t;x) = d((t;x); C(t)), where d denotes the signed

Hausdor� distance, i.e.

� d((t;x); C(t)) > 0 if x is surrounded by C(t)

� d((t;x); C(t)) < 0 otherwise

Then, there exists � such that for all t 2 [t0 � �; t0 + �] and for all x such that jd((t;x); C(t))j < �,  (t;x)

is a C1 function. We can extend  into a C1 function on IR+ � IR2, '. By Lemma 8.13, we can �nd a

continuous and nondecreasing function g such that ' � g(u) and ' = g(u) on C(t) for all t 2 [t0��; t0+�].
(Notice that Lemma 8.13 is stated for functions de�ned on IRN , but still holds for functions de�ned in a

closed subset of IRN , without any change.) 2

Proof of theorem 22.4 We apply lemma 22.5 and the fact that u is a viscosity solution. We deduce

that
@'

@t
� F (curv('))jD'j

Let us consider the normal 
ow x(t) associated with '(t;x), satisfying therefore the relation (6.6),

@x

@t
= �(@'

@t

D'

jD'j2 )(t;x(t)):

Since the level lines of g(u) and ' coincide for t 2 [t0 � �; t0 + �], we have curv(') = curv(u) = Curv(x).

Thus,
@x

@t
:D' � F (Curv(x))jD'j;

which yields,
@x

@t
:n � F (Curv(x)):

We get the converse inequality by similar arguments.

In the following, our purpose is to de�ne an image evolution by handling separately all level lines of the

initial image. The level lines evolution is de�ned by e.g. the intrinsic heat equation, see chapter 6 or any

curve scale space ensuring the existence of a smooth curve evolution. We need to de�ne a kind of image

u for which all iso level sets fx; u(x) = �g are uniquely described as �nite unions of Jordan curves.

De�nition 22.6 We say that a curve scale-space satis�es a uniform local comparison principle, if there

is a function h(r; �) > 0 satisfying the following condition:

Let c1 and c2 any two Jordan curves which can be locally parameterized as graphs y = f1(x), y = f2(x),

�r � x � r and such that

r � f1(x) � f2(x) + �x2 � �r
for every �r � x � r. Then the evolution of c1 and c2 by the curve scale-space Tt de�nes locally two

graphs for t � h(r; �) and �r=2 � x � r=2: y = f1(t; x), y = f2(t; x) such that

f1(t; x) � f2(t; x):

Remark 22.7 The Grayson evolution and the aÆne shortening (respectively G(s) = s and G(s) = s
1
3 ,

satisfy this property. See [180], lemma ??, page ??, [29] lemma ??, page ??
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De�nition 22.8 Curve evolution equation and Curve Scale Space.

We consider a curve evolution equation

@x

@t
= G(Curv(x))n; (22.6)

and its associated function evolution equation

@u

@t
= jDujG(curv(u)) = F (D2u;Du) (22.7)

where G is a non-decreasing continuous function and F is admissible (De�nition 17.1). (Note that the

admissibility implies that r(G(1=r) is bounded for r around 0).

We say that (22.6) is a smoothing scale-space, if we can assert that

1. Every closed Jordan curve with �nite length x0(s) evolves by (22.6) into a C2 closed Jordan curve

x(t; s) such that x(0; s) = x0(s).

2. The curve map x0(:)! x(t; :) is continuous for the Hausdor� distance,

3. satis�es the global shape inclusion principle

4. and the uniform shape local inclusion principle.

De�nition 22.9 We de�ne a class T of subsets of IR2 which we call \regular" sets. A regular set is a

closed subset of IR2 whose boundary is a locally �nite union of disjoint closed C2 Jordan curves. If c is

a Jordan curve we denote by Int(c) the unique closed bounded subset of IR2 whose boundary is c. If X

belongs to T has no unbounded connected component, we can write

X = [ki=1

�
Int(ci) n [lij=1interiorInt(ci;j)

�
; (22.8)

where the index i runs over all connected components of X, the index j 2 f1; :::; lig runs over all bounded

connected components of the complementary set to the i-th connected component (its holes). If X has an

unbounded connected component, then Xc has no unbounded connected component and satis�es (22.8).

We associate with T the class F of continuous functions u such that X�u belongs to T for every �

except a �nite number of them which we call critical levels. The functions of F will be called \regular".

Example 22.10 It is easily seen that a periodic Morse function, that is, a C2 function such that detD2u(x) 6=
0 for all x, is an instance of regular function.

De�nition 22.11 (Curve evolution as a set operator Tt).

We consider a smoothing curve scale-space c ! c(t), as de�ned in De�nition (22.8). For every set in T ,
if X satis�es:

X = [ki=1

�
Int(ci) n [lij=1interiorInt(ci;j)

�
;

we set

Tt(X) = [ki=1

�
Int(ci(t)) n [lij=1interiorInt(ci;j(t))

�
;

where ci(t) and ci;j(t) denote the curves evolved at time t by the curve scale-space.

If X 2 T has an unbounded component, we set Tt(X) = (Tt(X
c))c.

We also set T(;) = ; and therefore T(IR2) = IR2.

Lemma 22.12 Tt is monotone on T and transforms a set of T into a set pf T .
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Proof If X � Y , then each external Jordan curve of a connected component of Y is enclosed by an

exterior Jordan curve of a connected component of X and each internal Jordan curve of X is enclosed by

an internal Jordan curve of Y . Since the evolution by a smoothing scale-space preserves the inclusion of

curves, we easily deduce the announced statement. 2

De�nition 22.13 Let u 2 F be a regular function. We call level line evolution of u the unique monotone

functional extension T to F of the set evolution Tt given by Proposition 7.9. We then have

(i) T (u) is regular.

(ii) If u is K�Lipschitz, then T (u) is equal almost everywhere to a K�Lipschitz function.
(iii) T(X�u) = X�(T (u)); a.e and for almost every � 2 IR such that � is not critical for u.

(iv) As a consequence, Tt is recursive: Tt+t0 = TtTt0 for all t; t
0 � 0.

Proof (i) By Exercise 8.6, we know that Tt(u) is obtained from u by a sup-inf operator, so that the

Lipschitz constant of u is preserved.

(ii) Let �0 =2 f�1; :::; �lg critical levels of u, that is levels for which X�u is not in T . As � tends to �0, X�u
tends to X�0u locally for the Hausdor� distance. (Each Jordan curve of the boundary of X�u tends to a

corresponding curve of the boundary of X�0u). By De�nition 22.8.2, we then have

Tt(X�u)! Tt(X�0u)
locally for the Hausdor� distance. Since we can choose an increasing sequence �k ! �0 of non critical

values for u, we then have by (22.13.ii) Tt(X�ku) = X�k (Ttu), a.e. By passing to the limit and using (4.1.ii)
we obtain

Tt(X�0u = lim
�k!�0

X�k (Ttu) =
\

�k!�0

X�k (Ttu) = X�0(Ttu) a.e.

(iii) Obvious consequence of (ii) and the pyramidality of the curve scale-space. 2

Lemma 22.14 Let u and v 2 F be two regular functions such that u(y) > v(y) for every y 2 D(x; r)nfxg.
Then there is some h0 > 0 such that for all h < h0, (Thu)(x) � (Thv)(x). In other terms the level line

evolution Tt satis�es the local comparison principle.

Proof The set operator Tt satis�es by de�nition the shape local inclusion principle (De�nition 22.8.3).

By, comparing the level lines of u and v in the disk D(x; r), it is easily checked that the function operator

Tt inherits a local comparison principle. 2

Lemma 22.15 (i) Let G be a function associated with a smoothing curve scale-space (De�nition 22.8).

Then, for every C2 increasing radial function Q we have for t! 0 and when DQ(x) 6= 0

Tt(Q)(x)�Q(x)

t
! jDQ(x)jG(curv(Q)(x));

(ii) The same result is true for any C1 \ F function f .

(iii) Let f be a C1 \ F function such that f(x) = 0 for all x 2 D(x0; r). Then

lim
t!0

jTt(f)(x0)� f(x0)

t
j ! 0:
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Remark 22.16 We choose the above functions in F , so that their evolution by the curve scale-space is

imediately described by the evolution of their level lines.

Proof of Lemma 22.15 (i) This is an easy computation which we leave as exercise.

(ii) Consider a C1 function f , such that Df(x0) 6= 0. It is easily seen that we can �nd a radial function

v��(x) such that

v��(x0) = f(x0); Dv��(x0) = Df(x0); curv(v��)(x0) = curv(f(x0)� �)

and, in addition,

v��(x) � f(x) � v�(x)

in a neighborhood D(x0; r). By lowering r if necessary we can assume by the implicit function theorem

that for every � 2 [v(x0)� �; v(x0) + �] and � small enough, the level lines c1, c2 with level � of v� and f

respectively satisfy the assumptions of De�nition (22.6). (The same applies to the level lines of f and v��.

Thus, for t � h(r; �) the inclusion of level lines of v�� and f is preserved for all levels close to �0 = f(x0).

We deduce that in a neighborhood of x0, say D(x0; r=4) we have

Th(v��)(x0) � Th(f)(x0) � Th(v�)(x0):

Substracting f(x0) = v��(x0), dividing by h and letting h! 0 we deduce from (i) that

G((curv(f))(x0)� �) � lim inf
h!0

Th(f)(x0)� f(x0)

h

� lim sup
h!0

Th(f)(x0)� f(x0)

h
� G((curv(f))(x0) + �):

We conclude by letting �! 0 and using the continuity of G.

(iii) No level line of f meets D(x0; r). Since the evolution by the curve scale-space is continuous for the

Hausdor� distance, we deduce that for t � t0(r), no level line of f(t) = Tt(f) meets D(x0; r=2). Thus

f(t)(x0) = 0 for t � t0(r). 2

Theorem 22.17 We consider a smoothing curve scale-space @c
@t = G(Curv(c))n, as de�ned in De�nition

(22.8) and its unique extension Tt to the set of regular function F . Let u0 2 F . Then u(t;x) = Tt(u0)(x)

is viscosity solution of
@u

@t
= jDujG(curv(u)):

Proof In order to prove that u(t;x) = Tt(u0)(x) is a viscosity solution of (20.10), we only to check that u

is a viscosity subsolution of (20.10), the supersolution property being shown in the same way. Let (t0;x0)

in [0;1]� IRN be a strict local maximum point of u� � where �(t;x) = f(x) + g(t) where f is regular,

C1(IR2) and equal to a quadratic form in a neighborhood of x0, and g is C1(IR). By Exercise 17.1,

we are allowed to do this restriction on test functions. By Lemma 17.8, it is enough to show that when

Df(x0) 6= 0
@g

@t
(t0;x0)� jDf(x0)jG(curv(f)(x0)) � 0: (22.9)
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and when Df(x0) = 0 and D2f(x0) = 0,

@g

@t
(t0;x0) � 0: (22.10)

By Lemma 20.10 we can assume (w.l.o.g.) that the inequality between u and � is global, i.e. u � � on

[0;1] � IRN . Let h > 0. We set u(t) = u(t; :) for all functions u on IRN � [0;1[. We have u(t) � �(t),

then u(t0 � h;x) � �(t0 � h;x) for all h < t0 and x. Using the monotonicity of Th (De�nition 22.13), we

obtain

Th(u(t0 � h))(x0) � Th(�(t0 � h))(x0)

Now, by the commutation of Tt with the addition of constants and since �(t;x) = f(x) + g(t) we have

Th(u(t0 � h))(x0) � Th(�(t0 � h))(x0) � Th(f)(x0) + g(t0 � h):

We deduce that

u(t0;x0)� (Th(f)(x0) + g(t0 � h)) � 0

Since u(t0;x0) = �(t0;x0) and then

g(t0)� g(t0 � h) � Th(f)(x0)� f(x0)

Then,

(g(t0)� g(t0 � h))=h � (Th(f)(x0)� f(x0))=h

If Df(x0) 6= 0 then letting h go to 0, using (i), we recover

@g

@t
(t0 � h)� jDf(x0)jG(curv(f)(x0)) � 0

By letting h tends to zero, we conclude.

If Df(x0) = 0 and D2f(x0) = 0 then by the assumption on f we know that f is zero on a neighborhood

of x0, and by Lemma 22.15.(iii) we deduce that for h small enough, jTh(f)(x0)� f(x0)j = 0: 2

22.3 Motion by curvature and Total Variation

Lemma 22.18 Let x(t; s) satistying the curve equation evolution

@x

@t
= F (Curv(x))n

. Assume that for some (t; s) 2 [t1; t2]� IR, x is C1. As we have seen, this holds for e.g. F (x) = x.

Let L(t) be the perimeter of x(t; :). Then 8t 2]t1; t2[, we have

@L

@t
(t) = �

Z L

0

(t)Curv(x(t; s))F (Curv(x(t; s)))ds

where s is the arc length parametrization. As consequence the curve equation evolution makes the perimeter

of the curves decrease.
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Proof We choose to parametrize the curve with z between 0 and 1. We thus have

L(t) =

Z 1

0

j@x
@z

(t; z)jdz

Thus
@L

partialt
(t) =

Z 1

0

@

@t
jj@x
@z

(t; z)jdz

Denoting by 0 the partial derivation with respect to z:

=

Z 1

0

x0(z; t)
jfxx0(z; t)j

@

@t
(x0)(t; z)dz

By integration by parts

= �
Z 1

0

Curv(x(t; s))n
@x

@t
(z; t)x0(t; z)dz

Using the curve equation evolution, we obtain:

@L

partialt
(t) = �

Z 1

0

Curv(x(t; s))F (Curv(x(t; s))dz

= �
Z L

0

(t)Curv(x(t; s))F (Curv(x(t; s)))ds

2

Theorem 22.19 Total Variation of a Lipschitz function. [?] Let u be a K-Lipschitz function de�ned

on a square C. Then Du is integrable. And the total variation of u satis�es:

TV (u) =

Z
C

jDu(x)jdx � Karea(C)

De�nition 22.20 Total Variation by the Coarea formula Let u be a Lipschitz and regular (see

de�nition in the preceding section) function de�ned on a square C = [0; 1[2, then we de�ne the Total

Variation of the image u by:
Z
C

jDu(x)jdx =

Z
�2IR

Perimeter(@X�(u)) \ Cd�

This last de�nition makes sense since the regularity of u insures that the Perimeter of the boundaries

of the � level set of u is �nite except for a set of � whose measure is zero.

We consider a regular and K-Lipschitz function u0 and its evolution u(t) by a regular curve scale space.

By 22.13 we know that u(t) is K-Lipschitz and regular, so that we can estimate its total variation.

Theorem 22.21 We consider a regular and K-Lipschitz function u0 and its evolution u(t) by a regular

curve scale space. By 22.13 we know that u(t) is K-Lipschitz and regular, so that we can estimate its total

variation.

One has
@TV (u(t))

@t
� 0

or in other terms, a regular curve scale space decreases the total variation.
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Proof This is an imediat consequence of 22.18 and the coarea formula. 2

.

Remark 22.22 Let us give a heuristic that illustrates (but not proves) the same result. Consider the total

variation as an energy, and compute the gradient of the energy. (Assume that u(t;x) is C1 and Du 6= 0).

Denoting by GTV(u) the gradient of the total variation at function u. It is easily proved (integration by

parts) that G(u) = �div(Du=jDuj) = curv(u).

TV (u(t+ dt)) = TV (u(t)) +

Z
C

(u(t+ dt)� u(t))(GTVu)(x))dx

@TV (u(t))

@t
= �dt

Z
C

@u

@t
(t;x)curv(u)dx

References.

The need for a multiscale curvature in shape analysis

Global shape recognition is relatively easy by normalization algorithm, which singles out in each equiv-

alent class of shapes a unique representative. Invariant comparison of two shapes boils then down to a

comparison of both invariant representatives. AÆne normalization, and even projective normalization can

be made for invariant shape recognition [40, 354, 355]. See also [239]. A relatively eÆcient comparison

of clouds of points can also be performed by geometric hashing [222] or by Hough transform [210] Now,

most shapes under recognition undergo distorsions and occlusions which reduce the eÆciency of global

comparison methods. Such methods assume that the shapes undergoing a recognition process are in good

shape. This is seldom the case with shapes extracted by a computer program from a digital image. Thus,

the smoothing of shapes and their comparisons parts by parts are necessary. This is the main reason of the

development of shape scale spaces. The problem of de�ning an eÆcient shape scale space is adressed in

the early works of Asada and Brady [37], Horn et Weldon [208], Lowe [270] and Mackworth-Mockhtarian

[271]. After these papers, the search for a good de�nition of a multiscale curvature has been aknowledged

as the key to eÆcient shape recognition : Dudek, [131, 129, 130, 133], Mackworth and Mokhtarian[272],

Cohignac [106], Williams [438], Mokhtarian [142], Lisani et al. [268].

Morphology and structural decompositions of shapes We do not treat here two other ways to

analyse a shape, one called structural analysis whose aim it is to decompose the shape into its signi�cant

parts and the other one using the shape's skeleton. In both cases, however, scale space is called to help

since skeletonization is made by multiscale erosions and shape structural decompositions by openings,

closings, erosions, dilations, and their di�erences at di�erent scales [310, 325, 343, 449]. See also Maragos

de�nition of a pattern spectrum [278]. The work of Kimia, Tannenbaum and Zucker [243, 242] can be

viewed as a synthesis of

Mathematical proofs of scale space properties As we already mentionned, the proof that curvature

motion in dimension 2 is a perfect scale space was made from the mathematical point view by Gage[166],

Gage and Hamilton [167] and Grayson [179] The mathematical arguments for existence and uniqueness of
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the solutions of the AÆne Morphological Scale Space were given in Alvarez et al. Alvarez:1993:AFE in the

viscosity framework and by Angenent et al. [29] for the aÆne curve shortening. The evolution of convex

curves had been studied in Sapiro & Tannenbaum [371, 372].

Axiomatics of shape scale spaces

Our presentation of the requirements for the shape scale space follows a simpli�ed version �rst proposed in

[?], which emphasizes the shape inclusion principle as the main axiom, following the mathematical view of

De Giorgi and his disciples [367]. Olver, Sapiro and Tannenbaum have proposed an alternative axiomatics

based on the concept of invariant heat 
ow [328].
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Chapter 23

Movie Scale-spaces.

This chapter is concerned with the axiomatic characterization of the multiscale analyses fTtgt�0 of movies.
We shall formalize a movie as a bounded function u0(x; y; �) de�ned on IR3, where x and y are the spatial

variables and � the time variable. We note x = (x; y; �).

As in the preceding chapters, we assume that Tt is causal (De�nition 20.5), Translation invariant

(De�nition ??) and invariant by grey level translation (De�nition 20.7). Therefore, as shown in

Chapter 20, there exists Tt;s such that Tt = Tt;sTs, for all t � s � 0. And,

((Tt+h;tu� u)=h)(x)! F (D2u(x); Du(x); t)

as h tends to 0+ for all u and x where u is C2. The properties of F are the same as in chapter 20, that is,

F (A;p; t) is nondecreasing with respect to its �rst argument, F (A;p; t) is continuous at all points where

p 6= 0. But, now F has ten scalar arguments.

Finally, we assume that the equation

@u

@t
= F (D2u;Du; t)

a unique viscosity solution u(x; y; �; t), (this will of course be checked a posteriori for the models we derive).

23.1 Geometrical axioms for the movie scale-space.

Let us �rst de�ne the geometrical axioms for the multiscale analysis of movies. All axioms considered in

chapter 20 make sense, but we need to specify them in order to take into account the special role of time

(�). (For example, we shall not consider invariance by spatio-temporal rotations as an essential property...)

This will change a little the assumptions on geometrical invariance. As usual we will denote for any aÆne

operator C of IR3, by Cu the function Cu(x) = u(Cx).

The �rst property states that the analysis be invariant under all linear transforms of the spatial plane

IR2 � f0g. That is, when we apply the same aÆne transform on each image of the movie.

De�nition 23.1 We shall say that a movie scale-space Tt is aÆne invariant if, for any linear map B of

the form 0
@ a b 0

c d 0
0 0 1

1
A
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there exists t0(t; B) such that B(Tt0(t;B)u) = Tt(Bu), and B(Tt0(t;B);t0(s;B)u) = Tt;s(Bu).

We also state a weaker property than the aÆne invariance, by restricting the invariance to the rotations

of the two �rst coordinates, and the homotheties.

De�nition 23.2 We shall say that a movie scale-space Tt is euclidean invariant if for any linear map

A =

0
@ a cos(b) �a sin(b) 0

a sin(b) a cos(b) 0
0 0 1

1
A

there exists a scale t0(t; A) such that A(Tt0(t;A)u) = Tt(Au) and A(Tt0(t;A);t0(s;A)u) = Tt;s(Au)

Note that the t0 is the same for the two de�nitions 23.1 and 23.2. It establishs the link between the

space dimension and the scale. Since in the following either the aÆne or the Euclidean invariance will be

considered, we shall always have this link. We now establish the link between time and scale, by considering

the homotheties with respect to time �. ( We accelerate or decelerate uniformly the movie.)

De�nition 23.3 For any e in IR+ we de�ne by Se the linear map Se(x; y; �) = (x; y; e�) We shall say

that a movie scale-space Tt is time scale invariant if there exists t00(t; e) such that

Se(Tt00(t;e)u) = Tt(Seu) and Se(Tt00(t;e);t00(s;e)u) = Tt;s(Seu)

Of course, the function t00 can be di�erent from the function t0 of de�nitions 23.1 and 23.2.

Now, we want to state the scale invariance, as done in chapter 20.4. We begin by noticing that the

combination of the aÆne (or Euclidean) invariance and the time scale invariance implies invariance with

respect to homotheties of IR3. That is, setting H� = �Id, we have for some function �(t; �) :

H�(T�(t;�)u) = Tt(H�u)

So, for scale invariance we could impose that the function � is di�erentiable with respect to � and that

@�=@�(t; 1) is continuous and positive. Now, we prefer to obtain the scale-invariance assumption by using

the aÆne and time scale invariances.

Lemma 20.20 implies that t0 is a function only of t and of the determinant of B. Then, setting

� = det(B), we assume that t0(t; �) is di�erentiable with respect to � at � = 1, and that the function

g(t) = @t0

@� (t; 1) is continuous for t > 0. We assume the same thing for the time: We assume that t00(t; e) is

di�erentiable with respect to e at e = 1, and that h(t) = @t00

@e (t; 1) is continuous. For the scale normalization

we must impose in addition that at least one of g(t) or h(t) is positive for t > 0. If we assume g(t) > 0,

then the scale normalization is established with respect to spatial variables. And, by an easy adaptation

of Lemma 20.20, we deduce that we can normalize the relation between t; B and t0 so that

t0 = (det(B))
1
2 t (23.1)

Thus the aÆne invariance is reduced to the property :

F (BAtB;Bp; t) = jdet(B)j 12F (A; p; tjdet(B)j 12 ) (23.2)
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If now we assume h(t) > 0, then the scale normalization is established with respect to time. And then

time scale invariance is reduced to

F (SeASe; Sep; t) = eF (A; p; et) (23.3)

Of course, since these assumptions imply a re-normalisation, we can not assume both. In the following, we

shall assume that at least one of the two conditions is achieved. We then state the regular scale invariance

axiom :

De�nition 23.4 We shall say that a scale-space Tt satisfying the AÆne or Euclidean invariance and the

time-scale invariance is scale-invariant if

(i) t0(t; �) is di�erentiable with respect to � at � = 1, and g(t) = @t0

@� (t; 1) is continuous for t > 0

(ii) t00(t; e) is di�erentiable with respect to e at e = 1, and h(t) = @t00

@e (t; 1) is continuous for t > 0.

(iii) One of the function g or h is positive, and the other one is continuous at t = 0.

(iv) t! Tt is injective.

(where t0 and t00 are these de�ned in 23.1 or 23.2 and 23.3).

For the last \geometrical axiom" we assume that the analysis is invariant under \travelling" : a motion

of a whole single picture with constant velocity v does not alter the analysis. We denote by Bv the galilean

translation operator,

Bv=(vx;vy)u(x; y; �) = u(x� vx�; y � vy�; �)

In fact Bv is an aÆne operator,

Bv=(vx;vy) =

0
@ 1 0 �vx

0 1 �vy
0 0 1

1
A

De�nition 23.5 We shall say that a movie scale-space is Galilean invariant if for any v and t, there

exists t�(t; Bv) such that

Bv(Tt�u) = Tt(Bvu); and Bv(Tt�(t;v);t�(s;v)u) = Tt;s(Bvu)

t�(t; B�v) = t�(t; Bv), and t
� is nondecreasing with respect to t.

The second part means that reversing time should not alter the analysis. Let us simplify the de�nition.

By using Lemma 20.20(i), we have

t�(t�(t; Bv); Bv) = t�(t�(t; Bv); B�v) = t�(t; BvB�v) = t�(t; Id) = t:

Repeating the argument of the step (ii) of the proof of the Lemma 20.20, we deduce from this relation that

t�(t; B(v)) = t: Thus the Galilean invariance reduces to the simpler relation (to which we give the same

name)

Bv(Ttu) = Tt(Bvu), F (tBvABv ;
tBvp; t) = F (A;p; t) 8A in S3;p 2 IR3 (23.4)

Finally, we state the morphological property, (as in de�nition 20.24):

De�nition 23.6 We shall say that a movie scale-space is contrast invariant if for any monotone and

continuous function h from IR into IR, Tth(u) = h(Ttu)

We have seen in lemma 20.16 that this implies

F (�A+ �p
 p; �p; t) = �F (A;p; t); (23.5)

for every real values �, �, every symmetric matrix A and every three-dimensional vector p.
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23.2 Optical 
ow and properties for a movie scale-space.

The aim of this section is not to do a exhaustive list of the techniques for optical 
ow estimation, but

from general considerations we will remark that lot of methods involve a step of smoothing, which could

be modelized by a scale-space. In parallel, we will notice that the contrast and the Galilean invariances

are not only compatible but somehow justi�ed by the aim of estimating an optical 
ow. This will make

more clear what motivated the choice of the properties stated in the preceding section.

The notion of optical 
ow has been introduced in the studies of human preattentive perception of

motion. The optical 
ow associates with each point of the movie, a vector representing the optical velocity

of this point. We shall denote by v the optical 
ow vector ( v = (vx; vy) is in IR
2 ), and by v the vector

(vx; vy; 1). So that if �� is the time interval between two frames, x+ v(x)�� denotes the point x shifted

by v(x) in the next frame.

The classical de�nition involves a conservation assumption, which generally is that the points move

with a constant gray level (u : the gray level value). From a discrete point of view, we are looking for v(x)

such that ([149, 172, ?, 207, 414],...)

u(x+ v(x)��) = u(x) + o(��), Du:v = 0 (23.6)

This leads us to compare the gray level value from one frame to the next and to associate the points which

have the same intensity. Considering that the single value u(x) is not a reliable information because of

the many perturbation in capturing the image, the images are often smoothed before doing this matching.

Of course, it would be possible to use an image scale-space, that is to smooth each frame independently.

But, we might probably do better by smoothing the whole movie, with interactions between the di�erent

frames. Following the idea of Marr, Hildreth, Koenderink, and Witkin many authors proposed to use the

convolution by the 3D Gaussian function Gt (the 3D heat equation). And, then they check :

(Gt � u)(x+ v(x)��) = (Gt � u)(x) (23.7)

where � denotes the convolution operator. The main problem of this formulation is that it is not equivalent

for two movies u and ~u representing the same object with di�erent constant velocity. For example, consider

that the movie ~u is an accelerated version of u, ~u(x; y; �) = u(x; y; 2�) = u(Ax). Set v1 (resp. v2) the

velocity at the point x in the movie u (resp. at the point Ax in the movie ~u). We have v2 = 2v1. Now,

after the smoothing, using the formula (23.7), v2 must satisfy

(Gt � u(A:))(x + v2��) = (Gt � u(A:))(x) (23.8)

And, we easily see that since in general (Gt � u(A:)) 6= (Gt � u)(A:), after a such smoothing we shall not

always obtain with formula (23.7), v2 = 2v1. Indeed, in the two cases, the smoothing is not done in the

same way : because this linear smoothing is not Galilean invariant. Therefore a such smoothing implies

some perturbation into the estimation of the velocities.

Adelson and Bergen [8], and Heeger [197] propose in order to avoid such problem, to design \oriented

smoothing". Such an approach yields more Galilean invariance, even if, of course, we cannot exactly

recover all the directions. (It would involve an in�nite number of �lters !)

Let us note also that the equation (23.6) is contrast invariant. Indeed one can apply a change of

contrast for the entire movie : change u into ~u = g(u), where g is strictly monotonous function from IR
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into IR, then the equation (23.6) with ~u is strictly equivalent to the equation with u :

u(x+ v(x)��) = u(x), (g(u))(x + v(x)��) = (g(u))(x)

for any strictly monotonous change of contrast g.

It is important that this property be conserved after a smoothing of the movie u. Once more if we

apply the linear smoothing de�ned by the convolution by the 3D Gaussian kernel, we lost this property.

Indeed

(Gt � u)(x+ v(x)��) = (Gt � u)(x) is not equivalent to

(Gt � (g(u)))(x + v(x)��) = (Gt � (g(u)))(x)
except for some speci�c change of contrast, or kind of motion. In order to keep the equivalence after

smoothing it is necessary that the scale-space be contrast invariant as it has been de�ned in the preceding

section.

As well known, the conservation law (23.6) only gives the component of the optical 
ow in the direction

of the spatial gradient. The other component remains indeterminated. The usual approach to determine

the optical 
ow then involves balance between the conservation law and some smoothing constraint on the


ow. Since it is not our subject here, we refer to the papers of Barron and al [55], Snyder [387], Nagel

[312], Nagel and Enkelmann [?]...

First, we can remark that most of the approaches involve derivatives of the intensity of the movie, that

by itself can justify the fact to smooth the movie before.

Secondly, the question occurs to know whether of not it is possible to smooth the movie so that

resulting trajectories (this needs to be de�ned, but at least say the level surfaces, since due to conservation

law trajectories are embedded within them) will be smoothed as well.

In conclusion, optical 
ow approaches often lead back to the problem of the de�nition of a smoothing.

And we do not know a priori how much we have to smooth : the degree of smoothing is a free scale

parameter. This indicates that a multi-scale analysis must be applied. In addition we have seen that the

conservation law justi�es the contrast and the Galilean invariances for the scale-space.

23.3 The axioms lead to an equation.

We are now going to introduce some useful notation.

1. We denote by ru = (@u@x ;
@u
@y ; 0) the spatial gradient of the movie u(x; y; �). When ru 6= 0, we

associate with Du = (@u@x ;
@u
@y ;

@u
@� ) the two normal vectors e

? and e� de�ned by

e? =
1

jruj (�
@u

@y
;
@u

@x
; 0) e� =

1

jrujjDuj (
@u

@x

@u

@�
;
@u

@y

@u

@�
;�((@u

@x
)2 + (

@u

@x
)2))

When ru is not equal to zero, fDu; e?; e�g is an orthonormal basis of IR3. To be noted that e? is

spatial, that is it does not have a temporal component.

2. Again when ru 6= 0, we then de�ne

�1 = (D2u)(e?; e?); �2 = (D2u)(e?; e�); �3 = (D2u)(e�; e�):
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Then �1 is the second derivative of u in the direction Du?, �3 in the direction of Du�, and �2 the

cross derivative in both directions.

3. Then, the spatial curvature curv(u) is given by

curv(u) =
�1
jruj :

4. The gaussian curvature G(u) is given by

G(u)
�1�3 � �22
jDuj2

At last, we introduce the \apparent acceleration", as a normalized ratius between the gaussian

curvature and the spatial curvature : given by

accel(u) =
G(u)

curv(u)

jDuj4
jruj4 = (

jDuj
jruj )

2(�3 � �22
�1

)=jruj

Theorem 23.7 Let a multiscale analysis Tt be causal (as de�ned in theorem 20.6), translation, Euclidean,

Galilean, and constrast invariant. Then, there exists a function F such that Tt is governed by the equation

@u

@t
= jruj F (curv(u); accel(u); t) (23.9)

(for the exact meaning of \governed by", we refer to the theorem 20.10.)

If in addition, Tt is aÆne, time-scale and time invariant then the only possible scale-space equations

are

(AMG)
@u

@t
= jruj curv(u) 1�q3 (sgn(curv(u))accel(u)q)+ (23.10)

for some q 2]0; 1[, or
(q = 0)

@u

@t
= jrujcurv(u) 13 (23.11)

(q = 0)
@u

@t
= jrujcurv(u) 13 (sgn(accel(u)curv(u))+ (23.12)

(q = 1)
@u

@t
= jrujsgn(curv(u))(sgn(curv(u))accel(u))+ (23.13)

In the above formulae, we use the convention that the power preserves the sign, that is aq = jajqsgn(a).
And we set x+ = sup(0; x).

Remark. Before begining with the proof of the theorem, let us notice that the terms appearing in

equation (23.10) are not de�ned everywhere. Indeed, we can write curv(u) only when jruj 6= 0, and

accel(u) only when ru 6= 0 and �1 6= 0 (then curv(u) 6= 0). So, we must specify what happens when one

of these conditions does not hold. Equation (23.10) is equivalent to

@u

@t
= jruj 2�8q

3 �
1�4q
3

1 (�1�3 � �22)
q+jDuj2q

By continuity, when �1 tends to zero, we set
@u
@t = 0.

The case ru = 0 is more problematic. We distinguish three cases :
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� If q < 1=4, the right hand side ot the equation is continuous and we obtain, when ru tends to zero,
@u
@t = 0.

� In the case q = 1=4, which is a limit case, ru does not appear in the equation. Now, the de�nitions

of �1, �2,... depend on the direction of ru. We have in this case

@u

@t
= jDuj 12 (�1�3 � �22)

1
4+

where, (�1�3 � �22) is the determinant of D
2u restricted to the orthogonal plan to Du. If jDuj 6= 0,

this determinant is de�ned independently of the �i, and the formulation makes sense. Now, if jDuj
tends to 0, by continuity we have @u

@t = 0.

� At last, if q > 1=4, Equation (23.10) has singularities since the right hand side of this equation may

tend to in�nity when ru tends to zero.

Let us now set the obtained relation between space, time and scale.

Corollary 23.8 Let A be an aÆne transform of the coordinates

0
@ a b 0

c d 0
0 0 e

1
A for any a; b; c; d; e 2 IR

and let p =
p
ad� bc. Then, the multiscale analysis de�ned by equation (23.10) sati�es A(T�u) = Tt(Au)

with

�(A; t) = (p4(
1�q
3 )e2q)t (23.14)

We see in relation (23.14), that q is a parameter which represents the respective weights between

space variables and time variables in the equation. For example, by taking q = 0, we remove the time

dependance in the equation and we obtain the purely spatial aÆne and constrast invariant scale-space (or

a slight variant). On the other side by taking q = 1, we remove the space dependance of the scale : we

obtain the equation (23.13). At last, by taking q = 1
4 , we impose an homogeneous dependance in time

and space. � = pe
1
2 t = (det(A)

1
2 ) t In that case, by formulating the equation with G(u) the gaussian

curvature of u, we obtain
@u

@t
= jDuj(G(u)+) 14 (23.15)

which is the unique contrast and 3D aÆne invariant scale-space as described in chapter 21.8.

Let us before begining the proof of the theorem give a hint on the kind of smoothing the equation

(23.10) should do on a movie. Let us decompose this equation into two parts

@u

@t
= jruj curv(u)power::: (sgn(curv(u))accel(u)power:::)+

The �rst term curv(u)power::: is roughly a term of spatial di�usion, and then tends to remove objects when

t!1. It's quite close from the di�usion term of aÆne and contrast invariant scale-space of static images.

The second term accel(u)... can be seen as the speed of this spatial di�usion. The bigger is accel,

faster the spatial di�usion is executed. As we shall see in the following the di�erential operator accel

can be interpreted as some kind of acceleration of objects in the movie. So, we can conclude that the
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equation will smooth (and then remove ) faster the object with big acceleration, than object with low

acceleration. Therefore we can expect that this will produce a discrimination between trajectories (smooth

and unsmooth).

Proof of Theorem 23.7 The proof is essentially based on algebraic calculations. Its main ingredient

is that the terms jruj3curv(u) and jDuj4G(u) = jruj4curv(u)accel(u) are aÆne covariant of degree 2,2,0
and 2,2,2, with respect to the coordinates (x; y; �).

Since the proof is quite long and technical, we refer to [15]. 2

.

23.4 Optical 
ow and apparent acceleration.

In this section, we shall give to accel(u) a cinematic interpretation as an \apparent acceleration". As

pointed before, the conservation law related to the optical 
ow �xes only the component of the 
ow in the

direction of the spatial gradient.

First, we shall see that the model (23.10) and the de�nition of accel(u) can be associated with a special

choice for the other component the apparent velocity. This choice corresponds to the a priori assumption

that only objects in translation are observed. In other terms, accel(u) gives the correct estimate of the

acceleration of objects when they are in translation motion. Secondly, we will establish a formula that

provides an estimation of accel without any calculating of the apparent velocity.

In all this section, we work only at points where ru 6= 0.

What are the possible velocities ? We de�ne the optical 
ow ~v(x; y; �) as a function from IR3 into

IR2 representing the velocity of the point (x; y) at time �. As before, we add a third component to the


ow, which will always be equal to 1 : v(x; y; �) = (~v(x; y; �); 1). We denote by W the set of \possible"

velocity vectors

W = f v = (~v; 1) for all ~v in IR2 g (23.16)

Assuming the conservation law, the optical 
ow is a vector of W which is orthogonal to Du, therefore

when Du 6= 0, it belongs to the set V :

V = f v� = jDuj
jruj (�e

? � e�); for all � 2 IR g (23.17)

All v� have their component in the direction of ru �xed to � u�
jruj . We have one free parameter � left. It

corresponds to the component of the velocity vector in the spatial direction orthogonal to ru, that is by
de�nition : e?. In the next paragraph, we de�ne � so that accel(u) is an apparent acceleration.

De�nition 23.9 De�nition of the \velocity vector". When ru and curv(u) 6= 0, we de�ne the \velocity

vector": Vby

V =
jDuj
jruj (

�2
�1
e? � e�) (23.18)
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Then, if we set v1 = (V:ru)=jruj (resp. v2 = (V:e?)=je?j), the component of V in the direction

(resp. orthogonal direction) of the spatial gradient ru, we have:

v1 = � u�
jruj v2 =

jDuj
jruj

�2
�1

(23.19)

Proposition 23.10 Let ~i;~j be an orthonormal basis of the image plane. Consider a picture in translation

motion with velocity ~v = (vx; vy) : u(x; y; �) = w(x � R �0 vx(�)d�; y � R �0 vy(�)d�). Then, at every points

such that ru 6= 0 and curv(u) 6= 0, ~v satis�es the explicit formula

(~v; 1) = V

In other terms, the de�nition (23.9) of the 
ow V is exact for any translation motion.

The de�nition of the optical 
ow that �xes one component of the 
ow corresponds to say that points

move on their space-time level surface (gray-level does not change). Fixing the other component as we do

with the de�nition 23.9 is to make the choice of a travelling direction on the space-time level surface. With

the de�nition 23.9, we choose the direction which does not change the orientation of the spatial gradient.

after

V ?

level line an unit of time

level line

?
?

?

same direction of the
spatial gradient.

V

V

Figure 23.1: According to the optical 
ow de�nition, all above drawn velocity vectors are possible, since they allow the
moving point to remain on the same level surface. One possibility to get rid of this ambiguity is choose as velocity the
direction which does not change the orientation of the spatial gradient.

Of course, in general, the velocity vector V is not equal to the real velocity for others motions than

the translations, but we shall consider it, for any type of movement. In others words we make for a point

a choice of trajectory along the the iso-surface it belongs.

We shall now look for simpler expressions and interpretation of accel(u). The next proposition shows

that �rst, accel can be seen as an apparent acceleration and second as a curvature in space-time of our

choice of trajectories along iso-surface.

Proposition 23.11 1. accel as an apparent acceleration. For all points such that ru 6= 0 and curv(u) 6=
0, let V = (vx; vy; 1) be the velocity vector de�ned as above (23.9), and v1 its component in the direction

of the spatial gradient.

accel(u) = � Dv1
D�

= �(vx @v1
@x

+ vy
@v1
@y

+
@v1
@�

)

= �((Dv1):V) = �(D(V:ru):V) (23.20)

This formula1 shows that accel(u) is the acceleration in the direction of �ru. As v1 the component

1We denote by Df

D�
the variation of f along the trajectory of the considered point ( = ((Df):V) where V is the velocity

of the point). This is generally di�erent from @f
@�

which is the partial variation of f with respect to �.
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of the velocity in the spatial gradient direction is called the \apparent" velocity, accel(u) can be called the

\apparent acceleration".

2. Let V be the \velocity vector" de�ned in De�nition 23.18, then

accel(u) =
(D2u)(V;V)

jruj (23.21)

Proof of proposition 23.11 The proof is just some simple calculations. 2

Discretization of the apparent acceleration. We shall prove some equalities allowing a robust

computation of the term accel(u). As we have seen before, the \possible velocity" vectors are in W . They

also must be orthogonal to the gradient of the movie Du, and therefore lie in V We will �rst obtain a

formula for accel(u) that involves a minization over the vectors of V , and secondly we will extend this

minimization over the vectors of W .

Lemma 23.12 Whenever the spatial gradient ru and the spatial curvature curv(u) are not equal to zero,

jruj(sgn(curv(u)) accel(u))+ = minv2V j(D2u)(v;v)j (23.22)

Proof Let us recall that the set V is the set of the vectors

v� =
jDuj
ru (�e? � e�)

We have

((D2u)v�:v�) =
jDuj2
jruj2 (�1�

2 � 2�2�+ �3) = P (�);

where P (�) is a polynomial of degree 2 in �. When jruj and curv(u), (and therefore �1) are not equal to

zero the extremum of P (�) is reached when � = �2=�1, that is when v� = V. Thus the extremum value

of P (�) is jrujaccel(u), by proposition (23.11). We obtain

extv2V(D2u)(v;v) = jrujaccel(u);

where by extv2V we denote the �nite extremal value in V .
Assume �rst that curv(u) and accel(u) have the same sign. This implies that the second order coeÆcient

and the extremum of the polynomial have the same sign. Thus the expression (D2u)(v;v) has the same

sign for all v 2 V . This yields jruj(sgn(curv(u)) accel(u)) = minv2V j(D2u)(v;v)j.
If now, curv(u) and accel(u) have opposite signs then jruj(sgn(curv(u)) accel(u))+ = 0. And

P (�) is equal to zero for at least one vector v of V . Thus, for this vector, j(D2u)(v;v)j = 0, and

minv2V j(D2u)(v;v)j = 0. So (??) is still satis�ed. 2

From a numerical viewpoint, the minimization on the set of vectors V is not easy. Indeed, �rst, the

direction of the gradient of the movie is quite unstable because ��, the time interval between two images,

can be large.

We will restrictW to the vectors that stand in a ball B(0; R) for an arbitrary R that can be chosen large

enough. In others words, we will only consider bounded possible velocities, which is not a real restriction

in pratice.
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Lemma 23.13 Let ru and curv(u) be not equal to zero, and u be C2, then the expression

minv2W(
1

��2
(ju(x� v��)� u(x)j+ ju(x+ v��)� u(x)j)) (23.23)

converges towards jruj(sgn(curv(u)) accel(u))+ when �� tends to zero.

Proof Due to the fact that v 2 W are assumed to be bounded, we have that v�� tends to 0 as �� tends

to 0. As consequence, we can restrict the proof to the case where u is a quadratic form without loss of

generality.

So, let u be a quadratic form : u(x) = 1
2A(x;x) + p:x+ c, and de�ne

F (v; h) = (ju(x� vh)� u(x)j+ ju(x+ vh)� u(x)j)=h2

We have

F (v; h) = j � p:v

h
+
1

2
A(v;v)j+ jp:v

h
+
1

2
A(v;v)j (23.24)

Let w 2 V be a vector which minimizes the min in (23.22), w 2 V then w:p = 0), thus (23.24) becomes

F (w; h) = jA(w;w)j
Therefore

lim
h!0

(minv2WF (v; h)) � F (w; h) = jruj(sgn(curv(u)) accel(u))+ (23.25)

Moreover minv2WF (v; h) exists for every h and is bounded. We denote by vh a vector of W such that

F (vh; h) = minv2WF (v; h). Since F (vh; h) is bounded and F (vh; h) � 2j(p:vh)=hj, we necessarly have
j(p:vh)j = O(h) (23.26)

Let decompose vh into two vectors : vh = v?h + hv�h such that v?h is orthogonal to p, and (23.26) leads

that jv�h j is bounded when h tends to zero. As before, we have

F (vh; h) � jA(vh;vh)j � jA((v?h + v�h ); (v
?
h + v�h ))j �

jA(v?h ;v?h ) + 2hA(v?h ;v
�
h ) + h2A(v�h ; av

�
h )j

Since jv�h j is bounded, we get limh!0 F (vh; h) � jA(v?h ;v?h )j Now, v?h is in V then jA(v?h ;v?h )j �
minv2V jA(v;v)j, so

lim
h!0

(minv2WF (v; h)) = lim
h!0

F (vh; h)

� minv2V jA(v;v)j = jruj(sgn(curv(u)) accel(u))+ (23.27)

(23.25) and (23.27) conclude the proof of the proposition. 2

In addition to a quantization problem, if we wish to recover an \acceleration" interpretation of the

term \accel" we need somehow to make appearing in the formulation of accel the velocities before and

after the considered point.

Lemma 23.14 Let u be C2, ru and curv(u) not zero, then

minv2W(ju(x� v��)� u(x)j+ ju(x+ v��) � u(x)j) = (23.28)

minvb;va2W(ju(x� vb��)� u(x)j+ ju(x+ va��)� u(x)j+��jru:(vb � va)j) + o(��2)
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Proof First, we remark by taking vb = va that the �rst part is larger than the second part of the

expression.

(ju(x� vbh)� u(x)j+ ju(x+ vah)� u(x)j+ hjru:(vb � va)j)

= j � h(Du:vb) +
h2

2
(D2u)(vb;vb)j+ jh(Du:va) + h2

2
(D2u)(va;va)j

+hjDu:(vb � va)j) + o(h2)

� h2

2
(j(D2u)(vb;vb)j+ j(D2u)(va;va)j) + o(h2)

� minv2W(j(D2u)(v;v)j) + o(h2)

= minv2W(ju(x� vh)� u(x)j+ ju(x+ vh)� u(x)j) + o(h2)

by Proposition 23.13. 2

Interpretation. We deduce from all of these propositions an explicit formula for the apparent acceler-

ation

jruj(sgn(curv(u)) accel(u))+ = (23.29)

minvb;va2W
1

��2
(ju(x� vb��)� u(x)j+ ju(x+ va��)� u(x)j+��jru:(vb � va)j) + o(1)

Of course for numerical experiments, we shall not compute the minimum for all vectors in W , but

only for the vectors on the grid. We have two di�erents parts in the second term : The �rst part is the

variations of the grey level value of the point x, for candidate velocity vectors : vb between � ��� and

� (velocity before �), and va between � and � +�� (velocity after �). These variations must be as small

as possible, because a point is not supposed to change its grey level value during its motion. The second

part is nothing but the \acceleration", or the di�erence between vb and va in the direction of the spatial

gradient jruj.

23.5 Destruction of the non-smooth trajectories.

Since trajectories are included into the spatio-temporal gray-level surfaces (level surfaces), it is interesting

to look at the evolution of such surfaces. According to the equation, the surfaces move (in scale) at each

point with a speed in the direction of ru given by curv(u)
1�q
3 (sgn(curv(u))accel(u)q)+. (We do not

consider the case where q = 0 that corresponds to a pure spatial smoothing).

Therefore any level surfaces that corresponds to an uniform motion does not move in scale (it is a

steady state for the equation AMG). Such surfaces are straight in one direction of the space-time.

We see also that parts of the surfaces where the curvature and the operator accel have opposite signs

do not move as well. Then if we take example of a uniform circle under acceleration, the level surface

corresponding to the circle moves only in one of its side.

More geometrically the smoothing can only occur at points where the level surface is strictly convex

or strictly concave. We can give an intuitive hint of why the smoothing is stopped on saddle points. This

property of the model AMG, comes directly from the contrast invariance and the causality. They imply
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accel and curv have opposit
signs : no smoothing

accel and curv have same 
signs : smoothing

Acceleration direction.

On this line, accel = 0
because the spacial gradient is
orthogonal to the acceleration.

Direction of the
spatial gradient.

curv < 0

accel>0 accel<0

Figure 23.2: The AMG model erodes a circle in acceleration only on one side. Indeed, when the curvature and the
acceleration have opposite signs, the evolution in scale is zero. (see the AMG equation).

a independent and continuous motion of level surfaces that makes that two level surfaces can not cross

them-selves. Now as shown in the picture 23.5, we can bound non-convex and non-concave part of surfaces

by straight surfaces that have no evolution, and then easily see why such parts does not move.

As a consequence, we can not expect from a such modelization to obtain a smoothing of the trajectories.

Non-smooth trajectories are not really smoothed by the model but are simply destroyed. Let us take an

example. In �gure 23.5, we display a oscillatory trajectory (in gray). The limit of a smoothing of this

trajectory should be a straight trajectory. Now using the same argument as in the preceding paragraph

the gray surface can not cross the white surface which has no evolution. Therefore the gray surface can

not become straight, because it should have to cross the white one. A such trajectory is shrunk by the

AMG model and disappears at a �nite scale of smoothing (see �gure 23.5).

We conclude that the assumptions we made for our model are incompatible with the notion of smoothing

trajectories. Indeed non-straight trajectories are not more and more smoothed, but are more and more

removed. And by consequence a small perturbation in a straight trajectory might imply a destruction of

this trajectory although it would have been kept without the perturbation.

23.6 Conclusion.

We have seen that there exists an unique aÆne, contrast and Galilean invariant scale-space for movies,

the AMG. This model does a spatial smoothing with a speed depending on the spatial curvature and an

apparent acceleration. The larger is the acceleration the larger is the speed of smoothing. Therefore, as

shown on the experiments it has a strong denoising property since the noise does not generally generate

regular trajectories.

Now we have seen that the properties asked to the scale-space are compatible with the de�nition of the

optical 
ow. In the sense that the de�nition of the optical 
ow satis�es as well the contrast, the aÆne, and

the Galilean invariance. But, the contrast invariance added to the causality (that de�nes the scale-space)

is incompatible with the notion of smoothing trajectories. In others terms, non-smooth level-surfaces (on
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x

y

θ

x

y

θ

The smoothing at point x0 can not
deplace the level surface, in -x
direction.

The smoothing can not also deplace
the level surface, in x direction.

Figure 23.3: Saddle points of level surfaces remain steady by the AMG model. Indeed, our scale-space can be seen as
a motion in scale of gray level-surfaces (isophotes). The level-surfaces that are straight in time correspond to a uniform
translation and are not changed by the smoothing. Therefore, the two thin cylindric level-surfaces drawn left and right in the
�gures above do not move in scale. Now, by the inclusion principle, two level surfaces can never cross during the evolution in
scale. Since, as displayed in the picture, it is possible to squeeze any surface saddle point between two such steady cylinders,
it follows that saddle points do not move in scale as well. This property is readable in the scale space equation : at saddle
points, the positive part of the product of the curvature and of the acceleration is zero.

y

x

θ

Figure 23.4: The level-surface in gray cannot become straight : it would have to cross the white level-surface which is
invariant by the scale space. Now, during the smoothing process, the level-surface in gray will be eroded on its convex part,
and will eventually disappear at a �xed scale : it cannot converge to any steady surface since all of them are straight in time.
Thus, trajectories that are contained in the grey level surface end being removed from the movie.
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which are contained the trajectories by de�nition of the optical 
ow) are more shrunk than smoothed. In

fact the AMG model as to be seen as a riddle that progressively remove non-smooth trajectories.

Figure 23.5: The aÆne, morphological, galilean (AMG) model used for image sequence restoration (extraction of coherent
trajectories). Above : three successive images extracted from a synthetic sequence, made of salt and pepper noise, plus
some squares placed at random locations. In addition, a little black square in uniform motion has been added in the whole
sequence. Bottom : resulting images at calibrated scale 500p (scale at which a spatio-temporal sphere of 500 pixels disapears
by AMG). Only the little black square remains, as it has a coherent motion.

References.

The Optical Flow: The problem of estimating dense velocities �eld from image sequence is a entire

research topic by itself. Since it is not the main point of this book we refer to some articles dealing with

that subject: [149, 207, 206, 8, 197, 414, 312, 26, 55, 402]... The aperture problem of the optical 
ow -

that is its non uniqueness- has appeared very early and has been often adressed by e.g. some smoothness

constraint on the 
ow it self, see e.g. [207, 313, 387, 55] or in some cases by an implicit smoothing of image

sequences see e.g. [8]...

Smoothing images sequences: Explicit smoothing of image sequences, for the purpose of estimating

the optical 
ow or for other purposes has �rst appeared as a direct extension of the 2D smoothing to the

3D. That is no speci�c rule was given to the time. In that sense most all 2D �lters can be adapted to

N-dimensional data, and in particular the images sequences.

In [8], it is implicitely proposed to tune the sequence �ltering to few di�erent orientations in space-time.

All designed �lters give di�erent answers, answers that were used as basis of the optical 
ow estimates.

Even if it was impossible to use a �lter for all spatio-temporal directions, the idea to orient the �ltering in

the direction of the (unknown) motion was there.

In [15] the basic principles explained in this chapter were proposed. In particular the "Galilean Inva-

riance". Surprisingly, these formal principles yield an anisotropic di�usion oriented, for each point, in the
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Figure 23.6: AMG model (AÆne, Morphological, Galilean) used for image sequence \denoising". Above : three successive
images extracted from a sequence. Second row : resulting images at calibrated scale 100 pixels (scale at which a spatiotemporal
sphere of 100 pixels disapears). Third row : Some noise has been added to the original sequence (25% of the pixels are
corrupted). Bottom : resulting images at scale 100.

direction of the (unknown) optical 
ow [15, 184]... Several other works have introduced other smoothings

depending on its aim and where the time plays a speci�c rule. In [295] the author formalizes a smoothing

compatible with the aim of estimating depth from an image sequence. In [318] and one could �nd adapta-

tions of the 2D linear smoothing theory to an anisotropic di�usion in the direction of an estimated optical


ow.
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Chapter 24

Numerical Implementations.

24.1 Digital level sets and curves.

Depending on the expected precision of the level set or level curve representation, there exists di�erent

strategies concerning their extraction. We address here the simplest, by considering a pixel precision. For

a higher precision, a model of interpolation between pixel values can be chosen. Candidates of such models

stand e.g. in Shannon interpolaton, Lipschitz interpolation, bi-linear interpolation, etc...

We consider the digital image as a array which associates to each pixel a gray level value.

The level sets. The upper or lower level set of level � can be simply obtained by thresholding the

image at the level �. The upper level set is the set of the pixels that have a gray level higher or equal to

�. (And conversely for the lower).

The Connected components of level sets To extract the connected components of the level sets,

we have �rst to de�ne what is meant by connected. As well known, there exist two kinds of connectivity

in a square-based grid : The 4-connectivity and the 8-connectivity (see �gure 24.1).

One can arbitrary choose one or the other, being aware that this choice violates the symmetry u! �u.
Choosing the 8-connectivity for the upper level sets, means in fact considering the digital image as

an upper semi-continuous function. This function is constructed by putting the gray level value of each

pixel to all the point enclosed in it and by setting the pixel boundaries to the sup of the adjacent pixels

values. Similarly, choosing the 4-connectivity for the upper level sets, yields to a lower semi-continuous

representation of the image.

Once the choice of connectivity is done, extracting the connected composants of the level sets is strait-

Figure 24.1: Connectivity on a grid. Left, 4-connectivity that is each pixel is connected to the ones directly
up, left, right and down. Right, 8-connectivity.
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ghforward.

The level lines extraction. The level lines are de�ned as the connected components of the boundaries

of upper the level sets. Assuming that the connected components of the level sets have been extracted,

one has then just to follow their boundaries.

Note that the boundaries of connected components of a level sets are of two kinds. There is in one

hand the exterior envelop, in the other hand there are the boundaries that envelop the holes of the level

set (if it has some).

Assume that we follow one of boundary (exterior or a hole) of the set, in a way so that the set is located

on the left when facing the path direction. The path can be followed without ambiguity until a junction.

In case of 4-connectivity (resp. 8), the most left (resp. right) direction of the junction should be chosen.

24.2 Median Filter

General median �lter

Many di�erent digital implementations of the median �lter have been proposed. If we forget problem

of time computation, the simplest implementation is as follow:

Given a mask (support of the measure) with a odd number of pixels: 2N +1, the median value at pixel

p is the \N" largest value among the pixel in the mask centered at p. Note that partial sorting, using e.g.

quick-sort, can provide such a value. More clever ways to extract the median value, with a limited number

of comparaisons, have been proposed depending on the chosen mask.

median �lter on a disk

The problem is to approximate adequatly a disk by a mask made of pixels. One strategy is to use a

weighted median �lter. We de�ne the weight of a pixel as the area of the intersection of the pixel itseld

and the disk. Then the median value is the smallest value such that the sum of the weight of the pixels

with smaller value passes 50% of the total weight.

In case of binary images, (or shapes), as remarked in Chapters 2 and 3, the weigthed median �lter is

equivalent to a linear convolution with the weighted masked followed by a threshold. Figure 24.2 illustrated

this fact with a Gaussian weighted median �lter.

Implementing the median �lter using the mean curvature motion...

In any cases, the median �lter su�ers two drawbacks:

First, it is too local to catch small curvature. Indeed, it is impossible to make the distinction between

a straight line and a slightly curved line if one looks locally and with a pixel precision.

Second, it generates quantized evolutions due to the quantization of space (pixels) and of the gray

levels.

As we have seen, iterated median �lter converges towards viscosity solution of the curvature motion.

One can therefore consider to use the curvature motion equation as an implementation of an \ideal" median

�lter.

24.3 Extrema Killer : Maxima and Minima Killer.

The \Extrema Killer" has been formaly de�ned in section 7.4. Its formal de�nition involve an in�nite set

of structuring elements, which makes its formal de�nition not in practical use. We have shown that it
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Figure 24.2: "Gauss convolution+threshold=median". A convolution with a gaussian followed by a threshold yields a
weighted median �lter. The alternate iterations on a binary shape of the linear smoothing and of a 1=2 threshold emulate the
mean curvature motion. Left : original picture, then, result of the convolution with a small gaussian kernel, in continuation
threshold at the mid-level of the blurred image, right : result after few iterations of this alternate process.

e�ect is just to remove the small (in area) connected components of the upper level sets for the maxima

killer ( and lower level sets for the minima killer).

Therefore an idea to implement the maxima killer it is then to start at local maxima and to go down

until the area is achieved. Going down means to add adjacent pixels to a stack starting a the local

maximum. The stack represents then a region of pixels which could be interpreted as a local \mountain" if

the gray levels are interpreted as altitudes... Now, problem occurs when the stack meets an saddle points.

An saddle point can be where two \mountains" meets. And the stack of the two \mountains" should

be added, which would mean that the stack corresponding to each local maxima should be computed in

parallel.

A strategy to avoid that is then to stop the increase of the stack when it meets an saddle point, that is

in other words, when an adjacent pixel to the stack has a larger value than the min value of the pixels in

the stack. The pixels in the stack are then set to this min value, correponding to the value of the saddle

point. As consequence the saddle point is no more a saddle point, and these pixels will continue to be

treated later, see Figure 24.3

An implementation of the maxima killer is then as follow:

1. Choose a connectivity 4 or 8 and an area A (number of pixels).

2. Start from a local maximum pixel. (The value of the pixel is larger or equal to its neighbors, and at

least strictly larger than one of them). Let � be its gray level. Initialize a stack with this pixel.

3. Among the neighbor pixels of all pixels of the stack, choose the one that has the largest value. Add

it to the stack.
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Asked area

Saddle point

b)a) c) d)

Figure 24.3: Extrema killer implementation. This �gure illustrates the implementation of the maxima killer for one
dimensional image. (As described in the text, the algorithm is similar in dimension two). The size asked is displayed in
bottom. The algorithm starts with a local maxima, a). And, it goes down in gray level until either the size is achieved or a
saddle point is touched. In both case, the pixels are set to the achieved gray level value, b). In the shown case, the area is
not achieved, but it will be so, when the next maxima will be treated, c) and d). The minima killer works symmetrically.

4. If this pixel has a value less than �, set � to its value, else goto 6

5. If the stack is smaller than A goto 3.

6. Set all pixels of the stack to the value �. Empty the stack.

7. If it remains a local maxima pixel not treated, �nd it and goto 2.

The symmetrical implementation will perform the minima killer. The extrema killer made of an maxima

and a minima killer de�nes in fact two possible �lters depending on which of the maxima or the minima

killer is done �rst. A symmetrical version of the extrema killer can be found in [289, ?]

24.4 Finite Di�erence Scheme (FDS) for the Curvature Motion
and AMSS.

We shall consider the classical discrete representation of an image u on a grid ui;j = u(i; j), with 1 � i � N ,

1 � j � N . The image is the union of the squares centered at the points (i; j), and the brightness in each

square is constant : ui;j . Each one of the squares is called pixel (for \picture element").

24.4.1 Case of Mean curvature motion.

We start with the \Mean curvature motion" equation (M.C.M.) given by

@u

@t
= jrujcurv(u) = u2yuxx � 2uxuyuxy + u2xuyy

u2x + u2y

In order to discretize this equation by �nite di�erences we shall introduce an explicit scheme which

uses a �xed stencil of 3x3 points to discretize the di�erential operators. For simplicity, we assume that the

spatial increment �x is the same in the x-axis and the y-axis. We approach the �rst derivatives ux and

uy in a point (i; j) of the lattice by using the following linear scheme:

(ux)i;j =
2(ui+1;j � ui�1;j) + ui+1;j+1 � ui�1;j+1 + ui+1;j�1 � ui�1;j�1

4�x
+O(�x2)
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λ3
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Figure 24.4: A 3x3 stencil

(uy)i;j =
2(ui;j+1 � ui;j�1) + ui+1;j+1 � ui+1;j�1 + ui�1;j+1 � ui�1;j�1

4�x
+O(�x2)

jrui;j j = ((ux)
2
i;j + (uy)

2
i;j)

1
2

When jruj 6= 0, we can denote by � the direction orthogonal to the gradient of u, one easily sees that

jrujcurv(u) is equal to u��. De�ning � as the angle between the horizontal axe and the gradient, we have

� = (� sin �; cos �) = (
�uyq
u2x + u2y

;
uxq
u2x + u2y

); and

u�� = sin2(�)uxx � 2 sin(�) cos(�)uxy + cos2(�)uyy: (24.1)

We want to write u�� as a linear combination of the values of u on the �xed stencil 3�3. Of course, the
coeÆcients of the linear combination may depend on �. Because the direction of the gradient (and then �)

is de�ned modulo �, by symmetry we must assume that the coeÆcients of points symmetrical with respect

to the central point are the same (see �gure 24.4).

In order to be consistant, we must �nd �0; �1; �2; �3; �4, such that

(u��)i;j =
1

�x2
(�4�0ui;j + �1(ui+1;j + ui�1;j) + �2(ui;j+1 + ui;j�1)

+�3(ui�1;j�1 + ui+1;j+1) + �4(ui�1;j+1 + ui+1;j�1)) +O�x2 (24.2)

We write

ui+1;j = ui;j +�x(ux)i;j +
�x2

2
(uxx)i;j +O�x3;

and the same relation for the other points of the stencil. By feeding (24.2) with these relations and by

using relation (24.1), we obtain four relations between our �ve coeÆcients

8>><
>>:

�1(�) = 2�0(�) � sin2 �
�2(�) = 2�0(�) � cos2 �
�3(�) = ��0(�) + 0:5(sin � cos � + 1)
�4(�) = ��0(�) + 0:5(� sin � cos � + 1)

(24.3)

There remains one degree of freedom for our coeÆcients given by the choice of �0(�). We shall choose

�0(�) following the stability and geometric invariance criteria. Denoting by uni;j an approximation of

u(i�x; j�x; n�t) we can write our explicit scheme as

un+1
i;j = uni;j +�t(un��)i;j (24.4)
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Note that this scheme can be rewritten as un+1
i;j =

P1
k;l=�1 �k;lu

n
i+k;j+l where the �k;l satisfy

P1
k;l=�1 �k;l =

1

The following obvious lemma shows a general condition to have L1 stability in this kind of schemes:

Lemma 24.1 Let a �nite di�erence scheme given by

T (u)i;j =
1X

k;l=�1
�k;lui+k;j+l

where �k;l satisfy
P1

k;l=�1 �k;l = 1. Then the scheme satis�es L1 stability if and only if �k;l � 0 for

any k; l.

Proof. If �k;l � 0 for any k; l, set min = infi;jfui;jg, max = supi;jfui;jg and take a point (i; j). Then

L1 stability follows from the inequality:

min =

1X
k;l=�1

�k;lmin �
1X

k;l=�1
�k;lui+k;j+l = (Tu)i;j �

1X
k;l=�1

�k;lmax = max

On the other hand, if there exists �k0;l0 < 0 then choosing u and (i; j) such that ui+k0;j+l0 = min and

ui+k;j+l = max for any other k; l, we obtain

(Tu)i;j =

1X
k 6=k0;l6=l0

�k;lmax+ �k0;l0min = max+ �k0;l0(min�max) > max

And therefore L1 stability is violated.

2

Following this lemma, in order to have L1 stability in the scheme (24.4) we must seek for �0 such that

�1; �2; �3; �4 � 0 and (1� 4�0
�x2 ) � 0. Unfortunately, because of the relations between our coeÆcients, it is

impossible to obtain these relations, except for particular values of � = (0; �4 ;
�
2 ; :::). Indeed, We remark

that for � in [0; �4 ],

�1 � �2 and �3 � �4

But

�2(�) � 0) �0(�) � cos2(�)

2

�4(�) � 0) �0(�) � 1� sin(�) cos(�)

2

So, we cannot �nd �0(�) satisfying both inequalities, since

cos2(�)

2
� 1� sin(�) cos(�)

2

Then, if we choose �0(�) � cos2(�)
2 we have �4(�) very negative. If we take �0(�) � 1�sin(�) cos(�)

2 we obtain

�2(�) very negative. We prefer to choose �0 between both functions, and then to have �2 and �4 negative,

but slightly. (see �gure 24.5)

On the other hand, we impose to �0 the following geometrical requirements
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0.25

0.3
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�0(�)

�

Search of the optimal �0

0:5� cos2(�) + cos4(�)
cos2(�)=2

(1� sin(�) cos(�))=2

Figure 24.5: The middle curve represents the choice of the function �0 of formula 24.6. The upper function
represents the smallest possibility for achieving for all angles �2 � 0, the lower one represent the largest
possibility for achieving �4 � 0. Therefore, it is not possible to satisfy both conditions. We then have
chosen the simplest trigonometric function which is in between these two constraints.

(i). Invariance by rotation of angle �
2

�0(� +
�

2
) = �0(�)

(ii). Pure di�usion in the case � = 0; �2 ; :::

�0(0) = 0:5

This condition implies that �2(0) = �3(0) = �4(0) = 0

(iii). Pure di�usion in the case � = �
4 ;

3�
4 ; :::

�0(
�

4
) = 0:25

This condition implies that �1(
�
4 ) = �2(

�
4 ) = �4(

�
4 ) = 0

(iv). Symmetry with respect to the axes i+j and i-j,

�0(
�

2
� �) = �0(�)

We remark that by the above conditions it is enough to de�ne the function �0(�) in the interval [0; �4 ]

because it can be extended by periodicity elsewhere.

We have tested two choices for the function �0(�) using as basis the trigonometric polynomials. The

�rst one corresponds to an average of the boundary functions:

�0(�) =
cos2(�) + 1� sin(�)cos(�)

4
(24.5)
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As we shall see this choice is well-adapted to the \aÆne curvature motion" equation. However, if we

extend this function by periodicity, the extended function is not smooth at �
4 . If we seek for a smooth

function for �0(�), we must impose �
0
0(0) = �00(

�
4 ) = 0. The simplest polynomial, of degree as small as

possible, satisfying the above conditions, and between both boundary functions is

�0(�)) = 0:5� cos2(�) sin2(�) (24.6)

We deduce the other �'s values using (24.3). For instance with the above choice of �0(�) we have

8>><
>>:

�1(�) = cos2(�)(cos2(�)� sin2(�))
�2(�) = sin2(�)(sin2(�)� cos2(�))
�3(�) = cos2(�) sin2(�) + 0:5 sin(�) cos(�)
�4(�) = cos2(�) sin2(�) � 0:5 sin(�) cos(�)

When jruj = 0, the direction of the gradient is not known. Therefore the di�usion term u�� is not

de�ned. We choosed to replace this term by half the laplacian. (The laplacian corresponds to the sum of

the two second derivative in orthogonal directions, whereas the di�usion term u�� is the second derivaty

in one). However others possibilities will be considered in section 24.4.5. So the FDS scheme for the mean

curvature motion is, (iterations start with u0 as initial function)

Where jruj � Tg

un+1 = un +
�t

�x2
(�4�0ui;j + �1(ui+1;j + ui�1;j) + �2(ui;j+1 + ui;j�1)

+�3(ui�1;j�1 + ui+1;j+1) + �4(ui�1;j+1 + ui+1;j�1))

Otherwise,

un+1 = un +
1

2

�t

�x2
(�4�0ui;j + ui+1;j + ui�1;j + ui;j+1 + ui;j�1)

The iteration step scale ( �t
�x2 ) has to be chosen as large as possible in order to reduce the number of

iterations. However, there is a natural upper bound of 1
2 . Indeed, denoting s this step, and considering

the following image u0i;j = 0 for all i; j, except for i = j = 0 where we set u00;0 = 1. Then second formula

yields u10;0 = 1 � 2 � s. The point (0,0) should not become smaller than its neighbors, and so u10;0 � 0

which yields s � 1=2.

Experimentaly we have noticed that if we impose

�t

�x2
� 1

2
; (24.7)

then the algorithm has a good behaviour and remains stable in the sense that there exists experimentally

a (small with respect to 255) � > 0 such that for any n 2 IN and (i; j),

��+ infi;jfu0i;jg � uni;j � supi;jfu0i;jg+ �

The threshold on the spatial gradient norm : Tg has been �xed experimentally to 6 for 0 to 255

images.
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Figure 24.6: Curvature motion �nite di�erence scheme and scale calibration. Image �ltered by curvature motion at scales
1, 2, 3, 4, 5. In order to give a sound numerical meaning to the scale, a calibration of the numerical scales (number of
iterations) is made in such a way that a disk with radius t shrinks to a point at scale t.

Figure 24.7: Curvature motion �nite di�erence scheme applied on each level set separately, at scales 1, 2, 3, 4, 5. The
processed image is then reconstructed by the threshold superposition principle. In contrast with the same scheme directly
applied on the image, this scheme yields a fully contrast invariant smoothing. However, a comparison with Figure 24.6 shows
that the resulting images are very close to each other. This shows that the contrast invariance is almost achieved when
applying the �nite di�erence scheme directly on the image. The experiment makes sense if the original image is of good
quality, that is relatively smooth and with no strong oscillations. In that case, it can be considered as a distance function
to each one of its own level sets. As we shall see in Figure 24.10, if the initial image is noisy, the di�erence between both
methods can be huge.

24.4.2 Case of the AMSS model.

We will use the ideas developed in the above section. We rewrite the AMSS equation as:

@u

@t
= (jruj3curv(u)) 13 = (u2yuxx � 2uxuyuxy + u2xuyy)

1
3 (24.8)

We remark that jruj3curv(u) = jruj2u�� where � corresponds to the direction orthogonal to the gradient.
Therefore, in order to discretize this operator, it is enough to multiply the discretization of u�� presented

in the above section by jruj2. We choose �0(�) given by (24.5) because it corresponds to a trigonometric

polynomial of degree two and then multiplying it by jruj2 the coeÆcients �i = jruj2�i; i = 0; 1; 2; 3; 4, are

polynomials of degree two with respect to ux and uy. Indeed, we obtain for � 2 [0; �4 ]

F. Guichard, J-M. Morel, Image Analysis and PDE's 309



CHAPTER 24. NUMERICAL IMPLEMENTATIONS.

Figure 24.8: Iterated median �lter with approximately calibrated scales 1, 1.5, 2, 2.5, 3.

(jruj2u��)i;j = 1

�x2
(�4�0ui;j + �1(ui+1;j + ui�1;j) + �2(ui;j+1 + ui;j�1)

+�3(ui�1;j�1 + ui+1;j+1) + �4(ui�1;j+1 + ui+1;j�1)) +O�x2

where �0; �1; �2; �3; �4 are given by

8>>>><
>>>>:

�0 = 0:25(2u2x + u2y � uxuy)
�1 = 0:5(2u2x � u2y � uxuy)
�2 = 0:5(u2y � uxuy)
�3 = 0:25(u2y + 3uxuy)
�4 = 0:25(u2y � uxuy)

Finally, the �nite di�erence scheme for the A.M.S.S. equation is

un+1
i;j = uni;j +�t(jrunj2un��)

1
3

i;j (24.9)

We have tested this algorithm and we have noticed that in this case the condition for the experimental

stability (in the sense presented in the above subsection) is

�t

�x2
� 1

10

Remark. The �nite di�erence schemes presented above are consistent and we conjecture the conver-

gence. Contrast invariance are obtained asymptotically by taking a little time step �t. The experimental

results presented in �gures ?? and ?? have been obtained by using these schemes with �x = 1 and �t = 0:1

in the case of mean curvature motion and �t = 0:01 in the case of aÆne curvature motion. One has to

take �t that small because unless experimental stability is achieved with �t � 0:1, the experimental aÆne

invariance experimentally needs �t < 0:05 (see 24.11).

24.4.3 Numerical normalization of scale.

(or Relation between scale and the number of iterations).
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The case of the curvature motion. Setting the inter-distance between pixel �x to 1, the scale achieved

with N iterations is simply N=�t. Now, the scaling is arbitrary.

A good way to normalize the scale is to de�ne the scale by the radius of a disapearing circle. The

boundary of such a circle move at a speed equal to the curvature that is the inverse of the radius. We have

for a disk of radius R(t)
dR(t)

dt
= � 1

R(t)

which yields
1

2
(R2(0)�R2(t)) = t

the disk disappears in scale, when R(t) = 0 that is at scale t = R2(0)=2: This last relation gives the scale

normalization: In order to achieve the normalized scale T (at which any disks (or any shapes included

in) of radius less or equal to T has disapeared), we have the equation scale t = T 2=2, and the number of

iterations needed equal to

N = T 2=2�t

The case of AMSS We can perform similar calculations. The radius of an evolving disk satis�es

dR(t)

dt
= � 1

R(t)
1
3

which yields
3

4
(R

4
3 (0)�R

4
3 (t)) = t

The disappearing time is therefore t = 3
4R

4
3 . As for the curvature motion, we de�ne the normalized scale

T at which any disks of radius less or equal to T has disappeared. In order to achieve scale T , the number

of iteration needed is

N =
3

4�t
T

4
3

24.4.4 The Evans Spruck extension and contrast invariance.

Both schemes (M.C.M and A.M.S.S) presented above are only asymptotically contrast invariant. But,

numerically they are not. Indeed, we have seen that a contrast operator can not create new gray level.

Now, starting with a binary image u0 and applying a scheme de�ned by such formula

un+1 = un +�t(:::)

we can not be sure that un+1 is also a binary image.

A natural idea to overcome this problem is the following. Starting with a binary image: apply the

scheme until the expected scale is achieved, then binarize the obtained image (just thresholding). This of

course works only for binary images, however the Evans Spruck extension (see section 8.3) gives us the

key to extend this to general images.

The contrast invariance can be fully obtained, by applying the process of each level set separatly. The

procedure is then the following :

We start with a image u0 and we construct its version at scale t : u(t;x).
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Initialization : set u(t;x) = 0;8x; t

For each �, in increasing order

� Set v(x) the caracteristic function of the level set � of u0. (that is equal to 1 inside the level

set, 0 outside.)

� Apply on v the MCM or AMSS FDS-scheme until scale t. This yields the images w(t; :).

� Set u(t;x) = � at each point (t;x) where w(t;x) � 0:5

with respect to the simple FDS scheme, this clearly multiplies the number of needed computation, since

the AMSS or MCM have to be solved for each level ! However, The resulting images are more closed to

the theoritical solutions of these equations.

Note that explained in chapter 7, the extension is not unique. The preceding scheme corresponds to

the u.s.c. extension. One could also use the l.s.c extension for which the last step has to be changed into

� Set u(t;x) = � at each point (t;x) where w(t;x) > 0:5.

Of course, these two extensions di�er. This can be easily seen in case of image that di�ers when

considered as u.s.c. and l.s.c. An example, is the chessboard image (see �gure24.9). The image data does

not say anything about the value of the function at the borders and corners. If the image is considered as

u.s.c. then the borders values is white, conversely it would be black when considered as l.s.c. In pratice,

the FDS does not care about the borders and corners values, since it is to rough.

However, making the Evans Spruck extension of the FDS scheme in fact implies an implicit choice for

these values.

Figure 24.9: The chessboard dilemna. Left: chessboard image. Next: result with the �nite di�erence scheme (FDS,
Chapter 24) of the curvature motion, applied up to a �xed scale. The creation of a new gray level proves that the scheme is
not fully contrast invariant. Indeed, by Proposition 7.4, a contrast invariant operator does not create new levels. The new
observed gray level corresponds to an average of the existing ones, black and white. The next two images are obtained by the
Evans-Spruck extension of the curvature motion, �rst under the assumption that the image is u.s.c. and second under the
l.s.c. assumption. Thus, the schemes are in both cases fully contrast invariant and are extensions of the curvature motion as
speci�ed in Theorem 8.16.

24.4.5 Problems at extrema.

For the M.C.M or the A.M.S.S. occurs the problem to de�ne numerically the equation when jruj = 0. For

the �rst the right part of the equation is simply not de�ned, for the second by continuity, one could set
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jrunj2un��)
1
3
i;j = 0. Now, numerically, this would implies that isolated black or white pixels will not change

!

As a consequence, the MCM and AMSS �nite di�erence schemes have a slightly bad behaviour at

extrema. In the �gure 24.10, we added to the image a strong salt and pepper noise. On a such image

more than a quarter of the pixels are local extrema. The extra-di�usion produced on these points by the

laplacian (as suggested in the preceding sections) gives strange structures. We show some ways to avoid

this spurious behavior :

� One can �rst zoom by 2 the image by duplicating pixels. This however multiplies by 16 the number

of computations.

� One can �rst remove extrema that should anyway theoritically disappear.

� One can use the Evans-Spruck extensions. This multiplies then the number of computations by the

initial number of gray-level. (e.g. 256).

24.4.6 Conclusion on �nite di�erence schemes.

We have seen that standard �nite di�erence schemes can not handle properly the invariance properties

satis�ed by the equations.

1. There is no �nite di�erence scheme that insures the monotonicity. This leads to slightly oscilatory

solutions.

2. It is not fully contrast invariant. We see appearance of a slight blur around edges. And, spurious

di�usion around the extrema. Extrema problem can be handle by treating them in a di�erent way :

that is 
attening them immediately by applying the extrema killer �rst.

In order to be fully contrast invariant, the only way we know is then by applying the equation to the

characteristic functions of all the level sets. This multiplies the total computation by the number of

di�erent gray level in the original image (often 256 !).

Now, as shown in �gure 24.10, standard scheme with combination with the extrema killer might give

results \good enough" for some applications.

3. The worse drawback is in fact the aÆne invariance, (or the Euclidean invariance for the curvature

motion). Since the scheme works on a grid, motion of the level curves is quantized to square steps.

As consequence : we can not garanty the aÆne invariance and a motion proportional to the curvature

power one third.

The only way to cope this problem is to go out of the grid, which is the aim of the section 24.6.

24.5 Curve evolution.

Given a list of points x(n) approximating in a polygonal way a curve, we would like to de�ne the curvature

evolution of it. As we have seen, the curvature evolution is equivalent to an intrinsic heat equation on the

curve itself.
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Figure 24.10: Various implementations of curvature motion on a noisy image. Middle : scale 2, Right : scale 3. From top
to bottom : �nite di�erence scheme (FDS), then FDS applied on the image previously zoomed by a factor 2, FDS applied
on the image after its extrema have been "killed" (the reference area is given by the area of the disk vanishing at the desired
scale), FDS applied separately on each level set, with application of the threshold superposition principle. Time computations
on a Pentium 200, for achieving scale 3, and per millions of pixels, are respectively from above to below : 23.75 s, 1 mn 32s,
24.1 s, 10 mins. The third scheme o�ers a good compromise between time computation and results.
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Figure 24.11: Finite di�erence scheme for AMSS. Left : Original noisy image of letters, middle : same image without the
extrema with area less than 80 pixels (extrema killer). Right : result of AMSS at calibrated scale 4.

As seen, in chapter 2, the convolution by a Gaussian can be well approximated by the iteration of

a symmetric and positive kernel. Denoting by s the arc length. We choose the simple following kernel:

k(0) = 0:5, k(�D) = 0:25, k(D) = 0:25 and k(s) = 0 everywhere else. D is a distance parameter controlling

the precision of the scheme. The smaller it is the better, but higher number of iterations is then needed.

We set:

x(t+ 1; :) = k � x(t; :)

That is, the point number n is changed by

x(t+ 1; n) = x(t; n) + 0:25 �D � ( (x(t; n+ 1)� x(t; n))

jx(t; n+ 1)� x(t; n)j +
(x(t; n� 1)� x(t; n))

jx(t; n� 1)� x(t; n)j )

Numerical stability problems might happen when two consecutive points have a small distance between

them (typically smaller than D). One way is to keep one point every two that are too close to each other.

This scheme has been used to generate Figure 3.6.2.

To be noted that this simple scheme is very rough. For better precision, one can still implement the

classical convolution by the gaussian kernel and iterate it with re-parametrization of the curve. This scheme

can be extended to the aÆne shortening by replacing the arc length by the aÆne arc length. Obtaining

that way an monotonous and aÆne invariant scheme seems to be quite diÆcult.

24.6 AÆne Plane Curve Evolution Scheme.

The idea here is to go with the curve evolution instead of going with the image evolution. In a sense,

we go in the converse way than Osher and Sethian idea. Indeed, they proposed in order to simulate the

evolution of a curve by the curvature motion to make evolving its distance function by the image version of

the equation. Here we do the other way around : we extract all level lines of the image. We then compute

their evolutions by the aÆne shortening. And, at last reconstruct an image out of them. This image is

then the AMSS evolution of the original.

To be noted that since the curves are extracted from an digital image, they are initialy embeded into

the image grid. We can therefore represent each curve by a polygone. Secondly, the aÆne shortening will

be executed by alternating an aÆne erosion and an aÆne dilation.

F. Guichard, J-M. Morel, Image Analysis and PDE's 315



CHAPTER 24. NUMERICAL IMPLEMENTATIONS.

A fast algorithm

In general, the aÆne erosion of X is not simple to compute, because it can be strongly non local. However,

if X is convex, then it has been shown in [298] that it can be exactly computed in linear time. In practice,

c will be a polygon and the exact aÆne erosion of X |whose boundary is made of straight segments and

pieces of hyperbolae| is not really needed ; numerically, a good approximation by a new polygon is enough.

Now the point is that we can approximate the combination of an aÆne erosion plus an aÆne dilation of

X by computing the aÆne erosion of each convex component of c, provided that the erosion/dilation area

is small enough.

The algorithm consists in the iteration of a four-steps process :

1. Break the curve into convex components. This operation permits to apply the aÆne erosion

to convex pieces of curves, which is much faster (the complexity is linear) and can be done simply in

a discrete way. The main point is to take into account the �nite precision of the computer in order

to avoid spurious (small and almost straight) convex components only due to numerical artifacts.

2. Sample each component. At this stage, points are removed or added in order to guarantee an

optimal representation of the curve that is preserved by step 3.

3. Apply discrete a��ne erosion to each component.

4. Concatenate the pieces of curves obtained at step 3. This way, we obtain a new closed curve

on which the whole process can be applied again.

The curve has to be broken at points where the sign of the determinant

di = [Pi�1Pi; PiPi+1]

changes. Numerically, we use the formula

di = (xi � xi�1)(yi+1 � yi)� (yi � yi�1)(xi+1 � xi) (24.10)

Since we are interested in the sign of di, we must be careful because the �nite numerical precision of the

computer can make this sign wrong. Let us introduce the relative precision of the computer

"0 = maxfx > 0; (1:0� x) 	 1:0 = 0:0g: (24.11)

In this de�nition, � (resp. 	) represent the computer addition (resp. substraction), which is not as-

sociative. When computing di using (24.10), the computer gives a result ~di such that jdi � ~dij � ei,

with

ei = "0

�
jxi � xi�1j(jyi+1j+ jyij) + (jxij+ jxi�1j)jyi+1 � yij

+ jyi � yi�1j(jxi+1j+ jxij) + (jyij+ jyi�1j)jxi+1 � xij
�
:

In practice, we take "0 a little bit larger than its theoretical value to overcome other possible errors (in

particular, errors in the computation of ei). For four-bytes C 
oat numbers, we use "0 = 10�7, whereas
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the theoretical value (that can be checked experimentally using (24.11)) is "0 = 2�24 ' 5:96 10�8. For

eight-bytes C double numbers, the correct value would be "0 = 2�53 ' 1:11 10�16

The algorithm that breaks the polygonal curve into convex components consists in the iteration of the

following decision rule :

1. If j ~dij � ei, then remove Pi (which means that to new polygon to be considered from this point is

P0P1:::Pi�1Pi+1:::Pn�1)

2. If j ~di+1j � ei+1, then remove Pi+1

3. If ~di and ~di+1 have opposite signs, then the middle of Pi; Pi+1 is an in
exion point where the curve

must be broken

4. If ~di and ~di+1 have the same sign, then increment i

This operation is performed until the whole curve has been visited. The result is a chained (looping)

list of convex pieces of curves.

� Sampling

At this stage, we add or remove points from each polygonal curve in order to ensure that the Euclidean

distance between two successive points lies between " and 2" (" being the absolute space precision parameter

of the algorithm).

� Discrete aÆne erosion

This is the main step of the algorithm : compute quickly an approximation of the aÆne erosion of scale

� of the whole curve.

The �rst step consists in the calculus of the \area" Aj of each convex component Cj = P j
0P

j
1 :::P

j
n�1,

given by

Aj =
1

2

n�2X
i=1

h
P j
0P

j
i ; P

j
0P

j
i+1

i
:

Then, the e�ective area used to compute the aÆne erosion is

�e = max

�
�

8
;min

j
Aj

�
:

We restrict the erosion area to �e (which is less than � in general) because the simpli�ed algorithm for aÆne

erosion (based on the breaking of the initial curve into convex components) may give a bad estimation of

the continuous aÆne erosion+dilation when the area of one component is less than the erosion parameter.

The term �=8 is rather arbitrary and guarantees an upper bound to the number of iterations required to

achieve the �nal scale.

Once �e is computed, the discrete erosion of each component is de�ned as the succession of each middle

point of each segment [AB] such that

1. A and B lie on the polygonal curve
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2. A or B is a vertex of the polygonal curve

3. the area enclosed by [AB] and the polygonal curve is equal to �e

These points are easily computed by keeping in memory and updating the points A and B of the curve

plus the associated chord area.

Notice that if the convex component is not closed (which is the case if the initial curve is not convex),

its endpoints are kept.

� Iteration of the process

To iterate the process, we use the fact that if E� denotes the aÆne erosion plus dilation operator of

area �, and h = (hi) is a subdivision of the interval [0; H ] with H = T=! and ! = 1
2

�
3
2

�2=3
, then as we

are going to show further,

E(h1�h0)3=2 ÆE(h2�h1)3=2 Æ ::: ÆE(hn�hn�1)3=2

�
c0

�
�! cT

as jhj = maxi hi+1 � hi ! 0, where cT is the aÆne shortening of c0 described above by (13.1).

� Comments

The algorithm takes a curve (closed or not) as input, and produces an output curve representing the

aÆne shortening of the input curve (it can be empty if the curve has disappeared) . The parameters are

� T , the scale to which the input curve must be smoothed

� "r, the relative spacial precision at which the curve must be numerically represented (between 10�5

and 10�2 when using four bytes C 
oat numbers).

� n, the minimum number of iterations required to compute the aÆne shortening (it seems that n ' 5

is a good choice). From n, the erosion area � used in step 3 is computed with the formula

�2=3 =
� � T 4=3

n
:

Notice that thanks to the �=8 lower bound for �e, the e�ective number of iterations cannot exceed

4n.

� R, the radius of a disk containing the input curve, used to obtain homogeneous results when pro-

cessing simultaneously several curves. The absolute precision " used at step 2 is de�ned by " = R"r.

The algorithm has linear complexity in time and memory, and its stability is ensured by the fact that

each new curve is obtained as the set of the middle points of some particular chords of the initial curve,

de�ned themselves by an integration process (an area computation). Hence, no derivation or curvature

computation appears in the algorithm.
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Figure 24.12: AÆne scale space of a \hand" curve, performed with the alternate aÆne erosion-dilation scheme. (scales 0,
1, 20, 400). Experiment : Lionel Moisan.
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References.

Planar curve motion by morphological schemes

The fully invariant aÆne curve evolution geometric algorithm which we presented was found by Moisan

[298]. Its implementation for all level lines of an image was realized in Koep
er [254]. Cao and Moisan [?]

have generalized this curve evolution approach to curvature motions at arbitrary speed of the curvature.

They succeeded in numerically moving curves at velocities proportional to the power 10 of curvature.

Lisani et al. [268] use the geometric scheme for fast recognition and image comparison algorithms.

Representation of an image by its level lines

This is a very recent way of representing an image probably because it is or was computationaly expensive.

Caselles et al. [83, 86] have introduced this representation as very adequate for shape and occlusion

analysis. Monasse and Guichard propose a way to compute in a computationaly fast and eÆcient way the

set of level lines organized as a tree. We did not present here their Fast Level Set Transform [300, 301] but

have described their implementation of the extrema killer and their comments on 4- and 8-connectivity.

Di�erence schemes for the curvature motion and the AMSS The presented di�erence scheme

follows mainly [190], improved in Alvarez et al. [18]. This scheme is somehow optimal among the ro-

tationally invariant numerical schemes for curvature motion and the AMSS. Now, this presentation is

speci�c of those two motions, while other many authors have analysed more general nonlinear anisotropic

di�usions in image processing, namely Acton[7], Kacur and Mikula [235, 236]. Weickert and the �Utrecht

school [320, 420, 429, 428] adress many aspects of implementation of nonlinear scale spaces, namely speed,

paralelism and robustness. Crandall and Lions [114] also proposed a �nite di�erence scheme for mean

curvature motion, valid in any dimension. Sethian's book [383] explains how to implement fast the motion

of a curve or surface by the so called "level set method", where a distance function to the curve or surface

is evolved. Dynamic programming allows a fast implementation (the "fast marching method").

Morphological schemes for the mean curvature motion

The �rst selfconscious implementation of the curvature motion as a sup-inf operator was made by Catt�e

et al. [93]. Now, Merriman, Bence and Osher [291] discovered that the gaussian weighted iterated median

�lter implements the mean curvature motion. Since the median �lter is usually implemented by superposi-

tion principle as a sup-inf operator, we might say that most implementations of the iterated median �lter

are numerical schemes for the mean curvature motion. Those schemes are more than inaccurate, though,

since only integer speed are allowed. Due to this inaccuracy, and as shown in Gan and Mao [168], discrete

median �lters are nilpotent and attain �xed points.
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L1 convergence, 36

L1
C norm, 36

L1C norm, 36

Tt, 237

Tt;s, 237

F set of functions, 99

T set of subsets of IRN , 99

IB, 111

, 78

accel, 290

aÆne distance to a plane set, 162

aÆne erosion or dilation, 175

aÆne intrinsic heat equation, 94

aÆne invariance (of an image evolution equation),

93

aÆne invariance of a scale space, 248

aÆne invariance of Matheron operator, 175

aÆne invariance of the aÆne curve scale space,

94

aÆne lenght, 94

aÆne scale-space of shapes, 275

aÆne structuring element, 163

AÆne, Morphological, and Galilean Invariant Scale-

space for movie, 290

alternate schemes, 181

AMG, see AÆne, Morphological, and Galilean In-

variant Scale-space for movie

AMSS, 261

existence of viscosity solutions, 219

uniqueness of viscosity solutions, 211

AMSS - AÆne Morphological Scale Space, 200

AMSS 3-D, 267

anti-curvature, 262

Apparent acceleration, 290, 296

approximate solutions, 208

approximation of the L1 space by the space of

continuous functions, 37

approximation theory for the mean curvature mo-

tion, 217

asymptotic behavior, 142, 143

arbitrary dimension, 154

Catte-Dibos scheme, 149

median �lter, 146

canny edges detector, 50

causal, 240

characteristic points, 89

classical solution, 200

consistency with an equation, 207

contrast change, 65, 69, 99

contrast invariance, 246

contrast invariant, 99

contrast invariant classes of functions, 65

convergence

L1, 36

uniform, 36

convergence lemma towards viscosity solutions.,

208

convolution, 38

curvature, 83

curvature equation for curves, 91

curvature equation for images, 92

curvature equations, 261

curvature equations for curve, 92

curvature motion (equivalence of curve and image

motion), 93

curve

de�nition, 77
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Jordan, 77

PDE, 92

Di�erential operators

Apparent Acceleration

Interpretation, 292

Apparent acceleration

De�nition, 290

di�erential operators

anti-curvature, 262

curvature, 83

divergence, 83

gradient, 33, 82

laplacian, 33

principal curvatures, 85

directional average, 49

directional heat equation, 49

divergence, 83

edge, 50

edge detection, 50

elliptic di�erential operator, 199

euclidean invariance, 245, see Isotropic

euclidean norm, 33

euclidean parameterization of a curve, 77

Evans Spruck extension, 115

Evans-Spruck extension for periodic functions and

sets, 117

extrema killer (de�nition), 108

extrema of curvature, 89

family of image smoothing operators, 237

function

gaussian, 38

pseudo-radial, 45

radial, 45

semi-continuous, 74, 118

weight, 131

function operator, 99

function operators

dilation, 124

erosion, 124

functions F , 240

fundamental theorem, 240

Galilean invariance, 287

gauss function, see gaussian kernel

Gaussian Curvature, 291

gaussian kernel, 38

geometric invariance axioms, 244

Giga Goto theorem, 266

global inclusion principle, 273

gradient, 82

Grayson theorem, 90

grey level translation invariance, 242

heat equation, 38

existence and uniqueness of solutions, 35

Hopf-Lax formula, 127

image extension, 35

image reconstruction from the level sets, 66

implicit function theorem, 84

inf-sup form of sup-inf operators, 115

in�nitesimal generator, 239

in
exion points, 89

Intrinsic heat equation, 90

Invariance

Galilean, 287

isotropic, 141

isotropy, 274

Jordan curve, 77

k-measure, 131

LC space of functions, 35

L1C space of functions, 36

L1C space of functions, 35

l.s.c, 118

laplacian, 33

mean value, 33

level line, 82

level sets, 65

linear smoothing, 33

local comparaison principle, 171, 207, 239

locality Lemma, 172
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localization lemma for aÆne invariant operators,

173

lower median operator, 133

Matheron operators, 111

Matheron theorem, 112

mean curvature, 158

mean curvature motion

existence of viscosity solutions, 217

uniqueness of viscosity solutions, 211

mean value, 33

median

function operator, 132

set operator, 131

upper & lower, 133

value, 135

median

function operator, 132

median value, 131

median value of a function u in a set B, 137

monotone operator, 99

multiscale features, 90

nonnegative matrix, 199

norm

set semi-norm, 126

normal 
ow, 92

normalisation of scale, 247

normalization of scale Lemma, 249

operator

\supinf", 112

consistency, 207

contrast invariance

de�nition, 99

function, 99

isotropic, 141

local comparaison principle, 207

monotone, 99

set, 99

translation invariance, 111

Optical 
ow

Conservation law, 288

Generalities, 288

parabolic equation, 199

parameterization of a curve, 77

PDE

Hopf-Lax formula, 127

aÆne and contrast invariant N-D, 267

AMSS, 261

curvature equations, 261

curvature equations for curve, 92

curvature equations N-D, 266

heat equation, 38

intrinsic heat equation, 90

principal curvatures, 85

projection matrix, 266

pseudo inverse of nondecreasing function, 70

pseudo-radial function, 45

pyramidal structure, 237

radial function, 45

recursivity, 237

example, 126

regular, 239

regularity, 274

rescaled operator, 142

rescaling, 248

rescaling function, 247

scalar curvature, 78

scalar product, 33

scale invariance, 247

scale space theory and edge detection, 52

Scale-space

Galilean Invariance, 287

Movie

Axioms, 285

Equations, 290

scale-space, 237

aÆne invariance, 248

causal, 240

contrast invariance, 246

euclidean invariance, 245

grey level translation invariance, 242
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local comparaison principle, 239

regular, 239

scale invariance, 247

translation invariance, 245

Schwartz class, 38

semicontinuous functions, 118

set monotone operator, 99

set of structuring elements IB, 112

set operator, 99

set operator (deduced from a contrast invariant

function operator), 101

set operators

closing, 123

dilation (Dt), 123

erosion (Et), 123

opening, 123

Shape local inclusion principle, 273

Shape preserving principles, 273

Shape scale-space, 273

smoothing kernel, 45

solution

viscosity, 200

contrast invariance, 215

special aÆne invariance, 161

structuring element, 123

supinf operator, 112

Taylor formula, directional Taylor formula, 48

tensor product, 246

threshold function, 101

Time scale invariance, 286

transition �lters, 237

translation (of a set, of a function), 111

translation invariance, 111, 245

u.s.c, 118

uniform consistency, 207

uniform continuity (preservation by contrast in-

variant operator), 101

uniform continuity of approximate solutions, 216

uniform continuous (de�nition), 101

uniform convergence, 36

uniform local comparaison principle, 207

uniqueness of viscosity solutions, 211

upper median operator, 133

upper semi-continuous function (u.s.c.), 114

Velocity vector, 292

viscosity solution, 200

viscosity solution and contrast invariance, 215

weight function, 131

zero-crossings of the laplacian, 50
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