GPU Histogram Computation

Oliver Fluck: Shmuel Aharoh Daniel Cremers Mikael Roussoh
Siemens Corp. Research Siemens Corp. Research Siemens Corp. Research Siemens Corp. Research

1 Introduction representing intensity distributions for inside and outside the seg-
mented regions. In order to obtain a relieable representation, we
. . , . need to update the distributions frequently while the level set front
Due to the immense computational power of today’s graphics pro- nronagates. The GPU calculation for both histograms takes 1.6 ms
cessors (GPU), general purpose computation on GPUs has becom, ttal and allows us to keep the entire level set computation on the
a vivid research area. The performance of algorithms running on Gpy, |n contrast to that, transfering the level set surface to CPU
GPUs highly depends on how well they can be arranged to fit and memory and writing computet histograms back to the GPU, would

exploit the processors single instruction multiple data (SIMD) ar- |aa4 to’a total time of 5.8 ms until the segmentation process can
chitecture. Many tasks that are considered simple on a CPU S“Chproceed with the next iteration.

as grouping and counting of values of a domain for statistical pur-
poses appear rather challenging to be implemented on a GPU.

In this poster, we present a method to compute histograms in shader
programs. On the example of image segmentation, we show that
our method enables iterative and histogram guided algorithms to
run efficiently on graphics hardware without costly CPU interven-
tion. Using an image segmentation example, we demonstrate how
the algorithm can be optimized for smaller regions of interest inside
larger domains.

2 Exposition Figure 1: Schematic illustration. The occurrence of a value inside a
tile is counted (circled number) in one particular texel of each tile.

) ) ) ) ) Tiles are summed up to a global histogram by applying a texture
We store input data in a 2D texture with power of two dimensions reduce operation.

and subdivide the domain into evenly sized and independent regions
(tiles). The tile size depends on the histogram granularity. By using
a RGBA texture, a histogram ofbins leads to a tile size of log)

x log(n) texture elements (texels). The number of tiles equals the
input texture size divided by the size of the tiles. Using this scheme
many local histograms will be computed in parallel. Each texel of
a tile counts the occurrence of values inside its tile for a particular
histogram interval (bin). The according bin is determined using tex-
ture coordinates. Thus, after a single pass ofripg(og(n) texture
fetches per texel, every tile represents a local distribution of values
in its region. To obtain a global distribution of values inside a do-

main, we combine all tiles to a single global histogram. Therefore, ot is created by applying max operator to the level set function
we sum up tiles by applying a texture reduce operation in a fashion during logfr) pixel wise texture reduce passes. Thus, the tile map
similar as presented in [Krueger and Westermann 2003]. During is created with a few inexpensive passes '
each rendering pass, we halve texture size in each dimension. The '
ith texel of a local histogram is summed up with thetexel of the

three - in positive texture coordinate direction - adjacent tiles. This .
way, alln x n tiles of a domain are combined to a final histogram 3 Conclusion

after logf) passes.

As a demonstration, we implement our histogram algorithm in the \ye have introduced an algorithm to compute histograms on graph-
data term_of a level set formulation [K'”.‘ et al. 2002]. GP_U IM- " jcs cards. We showed, using an image segmentation example, that
plementations of level sets have been introduced to provide real 5, method allows iterative and data dependent processes to run

time user interaction by outperforming CPU imple_mentations_ by efficiently on GPUs without data transfer between CPU and GPU
a factor of 15 [Lefohn et al. 2003]. However, previous GPU im- mory.

plementations don't provide methods regarding more sophisticated
data terms for higher reliability.

With our method, histograms for inside and outside the segmented
regions can be updated quickly while the level set front propagates. References

We measure timings on a 2.8GHz Pentium IV CPU and a nVIDIA

GeForce 7900 GT, PCl-Express graphics card. The segmentationk 3. AsHeRr, J., YEzzI, A., CETIN, M., AND WILLSKY, A.

In cases where counting is desired only inside small regions of in-
terest (such as in our segmentation example), we can further de-
crease the algorithm’s execution time:

' A domain subdivided into mt m tiles will be represented by a his-
togram tile map of nx m texels. Each texel contains the maximum
value of the level set function over all values inside a tile. Each
positive value inside the map activates the tile it represents. For
disabled histogram tiles, the counting fragment program will not be
executed. This technique decreases the number of expensive tex-
ture fetches during the actual calculation significantly. The tile map

runs inside an image of 2%856 pixels with two 64-bin histograms 2002. Nonparametric methods for image segmentation using in-
— - formation theory and curve evolutiotEEE Internation Confer-
*e-mail: oliver.fluck@siemens.com ence on Image Processing, Rochester .
Te-mail: shmuel.aharon@siemens.com
*e-mail: dcremers@cs.uni-bonn.de KRUEGER J.,AND WESTERMANN, R. 2003. Linear algebra op-
Se-mail: mikael.rousson@siemens.com erators for gpu implementation of numerical algorithrACM

Transactions on Graphics (TOG) 22, 3, 908-916.

LEFOHN, A. E., Kniss, J. M., Hansen, C. D., AND
WHITAKER, R. T. 2003. Interactive deformation and visualiza-
tion of level set surfaces using graphics hardwadEEE Trans.
on Misualization and Computer Graphics, 75—82.



