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Abstract

A general nonparametric technique is proposed for the analysis of a complé#modal feature
space and to delineate arbitrarily shaped clusters in it. The basic conopafatiodule of the technique
is an old pattern recognition procedure, the mean shift. We prove foradésdata the convergence of
a recursive mean shift procedure to the nearest stationary point of tleglying density function and
thus its utility in detecting the modes of the density. The equival@fidae mean shift procedure
to the Nadaraya—Watson estimator from kernel regression and the robestifiators of location is
also established. Algorithms for two low-level vision tasks, digowity preserving smoothing and
image segmentation are described as applications. In these algorithmslyheser set parameter is
the resolution of the analysis, and either gray level or color images are adcapinput. Extensive
experimental results illustrate their excellent performance.

Keywords: mean shift; clustering; image segmentation; image smoothing; feature Epadeyel
vision

1 Introduction

Low-level computer vision tasks are misleadingly difficult. Incorrectisscan be easily obtained
since the employed techniques often rely upon the user correctly guessing trefeakhe tuning
parameters. To improve performance the execution of low-level taskscksheuhbsk driven, i.e.,
supported by independent high level information. This approach, however, requiresshttefi
low-level stage provides a reliable enough representation of the input, anti¢hfeature extrac-
tion process is controlled only by very few tuning parameters corresponding tovatoeasures
in the input domain.

Feature space based analysis of images is a paradigm which can achievevihstatex
goals. A feature space is a mapping of the input obtained through the processing of the data i
small subsets at a time. For each subset a parametric representatienfeéture of interest is
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obtained and the result is mapped into a point in the multidimensional space of timeepara
After the entire input is processed, significant features correspond to deggersén the feature
space, i.e., to clusters, and the goal of the analysis is the delineation of insteesc

The nature of the feature space is application dependent. The subsets employadap-the
ping can range from individual pixels as in the color space representation of ge,insea set of
guasi-randomly chosen data points as in the probabilistic Hough transform. Both tetagky
and the disadvantage of the feature space paradigm are arising from the globabhttegerived
representation of the input. On one hand, all the evidence for the presence of a sigiaatanatis
pooled together providing an excellent tolerance to a noise level which may feesdédecisions
unreliable. On the other hand, features with lesser support in the featurerspgpcmt be detected
in spite of being salient for the task to be executed. This disadvantage, hpwawdoe largely
avoided by either augmenting the feature space with additional (spatial) granfrom the input
domain, or by robust postprocessing of the input domain guided by the results of the feat@re spa
analysis.

Analysis of the feature space is application independent. While there are a plethprb-
lished clustering techniques, most of them are not adequate to analyze feata® dpaved from
real data. Methods which rely upon a priori knowledge of the number of clusters praszuding
those which use optimization of a global criterion to find this number), as welleteods which
implicitly assume the same shape (most often elliptical) for all thetetasn the space, are not
able to handle the complexity of a real feature space. For a recent survey ohstlobds see [29,
Sec.8].
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Figure 1: Example of a feature space. (a)J0Ax276 colorimage. (b) Corresponding*u*v* color
space withi 10, 400 data points.




In Figure 1 a typical example is shown. The color image in Figure 1a is mapped into the
three-dimensiondl*u*v* color space (to be discussed in Section 4). There is a continuous transi-
tion between the clusters arising from the dominant colors, and a decompositlfmsgace into
elliptical tiles will introduce severe artifacts. Enforcing a Gaassnixture model over such data
is doomed to fail, e.g., [49], and even the use of a robust approach with contamBetedian
densities [67] cannot be satisfactory for such complex cases. Note alsbehaixture models
require the number of clusters as a parameter which raises its own challdhgeexample, the
method described in [45] proposes several different ways to determine this number

Arbitrarily structured feature spaces can be analyzed only by nonparammtimods since
these methods do not have embedded assumptions. Numerous nonparametric clusteddg met
were described in the literature and they can be classified into twe laasses: hierarchical
clustering and density estimation. Hierarchical clustering technigtiesreiggregate or divide the
data based on some proximity measure. See [28, Sec.3.2] for a survey of hietarklstaing
methods. The hierarchical methods tend to be computationally expensive and theodeding
meaningful stopping criterion for the fusion (or division) of the data is not straightaw

The rationale behind the density estimation based nonparametric clusteriogepps that
the feature space can be regarded as the empirical probability density fufiibh) of the
represented parameter. Dense regions in the feature space thus correspoattwmkima of the
p.d.f., that is, to thenodef the unknown density. Once the location of a mode is determined, the
cluster associated with it is delineated based on the local structure tddture space [25, 60, 63].

Our approach to mode detection and clustering is based on the mean shift propedure,
posed in 1975 by Fukunaga and Hostetler [21] and largely forgotten till Cheng’s papékifid| el
the interest in it. In spite of its excellent qualities, the mean shiftguiace does not seem to be
known in the statistical literature. While the book [54, Sec.6.2.2] discussediizlddvantages of
employing a mean shift type procedure in density estimation were only recedtcovered [8].

As will be proven in the sequel a computational module based on the mean shift pecedur
is an extremely versatile tool for feature space analysis and can pr@idkele solutions for many
vision tasks. In Section 2 the mean shift procedure is defined and its propaeiesalyzed.

In Section 3 the procedure is used as the computational module for robust featleeanpfsis
and implementational issues are discussed. In Section 4 the feature spsatechnique is
applied to two low level vision tasks: discontinuity preserving filtering andge segmentation.
Both algorithms can have as input either gray level or color images and the onipgtarao be
tuned by the user is the resolution of the analysis. The applicability of the meaprsiiedure



is not restricted to the presented examples. In Section 5 other applicat®mnsentioned and the
procedure is put into a more general context.

2 The Mean Shift Procedure

Kernel density estimation (known as the Parzen window technique in the pegtemgnition lit-
erature [17, Sec.4.3]) is the most popular density estimation method. Gigeta pointsx;,
i = 1,...,ninthed-dimensional spac&?, themultivariate kernel density estimataith kernel
K (x) and a symmetric positive definite x d bandwidth matrixH, computed in the point is
given by

)= 3 D K x) ®

where
Ku(x)=|H|™"* K(H'x). )
Thed-variate kernel (x), is a bounded function with compact support satisfying [62, p.95]

K(x)dx =1 lim ||x||?K(x) =0
Rl [l =00
3)
/ xK(x)dx =0 / xx 'K (x)dx = ¢l
. Rd . Rd
wherecy is a constant. The multivariate kernel can be generated from a symmetveriate
kernel K, (z) in two different ways

K" (x) = HKl(%) K5 (x) = ap,aK1(|x]) (4)

where K”(x) is obtained from the product of the univariate kernels, &t{x) from rotating
Ki(z) in RY, ie., K%(x) is radially symmetric. The constang,}l = [, Ki(|[x]|)dx assures
that K° (x) integrates to one, though this condition can be relaxed in our context. Either type of
multivariate kernel obeys (3), but for our purposes the radially symmetric leeane often more
suitable.

We are interested only in a special class of radially symmetric kesadisfying

K (x) = cxak(|x]*) (5)
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in which case it suffices to define the functibfx) called theprofile of the kernel, only forz > 0.
The normalization constang ,, which makeds (x) to integrate to one, is assumed strictly positive.

Using a fully parameterize#l increases the complexity of the estimation [62, p.106] and
in practice the bandwidth matrild is chosen either as diagorl = diag|h?, ... , h%], or pro-
portional to the identity matrii = h?I. The clear advantage of the latter case is that only one
bandwidth parametgr > 0 must be provided, however, as can be seen from (2) then the valid-
ity of an Euclidean metric for the feature space should be confirmed first. dgmglonly one
bandwidth parameter, the kernel density estimator (1) becomes the well kxpnassion

Fo = s Yo (2. ©

The quality of a kernel density estimator is measured by the mean of the squaitestween
the density and its estimate, integrated over the domain of definition. Itiggabowever, only
an asymptotic approximation of this measure (denoted as AMISE) can be computed.thénde
asymptotics the number of data poimts+ oo while the bandwidth, — 0 at a rate slower than
n~'. For both types of multivariate kernels the AMISE measure is minimizetié¥panechnikov
kernel [51, p.139], [62, p.104] having the profile

kE(:c):{l'T 0<r<l1

. =S (7)

which yields the radially symmetric kernel

1 —1 2
_ ) ogeq (d+2)(1 = |[x[]%) [x[| <1
Kp(x) = { i 0 otherwise 8)

wherec, is the volume of the unii-dimensional sphere. Note that the Epanechnikov profile is not
differentiable at the boundary. The profile

kn(z) = exp(%x) x>0 9

yields the multivariate normal kernel
1
K (x) = (2r) “exp( ") (10)

for both types of composition (4). The normal kernel is often symmetrically ttgac have a
kernel with finite support.



While these two kernels will suffice for most applications we are intecest, all the results
presented below are valid for arbitrary kernels within the conditions tadtecd Employing the
profile notation the density estimator (6) can be rewritten as

fh,K(X) — Thd k ( ) . (11)

N nhd i=1 |
The first step in the analysis of a feature space with the underlying deftsitys to find the modes
of this density. The modes are located among the zeros of the gradfgér) = 0, and the mean
shift procedure is an elegant way to locate these a@itteutestimating the density.

X —X;

h

2.1 Density Gradient Estimation

The density gradient estimator is obtained as the gradient of the density estioyaixploiting the

linearity of (11)
T hiac) = Vo) = 2243 () k( Y ) | (12)
nhi+? £ h
We define the function
g(x) = K () (13)

assuming that the derivative of the kernel profilexists for allz € [0, oc), except for a finite set
of points. Using now;(x) for profile, the kernetz(x) is defined as

G(x) = cqag([x]) (14)

wherec, 4 is the corresponding normalization constant. The keffet) was called the shadow of
G(x) in [7] in a slightly different context. Note that the Epanechnikov kernel is tizelew of the
uniform kernel, i.e., thel-dimensional unit sphere; while the normal kernel and its shadow have
the same expression.

2)

) [ (I

Z?:l g (H —X;lxi

Introducingg(x) into (12) yields

o 20k4
Vink(x) = i+ Z (xi —x) g (
o 1

X —X;

h

1=

)
)

X —X;

h

— X (15)

=1

2004 |~
= L hdt2 [Zg(




where}"" g <H e

for all the profiles met in practice. Both terms of the product in (15) have Spsigiaificance.
From (11) the first term is proportional to the density estimate @mputed with the kerne¥

2
> is assumed to be a positive number. This condition is easy to satisfy

n 2
~ - Cg,d X —X;
fha(x) = hi — 9 ( A ) : (16)
The second term is thmean shift
" x (Hxxi 2)
i=1 X4 A

— X a7

h,,G(X) = 5
2i-19 (H% >

i.e., the difference between the weighted mean, using the kérfaweights, anck the center of
the kernel (window). From (16) and (17) the expression (15) becomes

V() = (%) 1y () (18)
Cg,d
yielding
1, Ving(x)
mhyG(X> = ih CW. (19)

The expression (19) shows that at locatiothe mean shift vector computed with keridels pro-
portional to thenormalizeddensity gradient estimate obtained with kerAelThe normalization is
by the density estimate s computed with the kernéF. The mean shift vector thus always points
toward the direction of maximum increase in the density. This is a more déosraulation of the
property first remarked by Fukunaga and Hostetler [20, p.535], [21], and also discu$gpd

The relation captured in (19) is intuitive, the local mean is shifted tdwe region in which
the majority of the points reside. Since the mean shift vector is alignedtithocal gradient
estimate it can define a path leading to a stationary point oéstienateddensity. The modes of
the density are such stationary points. Thean shift procedurebtained by successive

— computation of the mean shift vecter, (x),

— translation of the kernel (window)(x) by m;, (x),
is guaranteed to converge at a nearby point where the estimate (11) has zeeotglwill be
shown in the next section. The presence of the normalization by the densitytessraalesirable
feature. The regions of low density values are of no interest for the featuce gpalysis, and in
such regions the mean shift steps are large. Similarly, near local malkersieps are small, and
the analysis more refined. The mean shift procedure thus is an adaptive gradesmtnasthod.
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2.2 Sufficient Condition for Convergence

Denote by{yj} _the sequence of successive locations of the keimethere from (17)

)
2) i=1,2,...

is the weighted mean at; computed with kernelz andy, is the center of the initial posi-
tion of the kernel. The corresponding sequence of density estimates computecewmiéh /K,

{fh,K(j) }j_l L is given by

7=1,2.

n Y. X;
> i1 Xig (‘ :

h
n ny,v
> i1 9 (‘ ]h

Yit1 =

(20)

frr(G) = far(y;) J=12.... (21)

As stated by the following theorem, a kern€lthat obeys some mild conditions suffices for the
convergence of the sequen({gsj}jf] , and{fh,;((j)} .
T J

=1,2...

Theorem 1 If the kernelK has a convex and monotonically decreasing profile, the sequences
{yj}H ) and{fh,K(j)} converge, anc{fh,K(j)} is also monotonically increasing.
J=54... j=1,2... 1,2...

1=

The proof is given in the Appendix. The theorem generalizes the result derivecedifie
in [13], where K was the Epanechnikov kernel, atdthe uniform kernel. The theorem remains
valid when each data poist is associated with a nonnegative weight An example of noncon-
vergence when the kernél is not convex is shown in [10, p.16].

The convergence property of the mean shift was also discussed in [7, S€bloi#, how-
ever, that almost all the discussion there is concerned with the “blurringépsaa which the input
is recursively modified after each mean shift step.) The convergence pfdbedure as defined
in this paper was attributed in [7] to the gradient ascent nature of (19). Howay shown in [4,
Sec.1.2], moving in the direction of the local gradient guarantees convergence omifirfites-
imal steps. The stepsize of a gradient based algorithm is crucial for thalloperformance. If
the step size is too large, the algorithm will diverge, while if the step 8 too small, the rate of
convergence may be very slow. A number of costly procedures have been developegp§ire
selection [4, p.24]. The guaranteed convergence (as shown by Theorem 1) is duedaptinea
magnitude of the mean shift vector which also eliminates the need for addipomeddures to



chose the adequate stepsizes. This is a major advantage over the traditidraltdrased meth-
ods.

For discrete data, the number of steps to convergence depends on the employed\keenel.
G is the uniform kernel, convergence is achieved in a finite number of steps, temceimber
of locations generating distinct mean values is finite. However, when timelké imposes a
weighting on the data points (according to the distance from its center), theshéaprocedure
is infinitely convergent. The practical way to stop the iterations is taadewer bound for the
magnitude of the mean shift vector.

2.3 Mean Shift Based Mode Detection

Let us denote by, andf , = fu x(y.) the convergence points of the sequen{:ﬁ]s}] 1., and

{fh,K(j) }j—l L respectively. The implications of Theorem 1 are the following.

First, the magnitude of the mean shift vector converges to zero. Indeed, frorar(d{20)
the j-th mean shift vector is

mh,G(y]') =Yt Y5 (22)
and, at the limiim;, ¢(y.) = y. —y. = 0. In other words, the gradient of the density estimate (11)
computed ay, is zero

Vink(y) =0, (23)

due to (19). Hencey, is a stationary point ofh,K.

Second, smc% Jnr(g )} is monotonically increasing, the mean shift iterations satisfy
the conditions required by tt@a;o%ure Theorer4, p.45], which states that the trajectories of such
gradient methods are attracted by local maxima if they are unique (within krsaghborhood)
stationary points. That is, ongg gets sufficiently close to a mode ﬁfK it converges to it. The
set of all locations that converge to the same mode defindsattia of attractiorof that mode.

The theoretical observations from above suggest a practical algorithm for meb¢iolet

— run the mean shift procedure to find the stationary poing&gf,

— prune these points by retaining only the local maxima.
The local maxima points are defined according to the Capture Theorem, as uniquesygioints
within some small open sphere. This property can be tested by perturbing aachasty point by
a random vector of small norm, and letting the mean shift procedure converge &painld the
point of convergence be unchanged (up to a tolerance), the point is a local maximum.
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2.4 Smooth Trajectory Property

The mean shift procedure employing a normal kernel has an interesting propeath toward
the mode follows a smooth trajectory, the angle between two consecutivesmiéarectors being
always less than 90 degrees.

Using the normal kernel (10) theth mean shift vector is given by

2
Zz’nzl XieXp< ‘ )

mh,,N(Yj) =Yjin Y = 2) -y (24)

S exp <_ H yj;lxi

The following theorem holds true for gll= 1, 2, . . ., according to the proof given in the Appendix.

y]' —X;
h

Theorem 2 The cosine of the angle between two consecutive mean shift vectors is pusitiye
when a normal kernel is employed, i.e.,

mh,N(yj)Tmh,N(yj—l-l)

[l (y ) s, v (yj0) |

> 0. (25)

As a consequence of Theorem 2 the normal kernel appears to be the optimal one for the mean
shift procedure. The smooth trajectory of the mean shift procedure is in conithghe standard
steepest ascent method [4, p.21] (local gradient evaluation followed by linemaation) whose
convergence rate on surfaces with deep narrow valleys is slow due tgztgging trajectory.

In practice, the convergence of the mean shift procedure based on the normbtéguires
large number of steps, as was discussed at the end of Section 2.2. Thereforet of mas
experiments we have used the uniform kernel, for which the convergence is éindenot the
normal kernel. Note, however, that the quality of the results almost alwagsoves when the
normal kernel is employed.

2.5 Relation to Kernel Regression

Important insight can be gained when the relation (19) is obtained approaching the pdiffiéem
ently. Considering the univariate case suffices for this purpose.

Kernel regression is a nonparametric method to estimate complex trends freyndata. See
[62, Chap.5] for an introduction to the topic, [24] for a more in-depth treatmentn leéasured
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data points béX;, Z;) and assume that the valugsare the outcomes of a random variableith
probability density functioryf (z), z; = X;, i = 1,... ,n, while the relation betwee#, and.X; is

wherem(z) is called the regression function, andis an independently distributed, zero-mean
error,El¢;] = 0.

A natural way to estimate the regression function is by locally fitting aegpolynomial
to the data. For a window centered :atthe polynomial coefficients then can be obtained by
weighted least squares, the weights being computed from a symmetric fup¢tinpnThe size
of the window is controlled by the parameter g, (z) = h'g(x/h). The simplest case is that
of fitting a constant to the data in the window, i.e.= 0. It can be shown, [24, Sec.3.1], [62,
Sec.5.2], that the estimated constant is the value diltearaya—Watsoastimator

i gn(r — Xi)Z;
Z?:] gn(z — Xi)
introduced in the statistical literature 35 years ago. The asymptotic condibiasaf the estimator

has the expression [24, p.109], [62, p.125],

m(z;h) =

(27)

2 (@) (@) + 2 (@) ()
' 2f(w)

wherey;[g] = [ uw?g(u)du. Definingm(z) = = reduces the Nadaraya—Watson estimator to (20)
(in the univariate case), while (28) becomes

E[ (m(z; h) — m(x)) | Xu,..., Xy ] fi2[g] (28)

2 fl (2)

f(@)
which is similar to (19). The mean shift procedure thus exploits to its advathiageherent bias
of the zero-order kernel regression.

E[(#—x)| Xi,.... Xu =D f12]g] (29)

The connection to the kernel regression literature opens many interestirggjshowever,
most of these are more of a theoretical than practical importance.

2.6 Relation to Location M-estimators

The M-estimators are a family of robust techniques which can handle data prekence of
severe contaminations, i.e., outliers. See [26], [32] for introductory surveysuid context only
the problem of location estimation has to be considered.
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Given the datx;, i = 1,... ,n, and the scalé, will define 8, the location estimator as

2) (30)

where,p(u) is a symmetric, nonnegative valued function, with a unique minimum at the origin and
nondecreasing fat > 0. The estimator is obtained from the normal equations

) ~0 (31)
_ dp(u)

wherew(u) = —Ju Therefore the iterations to find the location M-estimate are based on

. 2
) D i Xiw ( O%Xi )
o — (32)

)

which is identical to (20) whem (u) = ¢g(u). Taking into account (13) the minimization (30)

A . R~ 0 — x;
0 = argmin J(0) = argm;n;p (H ;

~

O—Xi
h

Vo (0) = 2h2(0 — x;)w (

becomes
é—argmaxik (He_xi 2) (33)
6 = h
which can be also interpreted as
0 = argmax Fok(0]x1,. .. %) (34)

That is, the location estimator is the mode of the density estimated witkettme! X from the
available data. Note that the convexity of ther) profile, the sufficient condition for the con-
vergence of the mean shift procedure (Section 2.2), is in accordance with theeregats to be
satisfied by the objective functigriu).

The relation between location M-estimators and kernel density esbimet not well in-
vestigated in the statistical literature, only [9] discusses it indbwetext of an edge preserving
smoothing technique.

3 Robust Analysis of Feature Spaces

Multimodality and arbitrarily shaped clusters are the defining propertiesrealafeature space.
The quality of the mean shift procedure to move toward the mode (peak) of the hilhim vt
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was initiated, makes it the ideal computational module to analyze such spacdstect all the
significant modes, the basic algorithm given in Section 2.3 should be run multigde {@xolving
in principle in parallel) with initializations that cover the entirafare space.

Before the analysis is performed two important (and somewhat relatedsistoeld be
addressed: the metric of the feature space and the shape of the kernel. The mappithg finput
domain into a feature space often associates a noneuclidean metric todbe Fpa problem of
color representation will be discussed in Section 4, but the employed parmaagon has to be
carefully examined even in a simple case like the Hough space of lines 48 [d1].

The presence of a Mahalanobis metric can be accommodated by an adequate choice of the
bandwidth matrix (2). In practice, however, it is preferable to haverrasisthat the metric of
the feature space is Euclidean and thus the bandwidth matrix is controlled bglea garameter,
H = h%I. To be able to use the same kernel size for all the mean shift proceduresfeaathee
space, the necessary condition is that local density variations near a sighifiode are not as
large as the entire support of a significant mode somewhere else.

The starting points of the mean shift procedures should be chosen to have the afire fe
space (except the very sparse regions) tessellated by the kernels (WinBagsllar tessellations
are not required. As the windows evolve toward the modes, almost all the data pmntisited
and thus all the information captured in the feature space is exploited. Notdéhadnvergence
to a given mode may yield slightly different locations, due to the threshold #natitate the
iterations. Similarly, on flat plateaus the value of the gradient is clogerw and the mean shift
procedure could stop.

These artifacts are easy to eliminate through postprocessing. Mode candidatdistance
less than the kernel bandwidth are fused, the one corresponding to the highest dengithbsen.
The global structure of the feature space can be confirmed by measuring the sigeifafathe
valleys defined along a cut through the density in the direction determined by twasmode

The delineation of the clusters is a natural outcome of the mode seeking process. Aft
convergence theasin of attractionof a mode, i.e., the data points visited &l the mean shift
procedures converging to that mode, automatically delineates a cluster w&grishape. Close
to the boundaries, where a data point could have been visited by several divergiegures;
majority logic can be employed. It is important to notice that in computer visiostraften we
are not dealing with an abstract clustering problem. The input domain almasgsajvovides an
independent test for the validity ddcal decisionsn the feature space. That is, while it is less
likely that one can recover from a severe clustering error, allocati@few uncertain data points
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Figure 2: Example of a 2D feature space analysis. (a) Two dimensional datal$et 40 points
representing the first two components of théu*v* space shown in Figure 1b. (b) Decomposition
obtained by runnind59 mean shift procedures with different initializations. (c) Trajectonéthe
mean shift procedures drawn over the Epanechnikov density estimate compuiieel $ame data
set. The peaks retained for the final classification are marked wittiotsd
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can be reliably supported by input domain information.

The multimodal feature space analysis technique was discussed in detail .inl{Ms
shown experimentally that for a synthetic, bimodal normal distribution the tqakrachieves a
classification error similar to the optimal Bayesian classifier. bélkavior of this feature space
analysis technique is illustrated in Figure 2. A two dimensional data set®@f00 points (Fig-
ure 2a) is decomposed intcclusters represented with different colors in Figure 2b. A number of
159 mean shift procedures with uniform kernel were employed. Their trajestareeshown in Fig-
ure 2c, overlapped over the density estimate computed with Epanechnikwl.KEne pruning of
the mode candidates produced seven peaks. Observe that some of the trajeetq@riesaturely
stopped by local plateaus.

3.1 Bandwidth Selection

The influence of the bandwidth parametewas assessed empirically in [12] through a simple
image segmentation task. In a more rigorous approach, however, four differenicees for
bandwidth selection can be considered.

e The first one has a statistical motivation. The optimal bandwidth associatethe kernel
density estimator (6) is defined as the bandwidth that achieves the best congobetmeen
the bias and variance of the estimator, oversale R?, i.e., minimizes AMISE. In the
multivariate case, the resulting bandwidth formula [54, p.85], [62, p.99] is o |dthcti-
cal use, since it depends on the Laplacian of the unknown density being estimatéd, and
performance is not well understood [62, p.108]. For the univariate case a reliabllednet
for bandwidth selection is the plug-in rule [53], which was proven to be superiteast
squares cross validation and biased cross-validation [42], [55, p.46]. Its ssuymgtion is
the smoothness of the underlying density.

e The second bandwidth selection technique is related to the stability of the destion.
The bandwidth is taken as the center of the largest operating range over whisantiee
number of clusters are obtained for the given data [20, p.541].

e For the third technique, the best bandwidth maximizes an objective function thaissrpr
the quality of the decomposition (i.e., the index of cluster validity). The objeftiretion
typically compares the inter- versus intra-cluster variability [30, 28Mail@ates the isolation
and connectivity of the delineated clusters [43].
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e Finally, since in most of the cases the decomposition is task dependent, toprdovma-
tion provided by the user or by an upper-level module can be used to control the kernel
bandwidth.

We present in [15] a detailed analysis of the bandwidth selection problem. Ve sw
difficulties generated by the narrow peaks and the tails of the underlying densitipdally adap-
tive solutions are proposed. One is nonparametric, being based on a newly definedeatdapt
shift procedure, which exploits the plug-in rule and the sample point density estiriaie other
iIs semiparametric, imposing a local structure on the data to extragbkelscale information. We
show that the local bandwidth should maximize the magnitude of the normalized miéaectur.
The adaptation of the bandwidth provides superior results when compared to the fixkuddith
procedure. For more details, see [15].

3.2 Implementation Issues

An efficient computation of the mean shift procedure requires first the resagrgflihe input data

with a regular grid. This a standard technique in the context of density estinvetiich leads to a
binned estimatof62, Appendix D]. The procedure is similar to defining a histogram where linear
interpolation is used to compute the weights associated with the grid pointbeFrteduction in

the computation time is achieved by employing algorithms for multidimensiongkeraearching

[52, p.373] used to find the data points falling in the neighborhood of a given kernel. For the
efficient Euclidean distance computation we used the improved absoluterergosallity criterion,
derived in [39].

4 Applications

The feature space analysis technique introduced in the previous section is applivdépendent
and thus can be used to develop vision algorithms for a wide variety of tasks.sdmewhat
related applications are discussed in the sequel: discontinuity preservogitsng and image
segmentation. The versatility of the feature space analysis enables go dégorithms in which
the user controls performance through a single parameter, the resolution of thesafiay$and-
width of the kernel). Since the control parameter has clear physical meaninggwhalgorithms
can be easily integrated into systems performing more complex tasks. fFootiee both gray
level and color images are processed with the same algorithm, in the foasethe feature space
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containing two degenerate dimensions that have no effect on the mean shift procedure

Before proceeding to develop the new algorithms the issue of the employed colohsggace
to be settled. To obtain a meaningful segmentapierceivedcolor differences should correspond
to Euclidean distances in the color space chosen to represent the featwets).(#A\n Euclidean
metric, however, is not guaranteed for a color space [65, Secs.6.5.2; 8.4]. The $patesand
L*a*b* were especially designed to best approximate perceptually uniform color spadasth
casesL* the lightness(relative brightness) coordinate is defined the same way, the two spaces
differ only through the chromaticity coordinates. The dependence of all three cooslorathe
traditional RG B color values is nonlinear. See [46, Sec.3.5] for a readily accessible source for the
conversion formulae. The metric of perceptually uniform color spaces is diedus the context
of feature representation for image segmentation in [16]. In practice ibhere clear advantage
between using.*u*v* or L*a*b* , in the proposed algorithms we employé&du*v* motivated by
a linear mapping property [65, p.166].

Our firstimage segmentation algorithm was a straightforward applicatidredéaiture space
analysis technique to am.*u*v* representation of the color image [11]. The modularity of the
segmentation algorithm enabled its integration by other groups to a large vafiapplications
like image retrieval [1], face tracking [6], object based video coding forB@P4 [22], shape
detection and recognition [33], and texture analysis [47], to mention only a fewetds, since
the feature space analysis can be applied unchanged to moderately higher dimapsices|see
Section 5) we subsequently also incorporated the spatial coordinates of a ptd fetiture space
representation. Thipint domainrepresentation is employed in the two algorithms described here.

Animage is typically represented as a two-dimensional lattigedbinensional vectors (pix-

els), wherep = 1 in the gray level case, 3 for color images, and- 3 in the multispectral case.
The space of the lattice is known as thgatial domain while the gray level, color, or spectral
information is represented in tmangedomain. For both domains an Euclidean metric is assumed.
When the location and range vectors are concatenated in the joint spatiad@nge of dimen-
siond = p + 2, their different nature has to be compensated by proper normalization. Thus, the
multivariate kernel is defined as the product of two radially symmetrioddsrand the Euclidean
metric allows a single bandwidth parameter for each domain

2

) (35)

C 2
K, p, (x) = Wk ( ) k (

wherex® is the spatial partx” is the range part of a feature vectb(;:) the common profile used
in both two domainsh, andh, the employed kernel bandwidths, aadthe corresponding nor-
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X

hs

X
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malization constant. In practice an Epanechnikov, or a (truncated) normmal ledways provides
satisfactory performance, so the user only has to set the bandwidth parameiér,, A, ), which
by controlling the size of the kernel determines the resolution of the mode detection.

4.1 Discontinuity Preserving Smoothing

Smoothing through replacing the pixel in the center of a window by the (weighted)gevefahe
pixels in the window, indiscriminately blurs the image removing not only the naisalbo salient
information. Discontinuity preserving smoothing techniques, on the other hand, adanete
the amount of smoothing near abrupt changes in the local structure, i.e., edges.

There are a large variety of approaches to achieve this goal, from adap&rek¥iltering
[31], to implementing isotropic [50] and anisotropic [44] local diffusion procesadspic which
recently received renewed interest [19, 37, 56]. The diffusion based tecBnigomeever, do not
have a straightforward stopping criterion and after a sufficiently large nuwigerations, the
processed image collapses into a flat surface. The connection betweenogntsdiffusion and
M-estimators is analyzed in [5].

A recently proposed noniterative discontinuity preserving smoothing technique is-the bi
lateral filtering [59]. The relation between bilateral filtering andulfon based techniques was
analyzed in [3]. The bilateral filters also work in the joint spatial-radgmain. The data is inde-
pendently weighted in the two domains and the center pixel is computed as the Weigbtage
of the window. The fundamental difference between the bilateral filteringtachean shift based
smoothing algorithm is in the use of local information.

Mean Shift Filtering

Letx; andz;, i« = 1,...,n, be thed-dimensional input and filtered image pixels in the joint
spatial-range domain. For each pixel

1. Initializej = 1 andy, , = x;.

2. Computey, ;,, according to (20) until convergenceg,=ys; ..

3. Assignz; = (x},y;.).
The upperscripts andr denote the spatial and range components of a vector, respectively. The
assignment specifies that the filtered data at the spatial locatiail have the range component
of the point of convergencg; .

The kernel (window) in the mean shift procedure moves in the direction of thenmian
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increase in thgint density gradient, while the bilateral filtering uses a fixed, static windiowhe
image smoothed by mean shift filtering, informatiogyondthe individual windows is also taken
into account.

An important connection between filtering in the joint domain and robust M-astm
should be mentioned. The improved performance of the generalized M-estin@@kbye bounded-
influence estimators) is due to the presence of a second weight function whids tfsenfluence
of leverage points, i.e., outliers in the input domain [32, Sec.8E]. A similare@dtlin spirit)
twofold weighting is employed in the bilateral and mean shift based figstiwhich is the main
reason of their excellent smoothing performance.

Mean shift filtering with uniform kernel having:, h,.) = (8, 4) has been applied to the often
used256 x 256 gray levelcameramanmage (Figure 3a), the result being shown in Figure 3b. The
regions containing the grass field have been almost completely smoothed whikesieth as the
tripod and the buildings in the background were preserved. The processing requatezhaf
a second on a standard PC (600Mhz Pentium 1ll) using an optimized C++ impleioembthe
algorithm. On the average06 iterations were necessary until the filtered value of a pixel was
defined, i.e., its mean shift procedure converged.

(b)
Figure 3:Cameramarimage. (a) Original. (b) Mean shift filterdd,, h,) = (8, 4).

To better visualize the filtering process, the x 20 window marked in Figure 3a is repre-
sented in three dimensions in Figure 4a. Note that the data was reflecteth@barizontal axis
of the window for a more informative display. In Figure 4b the mean shift patheceged with
every other pixel (in both directions) from the plateau and the line are showte that conver-
gence points (black dots) are situated in the center of the plateau, away frafis¢batinuities
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delineating it. Similarly, the mean shift trajectories on the linea@non it. As a result, the filtered
data (Figure 4c) shows clean quasi-homogeneous regions.

The physical interpretation of the mean shift based filtering is easy tdgexamining
Figure 4a which in fact displays the three dimensions of the joint domain of a grayirneage.
Take a pixel on the line. The uniform kernel defines a parallelepiped centergisgpixel, and
the computation of the mean shift vector takes into account only those pixels aniehoththeir
spatial coordinateand gray level values inside the parallelepiped. Thus, if the parallelepiped is
not too large, only pixels on the line are averaged and the new location of the wisdoaranteed
to remain on it.
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Figure 4: Visualization of mean shift based filtering and segmentation fgilgval data. (a) Input.
(b) Mean shift paths for the pixels on the plateau and on the line. The black ddtsegreints of
convergence. (c) Filtering result;, h,) = (8,4). (d) Segmentation result.

A second filtering example is shown in Figure 5. THe x 512 color imagebaboonwas
processed with mean shift filters employing normal kernels defined usiragugaspatial and range
resolutions(hs, h,) = (8 = 32,4 + 16). While the texture of the fur has been removed, the details
of the eyes and the whiskers remained crisp (up to a certain resolutiontaDrsee that the spatial
bandwidth has a distinct effect on the output when compared to the range (color) bandwilyth.
features with large spatial support are represented in the filtered imlagie/, increases. On the
other hand, only features with high color contrast survive whers large. Similar behavior was
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also reported for the bilateral filter [59, Figure 3].

4.2 Image Segmentation

Image segmentation, decomposition of a gray level or color image into homogeneousstiles
arguably the most important low-level vision task. Homogeneity is usually deéineiimilarity

in pixel values, i.e. a piecewise constant model is enforced over the inkagen the diversity

of image segmentation methods proposed in the literature will mention only some \wheg
processing relies on the joint domain. In each case a vector field is defieedh@/sampling
lattice of the image.

The attraction force field defined in [57] is computed at each pixel as anv&ain of pairwise
affinities between the current pixel and all other pixels, with sintjyaneasured in both spatial and
range domains. The region boundaries are then identified as loci where the formes daetrge.
It is interesting to note that for a given pixel, the magnitude and orientatiomeofiarce field are
similar to those of the joint domain mean shift vector computed at that pixgbenjelcted into the
spatial domain. However, in contrast to [57] the mean shift procedure mowvég idirection of
this vector, away from the boundaries.

The edge flow in [34] is obtained at each location for a given set of directioreasagni-
tude of the gradient of a smoothed image. The boundaries are detected at image |lodaitbns
encounter two opposite directions of flow. The quantization of the edge flow directiorvieow
may introduce artifacts. Recall that the direction of the mean shift tatdid solely by the data.

The mean shift procedure based image segmentation is a straightforwardaxtenthe
discontinuity preserving smoothing algorithm. Each pixel is associated vgitnéicantmode of
the joint domain density located in its neighborhood, after nearby modes were prunedhas i
generic feature space analysis technique (Section 3).

Mean Shift Segmentation

Letx; andz;, i = 1,...,n, be thed-dimensional input and filtered image pixels in the joint
spatial-range domain, anid the label of the-th pixel in the segmented image.

1. Run the mean shift filtering procedure for the image and stlrthe information about the
d-dimensional convergence pointip i.e.,z; =y, .
2. Delineate in the joint domain the clustdis, } _,
closer tham, in the spatial domain ankl, in the range domain, i.e., concatenate the basins

by grouping togetheall z; which are
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(hs he) = (8,6)

(hs: hr) = (17 4) (hs: r) = (165 8) (h’a . : (7 16)

(hy, hy) = (32, 4) (hy, hy) = (32,8) (, hy) = (32,16)

Figure 5:Baboonimage. Original and filtered.
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of attraction of the corresponding convergence points.

3. Foreach =1,... ,n,assign; = {p |z € C,}.

4. Optional: Eliminate spatial regions containing less thampixels.
The cluster delineation step can be refined according to a priori informatnahthaus physics-
based segmentation algorithms, e.g., [2, 35] can be incorporated. Since this psqueEr$srmed
on region adjacency graphs, hierarchical techniques like [36] can provide sighffmeed-up. The
effect of the cluster delineation step is shown in Figure 4d. Note the fusionarger homoge-
neous regions of the result of filtering shown in Figure 4c. The segmentation stepaicedd a
significant overhead to the filtering process.

The region representation used by the mean shift segmentation is sintiter ibbob repre-
sentation employed in [64]. However, while the blob has a parametric gésarilmultivariate
Gaussians in both spatial and color domain), the partition generated by the Inféencharacter-
ized by a nonparametric model. An image region is defined by all the pixels as=bevith the
same mode in the joint domain.

In [43] a nonparametric clustering method is described in which after kelewsity esti-
mation with a small bandwidth the clusters are delineated through concateoétihe detected
modes’ neighborhoods. The merging process is based on two intuitive measures capiring
variations in the local density. Being a hierarchical clustering techniqeenethod is computa-
tionally expensive, it takes several minutes in MATLAB to analyze a 2008l gixbsample of the
feature space. The method is not recommended to be used in the joint domain simeatuees
employed in the merging process become ineffective. Comparing the resudtbiivarily shaped
synthetic data [43, Figure 6] with a similarly challenging example processixte mean shift
method [12, Figure 1], shows that the use of a hierarchical approach can be fultcassided
in the nonparametric clustering paradigm.

All the segmentation experiments were performed using uniform kernels. Tgrewement
due to joint space analysis can be seen in Figure 6 whergthe 256 gray level imageMIT was
processed witlth,, h,., M) = (8,7,20). A number of225 homogeneous regions were identified
in fractions of a second, most of them delineating semantically meaningful rddienegalls, sky,
steps, inscription on the building, etc. Compare the results with the segmardhtained by one-
dimensional clustering of the gray level values in [11, Figure 4] or by using a Gibblod®na fields
based approach [40, Figure 7].

The joint domain segmentation of the colti6 x 256 roomimage presented in Figure 7 is
also satisfactory. Compare this result with the segmentation present&8l, Figures 3e and 5c]
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Figure 6:MIT image. (a) Original. (b) Segmentétl, ., M) = (8,7, 20). (c) Region boundaries.

obtained by recursive thresholding. In both these examples, one can notice that regibrch a
small gradient of illumination exist (like the sky in th&lT or the carpet in theoomimage), were
delineated as a single region. Thus, the joint domain mean shift based segomestiatteeds to
overcome the inherent limitations of methods based only on gray-level or coloechgstwhich
typically oversegment small gradient regions.

RiR &

(a) | (b)

Figure 7: Roomimage. (a) Original. (b) Region boundaries delineated with h,, M) =
(8,5, 20), drawn over the input.

The segmentation witth, h,., M) = (16, 7,40) of the512 x 512 color imagdakeis shown
in Figure 8. Compare this result with that of the multiscale approach in [57, &itl). Finally,
one can compare the contours of the color imégeh,, M) = (16,19,40) hand presented in
Figure 9 with those from [66, Figure 15] obtained through a complex global optimization, and
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(@) (b)

Figure 9: Hand image. (a) Original. (b) Region boundaries delineated with h,, M)
(16,19, 40) drawn over the input.

from [41, Figure 4a] obtained with geodesic active contours.

The segmentation is not very sensitive to the choice of the resolution parametndh,.
Note that all256 x 256 images used the samg = 8 corresponding to a7 x 17 spatial window,
while all 512 x 512 images used, = 16 corresponding to &l x 31 window. The range parameter
h, and the smallest significant feature sik€ control the number of regions in the segmented
image. The more an image deviates from the assumed piecewise constant argeelyalues
have to be used fas, and M to discard the effect of small local variations in the feature space.
For example, the heavily textured background inthedimage is compensated by using= 19
andM = 40, values which are much larger than those used forabenimage(h, = 5, M = 20)
since the latter better obeys the model. As with any low level vision alguarithe quality of the
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e,

Figure 10: Landscapemages. All the region boundaries were delineated with h,, M) =
(8,7,100) and are drawn over the original image.

segmentation output can be assessed only in the context of the whole vision task, atie thus
resolution parameters should be chosen according to that criterion. An impadeantage of
mean shift based segmentation is its modularity which makes the contrajmiesgation output
very simple.

Other segmentation examples in which the original image has the region boundaries supe
posed are shown in Figure 10 and in which the original and labeled images compkigdre 11.

As potential application of the segmentation, we return tacdreeramanmage. Figure 12a
shows the reconstructed image after the regions corresponding to the sky andey@aszanually
replaced with white. The mean shift segmentation has been appliedhyith,., M) = (8, 4, 10).
Observe the preservation of the details which suggests that the algorithiiscée aised for image
editing, as shown in Figure 12b.

The (unoptimized) JAVA code for the discontinuity preserving smoothing and image seg-
mentation algorithms integrated into a single system with graphical ieterésavailable at
http://ww. cai p.rutgers. edu/riul/research/code. htm
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Figure 11: Some other segmentation examples (ithh,., M) = (8,7, 20). Left: original. Right:
segmented.
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Figure 12:Cameramarnimage.(a) Segmentation witlh,, h,., M) = (8, 4,10) and reconstruction
after the elimination of regions representing sky and grass. (b) Supervidad:tensertion.

5 Discussion

The mean shift based feature space analysis technique introduced in this paggnisral tool
which is not restricted to the two applications discussed here. Since thigyaqpfahe output is
controlled only by the kernel bandwidth, i.e., the resolution of the analysis, the techshiqués
be also easily integrable into complex vision systems where the controinquedhed to a closed
loop process. Additional insights on the bandwidth selection can be obtained by thststgbility
of the mean shift direction across the different bandwidths, as investigaibd] in the case of
the force field. The nonparametric toolbox developed in this paper is suitable fayeavariety
of computer vision tasks where parametric models are less adequate, for exaragéding the
background in visual surveillance [18].

The complete solution toward autonomous image segmentation is to combine a bandwidth
selection technique (like the ones discussed in Section 3.1) with top-dowretattd high level
information. In this case each mean shift process is associated welnallkbest suited to the
local structure of the joint domain. Several interesting theoretical issaes to be addressed
though, before the benefits of such a data driven approach can be fully exploited. Werantly
investigating these issues.

The ability of the mean shift procedure to be attracted by the modes (local mpginan
underlying density function, can be exploited in an optimization framework. Chenagiriggdy
discusses a simple example. However, by introducing adequate objective furth&aimiza-
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tion problem can acquire physical meaning in the context of a computer vision task«efople,
in [14] by defining the distance between the distributions of the model and a candida¢darget,
non-rigid objects were tracked in an image sequence under severe distortlunslistance was
defined at every pixel in the region of interest of the new frame, and the nh@aprecedure was
used to find the mode of this measure nearest to the previous location of the target.

The above mentioned tracking algorithm can be regarded as an example of compater vis
techniques which are based wnsitu optimization. Under this paradigm the solution is obtained
by using the input domain to define the optimization problem. ihhgtu optimization is a very
powerful method. In [23] and [58] each input data point was associated with a lelch{\foting
kernel) to produce a more dense structure from where the sought information (szditemes, the
hyperplane representing the fundamental matrix) can be reliably extracted.

The mean shift procedure is not computationally expensive. Careful C++ implatioenf
the tracking algorithm allowed real time (30 frames/second) processihg @ideo stream. While
it is not clear if the segmentation algorithm described in this paper can be swafiest, given
the quality of the region boundaries it provides, it can be used to support edge deteattioat w
significant overhead in time.

Kernel density estimation in particular and nonparametric techniques in djeoarat scale
well with the dimension of the space. This is mostly due to the empty space phenof2énon
p.70], [54, p.93] by which most of the mass in a high dimensional space is concentratedaii a s
region of the space. Thus, whenever the feature space has more than (say) sigiaismé¢he
analysis should be approached carefully. Employing projection pursuit, in whictiethaty is
analyzed along lower dimensional cuts, e.g., [27], is a possibility.

To conclude, the mean shift procedure is a valuable computational module whosé#ityersat
can make it an important component of any computer vision toolbox.

Appendix

Proof of Theorem 1

If the kernelK has a convex and monotonically decreasing profile, the sequélygéjc,:l ,. and

{fh,;((j)} ~converge, anc{fh,;((j)} |

Is also monotonically increasing.

7j=1,2..
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Sincen is finite the sequencﬁm (21) is bounded therefore it is sufficient to show tﬁ,@k
is strictly monotonic increasing, i.e., ¥, # y, ., then f . (j) < fax(j+1),forj =1,2....
Without loss of generality can be assumed $hat 0 and thus from (16) and (21)

n 2
;L ;. Ck,d Yit1 — Xi X;[|?
Jrx(G+1) = fr(G) = =75 [k (‘ TR ) - < h )] . A0
nht & h ‘ h
The convexity of the profilé(x) implies that
k(x2) > k(a1) + K (21) (22 — 1) (A2)

forall zy, z9 € [0,00), x; # x2, and sincegy(z) = —k'(x), the inequality (A.2) becomes
k(z2) — k(x1) > g(@1) (21 — 22). (A.3)

Using now (A.1) and (A.3) we obtain

° . 5 . Chd X; [|2
i+ = ) = 555 () l? = s — )
Chd X; [|?
= S o () (T vial?) (A)

Ck.,d T - X; 2 9 "
S [zyw S xig (Hﬂ\ ) Myl Y g (\
=1 =1

)

X
h

and recalling (20) yields

X’L
h

. . 2 . c a 2
FuG+ 1)~ () > <5y, (\ ) | (A5)
o i=1

X

The profilek(z) being monotonically decreasing for all> 0 the sum)_" | ¢ (\ -

2) Is strictly
positive. Thus, as long as,; # y,; = 0, the right term of (A.5) is strictly positive, i.efh,;((j +
1) > fux(j). Consequently, the sequen{:éh,;((j)} is convergent.

71=1,2...

To prove the convergence of the sequenﬁgg}j:]
kernel locationy; # 0. After some algebra we have

_ (A.5) is rewritten for an arbitrary

2) . (A.6)

2

Y; — X

; . P . Ck,d -
Jr(G+1) = frx(5) > WHY]’—H - y;lI? Z.C} (H 5
i—1
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Summing now the two terms of the inequality (A.6) forindigeg+ 1. .. +m — 1 it results that
2

; : ; : Ck,d Yitm-1— Xi
FukG+m) = k() > 5y = Yy Z <H—

2
Ck,d y
+ hd+2||y3+1 yj” Zg < )
i=1

X

Ck.,d
= nhd+2 [||Yj+m ~Yjitm-1 ||2 +oeeet ||Yj+1 - Yj||2] M
Ck.,d

where M represents the minimum (always strictly positive) of the spifi | ¢ (‘ y];xz-

2
) for
all {yj}j:1,2...'

Since{fh K ( ')} is convergent, it is also a Cauchy sequence. This property in con-
71=1,2...

junction with (A.7) implies that{y]}
Euclidean space.

., Is a Cauchy sequence, hence, it is convergent in the

Proof of Theorem 2

The cosine of the angle between two consecutive mean shift vectors is piogitiye when a
normal kernel is employed.

We can assume w.l.g. thgt = 0 andy,,; # y,;» # 0 since otherwise convergence has
already been achieved. Therefore the mean shift veniot (0) is

S xiexp< % 2)
my, v (0) =y = ~ - (B.1)
> ict eXp(— : )

We will show first that when the weights are given by a normal kernel cenggsed , the weighted
sum of the projections o(fyjH — xi) ontoy,,, is strictly negative, i.e.,

n

y; — X;
Z (||Yj+1 ||2 - ijHxi) exp ( H%

=1

) < 0. (B.2)
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The space?? can be decomposed into the following three domains

D] = {Xe Rd

1
k< 3yl }

D2 = {XeRd

1
313l < ¥ < Iyl
Dy = {xeR'lynll* <yj.x} (B.3)

and after some simple manipulations from (B.1) we can derive the equality

> (sl - vox) e~ 2]) -
X;€D32

X; 2
- Z (ijHXi —lyjal?) exp<— HF ) : (B.4)
x;,€D1UDs3g g
In addition, forx € D, we havely,,,||* — y,;,,x > 0, which implies
1yi01 — %ill* =yl + [1xill* = 2y, 0% > [xill* = [y P (B.5)
from where
2
Yir1 — X
Z Iyl = ij+1Xi) exp (_ ‘ % )
x;€D2 ’

<en([%2) S Gl -~ vim) e~ 3

x;€ D2
2)

Yt ||? X;
<o) X Ouxi- Iyl en (-}

x;ED1UD3
2)
)

2) . (B.6)

Introducing now (B.4) in (B.6) we have

Z (||Yj+1||2 - YjT+1Xv:) exp (— ‘

X;€ED>

Yit1 — X

h

2) (B.7)

and by adding to both sides of (B.7) the quantity

Y, — X;
Z (ly; 411> = ¥, 41x:) exp <_ H%

x;€D1UD3
2)

after some algebra it results that
Yt ? 2 T X ||?
<exp( |55 ) X (sl — v exn( |3
x;€D1UD3

Z (||Yj+1 ||2 - YI+1Xi) exp < ‘
2
o] 2 (vl = v7m)| -1} 8)

Yit1 — Xi

h

=1
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The right side of (B.8) is negative becaufgy; ,||” — y,,,x;) and the last product term have
opposite signs in both thB; and D; domains. Therefore, the left side of (B.8) is also negative,
which proves (B.2).

We can use now (B.2) to write

||Yj+1||2 < YjT+1

> XiEXp<_ HW 2) T (B.9)

= Yi+1Yj+2
Vi X2
st [ )

from where
T . — .
Yjt+1 (yy+2 y.7+1) >0 (B.10)
Y51 llly;42 = ¥l
or by taking into account (24)
m . Tm .
h,N(y]) h,N(y]+1) S 0.

[0 x (v ) [T, v (y )
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