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Abstract

Mean shift is a popular approach for data clustering, however, the high computational complexity of the mean
shift procedure limits its practical applications in high dimensional and large data set clustering. In this paper,
we propose an efficient method that allows mean shift clustering performed on large data set containing tens
of millions of points at interactive rate. The key in our method is a new scheme for approximating mean shift
procedure using a greatly reduced feature space. This reduced feature space is adaptive clustering of the original
data set, and is generated by applying adaptive KD-tree in a high-dimensional affinity space. The proposed method
significantly reduces the computational cost while obtaining almost the same clustering results as the standard
mean shift procedure. We present several kinds of data clustering applications to illustrate the efficiency of the
proposed method, including image and video segmentation, static geometry model and time-varying sequences
segmentation.

Categories and Subject Descriptors (according to ACM CCS): 1.4 [Computing methodologies]: Image Processing

and Computer Vision—Applications

1. Introduction

Mean shift is a well established method for data set clus-
tering, it has been widely used in image and video seg-
mentation [CMO02] [WTXC], object tracking [CRMO03], im-
age denoising [BC04], image and video stylization [DS02]
[WXSC04], and video editing [WBC*05], it also has been
extended to geometry segmentation [YLL*05] and 3D re-
construction [WQO04]. Mean shift works by defining a Gaus-
sian kernel density estimate for underlying data, and clusters
together the points that converge to the same mode under
a fixed-point iterative scheme. Although mean-shift works
well for data clustering and obtain pleasing clustering re-
sults, however, the high computational complexity is the one
of main difficulties to apply mean shift to cluster large data
set, especially for those situations where the interactive and
even real time clustering processing are preferred.

The complexity for the standard mean shift procedure
is O(tdn®), where n is the number of the data points, the
T is the number of the iterations for mean shift cluster-
ing procedure, and d is the dimension of the point. The
most expensive computing is to find the closest neighbor-
hood for each point in the data space, which is a multidi-
mensional range searching method. Even using one of the
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most popular nearest neighbor search method, the ANN
method [AMN™98], given a query point ¢ and € > 0, a
(1 +€) approximate nearest neighbor of g must be com-
puted in O(cy¢logn) time, where ¢, ¢ is a factor depend-
ing on dimension d and €. Therefore, when processing large
data sets, the high time complexity leads to serious difficulty.
Although many acceleration techniques have been proposed
[EDD03, GSMO03, YDGDO03, WBC*05, CP06, PD07, FK09],
further improvements are still desirable for both perfor-
mance and clustering quality.

In this paper, inspired by the fast high-dimensional filter-
ing method using Gaussian KD-trees [AGDL09], we pro-
pose an efficient paradigm for mean-shift procedure com-
puting. Our method is based on following key observation,
since the mean shift procedure clusters those points that are
feature similar, while there are many clusters of points which
are high similar in feature, it is wasteful to perform mean
shift procedure for each point to converge to the mode. Thus
we first cluster the original point set into clusters based on
feature similarity using KD-tree [AGDLO09], and obtain the
Gaussian weighted samples of the original data set, which is
the reduced feature space for approximating original point
set. Then instead of computing mean shift directly on origi-
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nal individual points, we compute on the samples (which is
of a much smaller number) to obtain the modes of the sample
space. Finally we find the closest mode for each point based
on Gaussian weighted feature similarity, and construct the
final clustering results.

As mean shift is performed on a greatly reduced space
(typically thousands of times smaller than original data
set), and all stages of our algorithm are data-parallel across
queries and can be implemented the algorithm in CUDA
[Buc07], we can cluster the large data set in real time or at in-
teractive rate (for a video with 1.44 x 107 pixels in Figure 5).
Furthermore, as the sample space is an approximate feature
space of the original data set generated using the proposed
Gaussian weighted similarity sampling, our method receives
accurate results comparable with the standard mean shift that
performed on the original data set. In addition, our method
uses only an extremely small fraction of resources, for both
time and memory consuming.

This paper is organized as follows. In section 2, we give
the related work, section 3 is the main part of our paper, we
describe the proposed fast mean shift clustering method. In
section 4, we give the applications of our method and com-
parisons with the related mean shift acceleration methods,
and we conclude in section 5.

2. Related work

Mean shift was first presented by Fukunaga and Hostetler
[FH75], and it was further investigated by Cheng et al.
[Che95] and Comaniciu et al. [CMO02]. Mean shift is now a
popular approach for data set clustering, and has been widely
used in image and video segmentation [CMO02] [WTXC], ob-
ject tracking [CRMO3], image denoising [BC04] and image
and video stylization [DS02] [WXSCO04], it also has been
extended to geometry segmentation [YLL*05] and 3D re-
construction [WQO4], and many image and video editing
methods are based on the mean shift clustering preprocess-
ing [WBC*05].

One of the main difficulties in applying Mean Shift based
clustering to large data sets is its computational complexity.
For each Gaussian weighted average iteration, the complex-
ity of brute force computation is quadratic in the number
of data points. There are several existing techniques which
have been developed to increase the speed of Mean Shift.
Comaniciu and Meer [CM02] used axis-aligned box win-
dows, however, this produces many limit points and adjacent
points are merged as a post-process. Dementhon [DeMO02]
used multiscale structure to accelerate video segmentation.
Yang at al. [YDDDO3] applied the Fast Gauss Transform
to speed up the sums of Gaussians in higher dimensions
that were used in the Mean Shift iteration. This method is
effective for Gaussian weighted average with large filter-
ing radius, however, performing weighted average in a rel-
ative small radius does not benefit much from this method.

Georgescu et al. [GSMO3] accelerated mean shift by per-
forming fast nearest neighbor search with spatially coherent
hash tables. Carreira-Perpindn [CP06] studied four acceler-
ation strategies and found that spatial discretization method
(using uniform down sampling schemes) performed best.

Paris and Durand [PDO07] applied the sparse representa-
tion of the density function to accelerate mean shift, similar
to the bilateral filtering [PDO06], they first binned the fea-
ture points in a coarse regular grid, and then blurred the
bin values using a separable Gaussian. The computational
complexity and memory scale exponentially with the dimen-
sion d. Wang et al. [WLGRO7] used a dual tree to speed
up Mean Shift by computing two separate trees, one for the
query points, and one for the reference points. Compared to
the methods of [YDDDO03] [PD07], this method maintains
a relative error bound of the Mean Shift iteration at each
stage, leading to a more accurate algorithm, however, the
performance of this method is much lower than [YDDDO03]
[PDO7]. More recently, Freedman and Kisilev [FK09] pro-
posed a sampling technique for Kernel Density Estimate
(KDE), they constructed a compactly represented KDE with
much smaller description complexity, this method greatly
accelerates the mean shift procedure, however, the accuracy
of the mean shift clustering depends on the number of the
random samples.

Many methods have applied Gaussian KD-Trees for
accelerating image and video processing. Adams et al.
[AGDLO09] applied Gaussian KD-Trees for accelerating
high-dimensional filtering includes the bilateral image fil-
ter [TM98], bilateral geometry filtering [JDDO03, FDCOO03]
and image denoising with nonlocal means [BCMO05]. We
borrow some ideas from [AGDL09] for adaptive clustering
in this paper. Xu et al. [XLJ*09] used K-D Tree to build
adaptive clustering for accelerating affinity-based image and
video edit propagation. As an alterative, Xiao et al. [XNT10]
used quadtree based hierarchical data structure to accelerate
edit propagation. KD-Trees have been widely used in ac-
celerating graphics rendering [HSA91], the real-rime KD-
tree construction on graphics hardware also have been pro-
posed [HSHHO7] [ZHWGOS]. Our method applies Gaus-
sian KD-Trees [AGDLO09] to build a hierarchy and clustering
for the large data set to accelerate the mean shift comput-
ing. Compared with Paris and Durand [PD07], whose com-
plexity is exponential in the dimension d of the point, our
tree-based mean shift provides with excellent performance,
as its runtime and memory consuming both scale linearly
with dimension of the points. With the samples generated
using similarity-based KD-tree clustering, our method ob-
tains more accurate results than [FK09] when using similar
number of samples.

3. Fast mean shift clustering

We first give brief review of mean shift, then we describe
the proposed fast mean shift clustering method, including
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data set clustering preprocess using KD-tree, sample feature
space computing, mean shift modes computing in reduced
feature space, modes interpolation. We also present the com-
plexity analysis and GPU implementation of the proposed
algorithm.

3.1. Review of mean shift

Given point data set {x; }!_, where x; € R is d dimensional
feature vector, each is associated with a bandwidth value
h; > 0. An adaptive nonparametric estimator of this data set

is defined as
2
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The expression (3) shows that at location x the weighted
average of the data points selected with kernel K is propor-
tional to the normalized density gradient estimate obtained
with kernel K. The mean shift vector thus points toward the
direction of maximum increase in the density. The follow-
ing gradient-ascent process with an adaptive step size until
convergence constitutes the core of the mean shift clustering
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The starting point of the procedure x; can be chosen as
points x;, and the convergence points of the iterative pro-
cedure are the modes of the density. The all points that con-
verge to the same mode are collected and considered as a
cluster. More details are described in [CMO02].
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3.2. Fast mean shift computing

The weighted average of expression (4) is the most time con-
suming computing of mean-shift when the number »n of the
data set is large (for example, 10° pixel in video streaming).

Given an arbitrary set of point {xi}?zl with feature vector of
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d dimension, a naive computation of mean shift vector ex-
pression (4) would take O(dnz) time, as every point interacts
with every other point. A simple way to accelerate the mean
shift procedure is using the weighted average of the closest
points of x;, and the bandwidth value /; can be set depend-
ing on the neighborhood size. However, using this scheme,
we have to perform the nearest neighborhood search, which
is also a time consuming operation for large data set, espe-
cially for data set with high dimension vector.

To accelerate the weighted average operation of expres-
sion (4), instead of computing expression (4) for individ-
ual points in the data set, we approximate original data set
by piece-wise linear segments in the feature space based on
similarity measure, each represented by a cluster of nearby
pixels, and the size of each cluster is adapted to the size of
the similar feature space. The generated clusters can be con-
sidered as the samples of the data set, which is of a much
smaller number than the number of point. Then instead of
solving the mean shift procedure (4) directly on individ-
ual points as done in previous methods, we solve it on the
samples based on Gaussian weighted average on a neigh-
borhood, finally we interpolate the clustering results to the
original data set.

We cluster the point data based on similarity measure be-
tween the points, which is defined in the feature space of
input data set. We define the similarity between the points
using both spatial locality p and value v of point, which con-
stitutes the feature space of the input data set. For example,
in image case, point x is a pixel with its position p = (x,y)
and its color value v = (r, g, b) (Lab color space). Thus, each
point x is a five-dimensional feature vector whose axes are
x=(p,v) = (x,y,1,8,b). As stated in [APO8] [XLI*09], the
similarity measure (or affinity) between two points can be
defined as z;; = exp (— Hxi —Xj | ‘ 2) , the position p and value
v also can be weighted by parameters. For video, the feature
vector can be expanded to include the frame index # and mo-
tion estimation ¢ of point x, and feature vector is expressed
as seven-dimensional vector x = (p,v,t,¢). For image, we
compute the mean shift clustering procedure (4) in feature
space where each point is associated with both spatial local-
ity p and value v.

3.2.1. KD-Tree adaptive clustering

We apply KD-tree to adaptively cluster the data set in the
feature space, and subdivide finely in the regions where the
point feature vectors are different, subdivide coarsely in the
regions where the feature vectors are similar. In image KD-
tree clustering, for example, we subdivide the homogeneous
regions coarsely, while subdivide the edges regions finely.
Then by representing each cluster with a sample, we can re-
ceive an accurate approximate feature space of the original
data set with much less samples.

KD-tree clusters the data set based on feature space in a
top down way. Starting from a root cell, the top rectangular
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cell represents all points in the data set, we recursively split a
cell to two child cells adaptively along a dimension that is al-
ternated at successive tree levels. Similar to [AGDL09], each
inner cell of the tree T represents a d-dimensional rectangu-
lar cell which stores six variables: the dimension d along
which the tree cuts, the cut value T, on that dimension,
the bounds of the cell in that dimension 7, and Tmax, and
pointers to its children 7j,¢; and T,;gp,s. Leaf nodes contain
only a d-dimensional point which is considered as a sample.
This sample represents the points that contained in the leaf
cell, the kd-tree stores m samples {y j };.":] of original data
set in d-dimensions, one sample point per leaf. The samples
{y j};n:l construct the reduced feature space of the original

data set.

As illustrated in Figure 1, we adaptively cluster the im-
age into clusters. The image is adaptively clustered, where at
the edge regions, more samples are placed, while at the ho-
mogeneous regions, coarse samples are placed. The sample
factor can be changed by the stopping criteria. We present
two thresholds for stopping criteria, one is the size of the
cell, other one is the variance G of the similarity measure z;;
between the points in the cell. By using these two thresh-
olds we can generate different sampling factor for image as
well as respecting for the feature distribution of the data set.
Figure 1 shows some cluster results with different sampling
factor.

Figure 1: Image sampling using adaptive KD-tree. (a) Orig-
inal image (636 x 844), (b) image clustering with 1,050 sam-
ples, (c) image clustering with 11,305 samples.

3.2.2. Sample feature space computing

We obtain the samples {y j}T:I in d-dimensions, which are
adaptive samples of the feature space of original data set.
m . .
The samples {y j}j:1 can be considered a approximate fea-
ture space of original space. To make a more accurate ap-
proximate feature space, we scatter the point x; to the sam-
ples {y j}j:1 based on the affinity similarity z;; between the
point x; and sample y ;, and obtain an affinity similarity based
sample space.

Similar to the splatting stages in [AGDL09], we scatter
each point x; to its nearest neighborhood N (x;) in samples
{y j};.”:l (We apply the KD-tree to search the high dimen-

sion nearest neighborhood N (x;) for point x;), and compute

an affinity based sample y;’-‘ for each sample y;. The affinity
based sample y}f can be considered as the weighted similar-
ity average for those feature vector {x;} that is most similar
to the sample y;. We compute and sum the affinity similar-
ity z;; between x; and each y; € N (x;) to obtain the affinity
based sample y} of the sample y;: y; =y} +zijx;, then yj is
normalized by the sum of the similarity z;;. The generated y}‘
is a feature vector of d-dimensions. The affinity based sam-
ple {yj };”:1 is a more accurate samples of the original point
set, and will be used in the mean shift clustering procedure
and modes interpolation. Then for each sample, we store two
vectors, one is feature vector y;, the other is the affinity based
sample y7j.

3.2.3. Mean-shift modes computing

After obtaining the affinity based samples {y7 }/; for orig-
inal data set feature space, instead of computing the mean
shift clustering procedure in the original space, we com-
pute the mean shift procedure on the reduced feature space
{yj}j1- Note for each iteration, we find for each sample y
the nearest neighborhood N (y}") in the sample space, and
perform following gradient-ascent process with an adaptive

step size until convergence:
w112
* uji—y;
Z}’?‘EN(yf)yig< K H)

o J=12,
Y “j*y,‘*H
vieN(;) S\ || R

Iterating an infinite number of times the expression (5) is
guaranteed to bring u; to the mode in reduced feature space.
Practically, in the implementation, we find that the mean-
shift clustering procedure (5) tends to converge in a very
small number of steps, typically around 6.

(6]

uj+1 =

As the number of the samples {yj}ljil is much smaller

than the number of the points {x;};_,, that is m < n, the
computational complexity of mean shift vector computing
has been reduced significantly. Furthermore, the mean shift
is performed in the affinity similarity based reduced feature
space, which leads to more accurate modes. We apply the
KD-tree to perform the high dimension nearest neighbor re-
search for each iteration computing. After performing mean
shift iterations for each sample y;’f, we receive the modes
{zx};_, of the reduced feature space {y;};,nzl, which are

the approximate modes of original data set. All samples con-
verging to the same mode are clustered together.

3.2.4. Modes interpolation

To interpolate the modes computed in the reduced feature
space to the original data set, one naive approach is to find
a nearest mode z; € {z;};_, for each point x;. This can be
considered as a hard clustering. As an alternative method, we
give a soft clustering method which generates more smooth
clustering results. This method works by applying weighted
based interpolation.
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The mode interpolation works as follows, for each point
xi, we find the nearest samples N (x;) in {y} }'].":] . Each sam-
ple y; € N(x;) converges to a mode u;, that is, yj — uj.
Based on the affinity similarity z;; between x; and y’j'-‘, by nor-
malizing the weights z;;: ). ;z;j = 1, the final mode are com-
puted as: x; — };_ z;juj. When we compute the weighted

m

mode interpolation over all the samples {y;‘} similar

1
to [FK09], we will receive the cartoon-like cluste]ring results.

Note that in the interpolation stage, the size of the N (x;)
is not always the same as that performed in the sample space
computing stage. In our experiment, we set neighborhood
size between 10 and 20, and receive satisfied results. As
the samples are significantly smaller than the number of the
original point set, using the GPU accelerated KD-tree near-
est neighborhood search, the search performing is fast. In
addition, since we determine the final mode for x; based on
the weighted similarity, the results are more accurate. Figure
3 shows the results using the two different mode selection
methods, one is the nearest-sample based mode selection,
the other is weighted modes interpolation. As illustrated in
Figure 3, using the weighted modes interpolation, we receive
smoother and more accurate results.

©

Figure 2: Image segmentation results comparison. (a) The
original image, (b) the result using nearest sample based
mode selection, (c) the result using weighted modes inter-
polation.

3.3. Complexity analysis and GPU implementation

Our algorithm accelerates the mean shift procedures by com-
puting a lower resolution feature space and then interpo-
lating the clustering result to the original data set. By us-
ing a KD-tree structure, we construct a reduced feature
space for input n d-dimensional data points with m fea-
ture vector: {x;}7_; — {y’;};n:l, and m < n . Assuming
the depth of Gaussian tree is O (logm), the complexity of
tree construction is O (ndlogm). Performing nearest neigh-
borhood for each of the n input points to scatter values into
the tree takes O (n(logm+d)) time. If performing 7 iter-
ations for mean shift clustering procedure, computing the
mean shift iteration in the reduced space with m feature
vector takes O (Tm(logm+d)) time. In the last stage, we
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up-sample clustering results to the original data sets which
takes O (n(logm+d)) time. Recall that m < n, this results
in a total complexity O (dnlogn). Compared with standard
mean shift procedure with complexity O(tdn®), the pro-
posed method significantly accelerated.

Applying the method presented by [ZHWGO08], a KD-tree
is efficiently built on the GPU for the input points with high-
dimensional feature vector. Three stages of our proposed al-
gorithm, including the points scattering, mean shift cluster-
ing procedure in the reduced space, and modes interpola-
tion, all incorporate the high dimensional nearest neighbor
search. As the high dimensional nearest neighbor search can
be implemented in parallel using GPU [AGDL09], thus, our
method is even fast to process large data set with high di-
mensional feature vector. We implement the proposed algo-
rithms in CUDA, and run it on an NVIDIA GeForce GTX
285 (1GB) graphics card. We observe a typical speedup of
20x over our single-threaded CPU implementation running
on an Pentium(R) Dual-Core CPU E5200@2.50GHz with
2GB RAM, which allows our method to be applied in an
interactive mean shift clustering framework for moderate-
sized data set.

4. Applications and comparisons

We apply the proposed fast mean shift clustering to fol-
lowing applications, image segmentation, video segmenta-
tion, geometry model segmentation, and animated object
segmentation. We also present the comparison results on
both performance and segmentation quality with the most
related methods. Our approach is implemented using C++
on a machine equipped with Pentium(R) Dual-Core CPU
E5200@2.50GHz with 2GB RAM. The GPU acceleration is
based on CUDA [ http: http://www.nvidia.com/CUDA ]
and run on a NVIDIA GeForce GTX 285 (1GB) graphics
card.

4.1. Image segmentation

We apply the proposed fast mean shift method for image
segmentation. All pixels that converge to same mode are
collected together and are considered to be the same seg-
ment. In image case, we define the feature vector of pixel
x;j = (Oppi,Ceci) comprising its position p = (x,y) and its
color value ¢ = (r,g,b) (Lab space) which can be weighted
by parameters 6, and o.. Thus, each pixel x; is a five-
dimensional vector.

Figure 3 presents the segmentation results generated ap-
plying our fast mean shift method based on different sam-
pling factor. As illustrated in Figure 3, there are 6 x 10°
pixels in the original image. Even with very high sampling
factor such as n/m = 4,096, the segmentation results is still
pleasing. With much less samples, the image can be clus-
tered in high speed even without using GPU acceleration. It
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takes only total 0.958 seconds on CPU to perform mean shift
clustering with sampling factor n/m = 1,024.

In Figure 4, we present image segmentation results for
the images with different sizes, and give the comparison re-
sults with standard mean shift method [CMO02], the accel-
erated method of Paris and Durand [PD07], and compactly
represented KDE of Freedman and Kisilev [FK09]. We com-
prise with these methods on both performance and segmen-
tation quality. Compared with [CM02], some weak features
may be lost using our method since they may be incorpo-
rated into the salient features during data Gaussian KD-tree
clustering, however, the salient features may be better kept,
as illustrated in Figure 4. As shown in Figure 4, given the
same sampling factor, our method generates higher quality
compared with [PDO7] and [FK09], especially at the regions
with weak edges. The complexity of [PD07] depends on the
dimension d of the point, when processing high-dimensional
data, this method does not show much advantage. However,
our method is fast even with low sampling factor and high di-
mensional data sets. as shown in Table 1. It takes our method
5.91 second to cluster 6.6 x 10° pixels on CPU, while it take
105.5 seconds using [PD07]. Using our method incorpo-
rating GPU implementation, our method shows greater ad-
vantage when processing large data sets with high dimen-
sional feature vector, it takes less than 0.2 second to cluster
6.6 x 10° pixels on GPU.

4.2. Video segmentation

Mean shift clustering can also be used in video segmen-
tation [DeMO2]. As video streaming usually contains mil-
lions of pixels, practical video segmentation using mean
shift clustering depends heavily on the performance of the
mean shift procedure. In addition, compared with image
data, the dimensions of feature space are higher, which fur-
ther increase the computational complexity of mean shift
procedure. Thus, it is impracticable to segment long range
video streaming by performing standard mean shift cluster-
ing without using acceleration techniques. However, using
our fast mean shift clustering method, we can perform video
segmentation at interactive rate.

We define a feature space {x;}7 ; of seven dimen-

sions for the video. The feature vector at each pixel x; =
(6ppi,Occi, Orti, 0cG;) comprises its position p; (x and y co-
ordinate), color ¢; (Lab color vector), time #; and motion ¢;,
these four kinds of features can be weighted by parameters
Gp, Oy, Or and Oc, and the values of these parameters are de-
fined as constants for all pixels. As illustrated in Figure 5,
there are 1.44 x 10’ pixels in the video, and we first cluster
the video with sampling factor 16348 using KD tree. It takes
our method 16.23 seconds to perform the mean shift cluster-
ing on CPU, and 1.2 seconds on GPU. It takes 320.3 seconds
on CPU using [PD07].

Figure 5: Video segmentation. Left column, input video
(600 x 480 x 50), from top to down, Ith frame, 28th frame,
50th frame. Right column, segmentation results.

4.3. Mesh model segmentation

Similar to image and video segmentation in image process-
ing and analysis, surface segmentation is one of the most
important operations in geometry processing and modeling.
Yamauchi et al. [YLL*05] adopted the mean shift cluster-
ing to mesh partition, and produced feature sensitive mesh
segmentation. In Figure 6, we give the mesh segmentation
using the proposed fast mean shift cluttering. We define a
feature space {x;}?_; of six dimensions for the mesh model.
The feature vector at vertex x; = (Gpp;,OyVv;) comprises its
position p; (x, y and z coordinate) and normal v; (three di-
mension vector) which can be weighted by parameters o,
and o,. The values of 6, and o, are defined as global con-
stants for all vertices.

In Figure 6, using the variant of mean shift procedure to
the mesh model, we receive a patch-type segmentation re-
sults, and the segmentation results are sensitive to the salient
surface features. Furthermore, we adopt the hierarchical im-
age segmentation method [PD07] to mesh model and gener-
ate the hierarchical segmentation results. Note that our fast
mean shift method is guaranteed to produce segmentation re-
sults which catch the meaningful components, no additional
computation is needed to compute the hierarchical results.
For a mesh model with 70,994 vertices, it takes 0.31 sec-
ond for our method to compute the results. We also give the
comparison results with [YLL*05]. As shown in Figure 6,
our approach generates more convincing results.

4.4. Animated geometry object segmentation

The proposed fast mean shift also can be used to accelerate
the animated object (geometry surface sequences) segmen-
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=4,096, (e) n/m =16,384.

(b)
Figure 3: Image segmentation using different sampling factor. (a) Original image, (b) n/m =256, (c¢) n/m =1,024, (d) n/m
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(e)

Dataset | Data set size d n/m Kd-tree construction | Modes computing Modes interpolation time

bird 564x752 5 1024 0.904 0.024 0.030 0.958
Obama 1128 x 1504 5 4096 1.013 0.016 0.108 1.137
castle 22563008 5 4096 5.105 0.088 0.717 5.910
Video 600 x 480 x 50 7 16348 13.898 0.084 2.248 16.23
Mesh 70994 6 512 0.225 0.020 0.065 0.310
Horse 30784 x 60 30 4094 1.311 0.053 0.136 1.500

Table 1: Performance of our method for different kinds of data sets. Note that we perform clustering for animated object (Horse)

on GPU. All other data sets are performed on CPU.

A y ﬂ J“
(a) (b) (c)

(d)

Figure 6: Hierarchical decomposition of static mesh model.
(a)-(e) is the results of our proposed hierarchical decompo-

sition method, (f) is the result of [YLL*05].

tation. Inspired by [LXL*], we first compute approximately
invariant signature vectors &; for each vertex of the animated
object [LGOS5], which is a local and high dimensional ap-
proximately invariant under shape rigid/scaling transforma-
tions. Then both the geometric attributes (vertex position p;
and its normal v;) and its local signature vector &; of each
vertex x; on the animated object can be weighted by param-
eters G, Oy and O, which construct the high dimensional
feature space of the animated object x; = (G p;, CyVi, Ge’;&i)-
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Then the vertices of animated object can be clustered ef-
ficiently using the proposed GPU- accelerated mean shift
clustering algorithm.

In Figure 7, we give the animated object segmentation re-
sults. There are total 1.6 x 10° vertices in the animated ob-
ject with 50 frames. We use d = 24 dimensions for the signa-
ture vector &; (§; € R24) in our implementation. It takes 1.5
seconds on GPU to complete the mean shift iterations (10 it-
erations in this example) with sampling factor n/m = 4096.
We also give the comparison results with [WB10]. Wuhrer
and Brunton [WB10] performed the animated object seg-
mentation in dual space of the mesh model. They found
near-rigid segments whose segment boundaries locate at re-
gions of large deformation, and assumed that the vertex-to-
vertex correspondences of the input meshes were known.
As an alternative, our method relies on the local high di-
mensional signature vector information for clustering, incor-
porating with the proposed fast mean shift clustering tech-
niques, which ensures the decomposed parts more meaning-
ful and temporally-coherent results in higher speed.

5. Conclusion

In this paper, we propose a new algorithm for accelerating
compute mean shift clustering. Using KD-tree to adaptively
cluster the original data set into clusters with similar fea-
ture similarity, the clusters construct the samples of the orig-
inal data set. Then we compute the mean shift procedure on
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Figure 4: Image segmentation comparisons. (a) original image, (b) image segmentation using standard mean shift (EDISON),
(c) image segmentation using [PDO7], (d) image segmentation using [FK09], (e) image segmentation using our proposed

method.

the greatly reduced sampled feature space and generated the
modes, and finally by using the Gaussian importance weight,
we upsample the computed modes to the original data set
to get final clustering results. Our algorithm significantly
speeds up the performance while not sacrificing the accu-
racy. Our method is especially useful for high resolution im-
ages, long time video sequences and geometry models seg-
mentation with large point set.
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