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Abstract

A general nonparametric technique is proposed for the analysis of a complex multimodal feature
space and to delineate arbitrarily shaped clusters in it. The basic computational module of the technique
is an old pattern recognition procedure, the mean shift. We prove for discrete data the convergence of
a recursive mean shift procedure to the nearest stationary point of the underlying density function and
thus its utility in detecting the modes of the density. The equivalenceof the mean shift procedure
to the Nadaraya–Watson estimator from kernel regression and the robust M-estimators of location is
also established. Algorithms for two low-level vision tasks, discontinuity preserving smoothing and
image segmentation are described as applications. In these algorithms theonly user set parameter is
the resolution of the analysis, and either gray level or color images are accepted as input. Extensive
experimental results illustrate their excellent performance.

Keywords: mean shift; clustering; image segmentation; image smoothing; feature space;low-level

vision

1 Introduction

Low-level computer vision tasks are misleadingly difficult. Incorrect results can be easily obtained

since the employed techniques often rely upon the user correctly guessing the values for the tuning

parameters. To improve performance the execution of low-level tasks should be task driven, i.e.,

supported by independent high level information. This approach, however, requires that first the

low-level stage provides a reliable enough representation of the input, and that the feature extrac-

tion process is controlled only by very few tuning parameters corresponding to intuitive measures

in the input domain.

Feature space based analysis of images is a paradigm which can achieve the above stated

goals. A feature space is a mapping of the input obtained through the processing of the data in

small subsets at a time. For each subset a parametric representation of the feature of interest is
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obtained and the result is mapped into a point in the multidimensional space of the parameter.

After the entire input is processed, significant features correspond to denser regions in the feature

space, i.e., to clusters, and the goal of the analysis is the delineation of these clusters.

The nature of the feature space is application dependent. The subsets employed in themap-

ping can range from individual pixels as in the color space representation of an image, to a set of

quasi-randomly chosen data points as in the probabilistic Hough transform. Both the advantage

and the disadvantage of the feature space paradigm are arising from the global natureof the derived

representation of the input. On one hand, all the evidence for the presence of a significantfeature is

pooled together providing an excellent tolerance to a noise level which may renderlocal decisions

unreliable. On the other hand, features with lesser support in the feature spacemay not be detected

in spite of being salient for the task to be executed. This disadvantage, however, can be largely

avoided by either augmenting the feature space with additional (spatial) parameters from the input

domain, or by robust postprocessing of the input domain guided by the results of the feature space

analysis.

Analysis of the feature space is application independent. While there are a plethora of pub-

lished clustering techniques, most of them are not adequate to analyze feature spaces derived from

real data. Methods which rely upon a priori knowledge of the number of clusters present (including

those which use optimization of a global criterion to find this number), as well asmethods which

implicitly assume the same shape (most often elliptical) for all the clusters in the space, are not

able to handle the complexity of a real feature space. For a recent survey of suchmethods see [29,

Sec.8].

20
40

60
80

100

0

20

40

60

80

100

−50

0

50

L*

u*

v*

(a) (b)

Figure 1: Example of a feature space. (a) A400�276 color image. (b) CorrespondingL�u�v� color
space with110; 400 data points.
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In Figure 1 a typical example is shown. The color image in Figure 1a is mapped into the

three-dimensionalL�u�v� color space (to be discussed in Section 4). There is a continuous transi-

tion between the clusters arising from the dominant colors, and a decomposition of the space into

elliptical tiles will introduce severe artifacts. Enforcing a Gaussian mixture model over such data

is doomed to fail, e.g., [49], and even the use of a robust approach with contaminatedGaussian

densities [67] cannot be satisfactory for such complex cases. Note also that the mixture models

require the number of clusters as a parameter which raises its own challenges. For example, the

method described in [45] proposes several different ways to determine this number.

Arbitrarily structured feature spaces can be analyzed only by nonparametricmethods since

these methods do not have embedded assumptions. Numerous nonparametric clustering methods

were described in the literature and they can be classified into two large classes: hierarchical

clustering and density estimation. Hierarchical clustering techniques either aggregate or divide the

data based on some proximity measure. See [28, Sec.3.2] for a survey of hierarchical clustering

methods. The hierarchical methods tend to be computationally expensive and the definition of a

meaningful stopping criterion for the fusion (or division) of the data is not straightforward.

The rationale behind the density estimation based nonparametric clustering approach is that

the feature space can be regarded as the empirical probability density function(p.d.f.) of the

represented parameter. Dense regions in the feature space thus correspond to local maxima of the

p.d.f., that is, to themodesof the unknown density. Once the location of a mode is determined, the

cluster associated with it is delineated based on the local structure of the feature space [25, 60, 63].

Our approach to mode detection and clustering is based on the mean shift procedure,pro-

posed in 1975 by Fukunaga and Hostetler [21] and largely forgotten till Cheng’s paper [7] rekindled

the interest in it. In spite of its excellent qualities, the mean shift procedure does not seem to be

known in the statistical literature. While the book [54, Sec.6.2.2] discusses [21],the advantages of

employing a mean shift type procedure in density estimation were only recentlyrediscovered [8].

As will be proven in the sequel a computational module based on the mean shift procedure

is an extremely versatile tool for feature space analysis and can provide reliable solutions for many

vision tasks. In Section 2 the mean shift procedure is defined and its propertiesare analyzed.

In Section 3 the procedure is used as the computational module for robust feature space analysis

and implementational issues are discussed. In Section 4 the feature space analysis technique is

applied to two low level vision tasks: discontinuity preserving filtering andimage segmentation.

Both algorithms can have as input either gray level or color images and the only parameter to be

tuned by the user is the resolution of the analysis. The applicability of the mean shift procedure
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is not restricted to the presented examples. In Section 5 other applicationsare mentioned and the

procedure is put into a more general context.

2 The Mean Shift Procedure

Kernel density estimation (known as the Parzen window technique in the patternrecognition lit-

erature [17, Sec.4.3]) is the most popular density estimation method. Givenn data pointsxi,i = 1; : : : ; n in thed-dimensional spaceRd, themultivariate kernel density estimatorwith kernelK(x) and a symmetric positive definited � d bandwidth matrixH, computed in the pointx is

given by f̂(x) = 1n nXi=1 KH (x� xi) (1)

where KH(x) =j H j�1=2 K(H�1=2x): (2)

Thed-variate kernelK(x), is a bounded function with compact support satisfying [62, p.95]ZRd K(x)dx = 1 limkxk!1 kxkdK(x) = 0
(3)ZRd xK(x)dx = 0 ZRd xx>K(x)dx = cKI

wherecK is a constant. The multivariate kernel can be generated from a symmetric univariate

kernelK1(x) in two different waysKP (x) = dYi=1K1(xi) KS(x) = ak;dK1(kxk) (4)

whereKP (x) is obtained from the product of the univariate kernels, andKS(x) from rotatingK1(x) in Rd, i.e., KS(x) is radially symmetric. The constanta�1k;d = RRd K1(kxk)dx assures

thatKS(x) integrates to one, though this condition can be relaxed in our context. Either type of

multivariate kernel obeys (3), but for our purposes the radially symmetric kernels are often more

suitable.

We are interested only in a special class of radially symmetric kernels satisfyingK(x) = ck;dk(kxk2) (5)
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in which case it suffices to define the functionk(x) called theprofileof the kernel, only forx � 0.

The normalization constantck;d, which makesK(x) to integrate to one, is assumed strictly positive.

Using a fully parameterizedH increases the complexity of the estimation [62, p.106] and

in practice the bandwidth matrixH is chosen either as diagonalH = diag[h21; : : : ; h2d], or pro-

portional to the identity matrixH = h2I. The clear advantage of the latter case is that only one

bandwidth parameterh > 0 must be provided, however, as can be seen from (2) then the valid-

ity of an Euclidean metric for the feature space should be confirmed first. Employing only one

bandwidth parameter, the kernel density estimator (1) becomes the well known expressionf̂(x) = 1nhd nXi=1 K �x� xih � : (6)

The quality of a kernel density estimator is measured by the mean of the square error between

the density and its estimate, integrated over the domain of definition. In practice, however, only

an asymptotic approximation of this measure (denoted as AMISE) can be computed. Under the

asymptotics the number of data pointsn!1 while the bandwidthh! 0 at a rate slower thann�1. For both types of multivariate kernels the AMISE measure is minimized by the Epanechnikov

kernel [51, p.139], [62, p.104] having the profilekE(x) = � 1� x 0 � x � 10 x > 1 (7)

which yields the radially symmetric kernelKE(x) = � 12c�1d (d+ 2)(1� kxk2) kxk � 10 otherwise
(8)

wherecd is the volume of the unitd-dimensional sphere. Note that the Epanechnikov profile is not

differentiable at the boundary. The profilekN(x) = exp

��12x� x � 0 (9)

yields the multivariate normal kernelKN(x) = (2�)�d=2exp

��12kxk2� (10)

for both types of composition (4). The normal kernel is often symmetrically truncated to have a

kernel with finite support.
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While these two kernels will suffice for most applications we are interested in, all the results

presented below are valid for arbitrary kernels within the conditions to be stated. Employing the

profile notation the density estimator (6) can be rewritten asf̂h;K(x) = ck;dnhd nXi=1 k 



x� xih 



2! : (11)

The first step in the analysis of a feature space with the underlying densityf(x) is to find the modes

of this density. The modes are located among the zeros of the gradientrf(x) = 0, and the mean

shift procedure is an elegant way to locate these zeroswithoutestimating the density.

2.1 Density Gradient Estimation

The density gradient estimator is obtained as the gradient of the density estimator by exploiting the

linearity of (11) r̂fh;K(x) � rf̂h;K(x) = 2ck;dnhd+2 nXi=1 (x� xi) k0 



x� xih 



2! : (12)

We define the function g(x) = �k0(x) (13)

assuming that the derivative of the kernel profilek exists for allx 2 [0;1), except for a finite set

of points. Using nowg(x) for profile, the kernelG(x) is defined asG(x) = cg;dg(kxk2) (14)

wherecg;d is the corresponding normalization constant. The kernelK(x) was called the shadow ofG(x) in [7] in a slightly different context. Note that the Epanechnikov kernel is the shadow of the

uniform kernel, i.e., thed-dimensional unit sphere; while the normal kernel and its shadow have

the same expression.

Introducingg(x) into (12) yieldsr̂fh;K(x) = 2ck;dnhd+2 nXi=1 (xi � x) g 



x� xih 



2!= 2ck;dnhd+2 " nXi=1 g 



x� xih 



2!#2664Pni=1 xig�


x�xih 


2�Pni=1 g�


x�xih 


2� � x3775 (15)
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where
Pni=1 g�


x�xih 


2� is assumed to be a positive number. This condition is easy to satisfy

for all the profiles met in practice. Both terms of the product in (15) have special significance.

From (11) the first term is proportional to the density estimate atx computed with the kernelGf̂h;G(x) = cg;dnhd nXi=1 g 



x� xih 



2! : (16)

The second term is themean shiftmh;G(x) = Pni=1 xig�


x�xih 


2�Pni=1 g�


x�xih 


2� � x (17)

i.e., the difference between the weighted mean, using the kernelG for weights, andx the center of

the kernel (window). From (16) and (17) the expression (15) becomesr̂fh;K(x) = f̂h;G(x) 2ck;dh2cg;dmh;G(x) (18)

yielding mh;G(x) = 12h2cr̂fh;K(x)f̂h;G(x) : (19)

The expression (19) shows that at locationx the mean shift vector computed with kernelG is pro-

portional to thenormalizeddensity gradient estimate obtained with kernelK. The normalization is

by the density estimate inx computed with the kernelG. The mean shift vector thus always points

toward the direction of maximum increase in the density. This is a more general formulation of the

property first remarked by Fukunaga and Hostetler [20, p.535], [21], and also discussedin [7].

The relation captured in (19) is intuitive, the local mean is shifted toward the region in which

the majority of the points reside. Since the mean shift vector is aligned withthe local gradient

estimate it can define a path leading to a stationary point of theestimateddensity. The modes of

the density are such stationary points. Themean shift procedure, obtained by successive

– computation of the mean shift vectormh;G(x),
– translation of the kernel (window)G(x) bymh;G(x),

is guaranteed to converge at a nearby point where the estimate (11) has zero gradient, as will be

shown in the next section. The presence of the normalization by the density estimate is a desirable

feature. The regions of low density values are of no interest for the feature space analysis, and in

such regions the mean shift steps are large. Similarly, near local maximathe steps are small, and

the analysis more refined. The mean shift procedure thus is an adaptive gradient ascent method.
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2.2 Sufficient Condition for Convergence

Denote by
�yj	j=1;2::: the sequence of successive locations of the kernelG, where from (17)yj+1 = Pni=1 xig�


yj�xih 


2�Pni=1 g�


yj�xih 


2� j = 1; 2; : : : (20)

is the weighted mean atyj computed with kernelG and y1 is the center of the initial posi-

tion of the kernel. The corresponding sequence of density estimates computed with kernelK,nf̂h;K(j)oj=1;2:::, is given by f̂h;K(j) = f̂h;K(yj) j = 1; 2 : : : : (21)

As stated by the following theorem, a kernelK that obeys some mild conditions suffices for the

convergence of the sequences
�yj	j=1;2::: and

nf̂h;K(j)oj=1;2:::.
Theorem 1 If the kernelK has a convex and monotonically decreasing profile, the sequences�yj	j=1;2::: and

nf̂h;K(j)oj=1;2::: converge, and
nf̂h;K(j)oj=1;2::: is also monotonically increasing.

The proof is given in the Appendix. The theorem generalizes the result derived differently

in [13], whereK was the Epanechnikov kernel, andG the uniform kernel. The theorem remains

valid when each data pointxi is associated with a nonnegative weightwi. An example of noncon-

vergence when the kernelK is not convex is shown in [10, p.16].

The convergence property of the mean shift was also discussed in [7, Sec.IV].(Note, how-

ever, that almost all the discussion there is concerned with the “blurring” process in which the input

is recursively modified after each mean shift step.) The convergence of theprocedure as defined

in this paper was attributed in [7] to the gradient ascent nature of (19). However, as shown in [4,

Sec.1.2], moving in the direction of the local gradient guarantees convergence only forinfinites-

imal steps. The stepsize of a gradient based algorithm is crucial for the overall performance. If

the step size is too large, the algorithm will diverge, while if the step size is too small, the rate of

convergence may be very slow. A number of costly procedures have been developed forstepsize

selection [4, p.24]. The guaranteed convergence (as shown by Theorem 1) is due to the adaptive

magnitude of the mean shift vector which also eliminates the need for additionalprocedures to

8



chose the adequate stepsizes. This is a major advantage over the traditional gradient based meth-

ods.

For discrete data, the number of steps to convergence depends on the employed kernel.WhenG is the uniform kernel, convergence is achieved in a finite number of steps, sincethe number

of locations generating distinct mean values is finite. However, when the kernel G imposes a

weighting on the data points (according to the distance from its center), the meanshift procedure

is infinitely convergent. The practical way to stop the iterations is to set a lower bound for the

magnitude of the mean shift vector.

2.3 Mean Shift Based Mode Detection

Let us denote byyc andf̂ ch;K = f̂h;K(yc) the convergence points of the sequences
�yj	j=1;2::: andnf̂h;K(j)oj=1;2:::, respectively. The implications of Theorem 1 are the following.

First, the magnitude of the mean shift vector converges to zero. Indeed, from (17)and (20)

thej-th mean shift vector is mh;G(yj) = yj+1 � yj ; (22)

and, at the limitmh;G(yc) = yc�yc = 0. In other words, the gradient of the density estimate (11)

computed atyc is zero rf̂h;K(yc) = 0 ; (23)

due to (19). Hence,yc is a stationary point of̂fh;K.

Second, since
nf̂h;K(j)oj=1;2::: is monotonically increasing, the mean shift iterations satisfy

the conditions required by theCapture Theorem[4, p.45], which states that the trajectories of such

gradient methods are attracted by local maxima if they are unique (within a small neighborhood)

stationary points. That is, onceyj gets sufficiently close to a mode of̂fh;K, it converges to it. The

set of all locations that converge to the same mode defines thebasin of attractionof that mode.

The theoretical observations from above suggest a practical algorithm for mode detection:

– run the mean shift procedure to find the stationary points off̂h;K,

– prune these points by retaining only the local maxima.

The local maxima points are defined according to the Capture Theorem, as unique stationary points

within some small open sphere. This property can be tested by perturbing each stationary point by

a random vector of small norm, and letting the mean shift procedure converge again.Should the

point of convergence be unchanged (up to a tolerance), the point is a local maximum.
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2.4 Smooth Trajectory Property

The mean shift procedure employing a normal kernel has an interesting property. Its path toward

the mode follows a smooth trajectory, the angle between two consecutive meanshift vectors being

always less than 90 degrees.

Using the normal kernel (10) thej-th mean shift vector is given bymh;N(yj) = yj+1 � yj = Pni=1 xiexp

�� 


yj�xih 


2�Pni=1 exp

�� 


yj�xih 


2� � yj : (24)

The following theorem holds true for allj = 1; 2; : : : , according to the proof given in the Appendix.

Theorem 2 The cosine of the angle between two consecutive mean shift vectors is strictlypositive

when a normal kernel is employed, i.e.,mh;N(yj)>mh;N(yj+1)kmh;N(yj)kkmh;N(yj+1)k > 0: (25)

As a consequence of Theorem 2 the normal kernel appears to be the optimal one for the mean

shift procedure. The smooth trajectory of the mean shift procedure is in contrastwith the standard

steepest ascent method [4, p.21] (local gradient evaluation followed by line maximization) whose

convergence rate on surfaces with deep narrow valleys is slow due to its zigzagging trajectory.

In practice, the convergence of the mean shift procedure based on the normal kernel requires

large number of steps, as was discussed at the end of Section 2.2. Therefore, in most of our

experiments we have used the uniform kernel, for which the convergence is finite,and not the

normal kernel. Note, however, that the quality of the results almost always improves when the

normal kernel is employed.

2.5 Relation to Kernel Regression

Important insight can be gained when the relation (19) is obtained approaching the problemdiffer-

ently. Considering the univariate case suffices for this purpose.

Kernel regression is a nonparametric method to estimate complex trends from noisy data. See

[62, Chap.5] for an introduction to the topic, [24] for a more in-depth treatment. Letn measured
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data points be(Xi; Zi) and assume that the valuesXi are the outcomes of a random variablex with

probability density functionf(x), xi = Xi; i = 1; : : : ; n, while the relation betweenZi andXi isZi = m(Xi) + �i i = 1; : : : ; n (26)

wherem(x) is called the regression function, and�i is an independently distributed, zero-mean

error,E[�i] = 0.

A natural way to estimate the regression function is by locally fitting a degreep polynomial

to the data. For a window centered atx the polynomial coefficients then can be obtained by

weighted least squares, the weights being computed from a symmetric functiong(x). The size

of the window is controlled by the parameterh, gh(x) = h�1g(x=h). The simplest case is that

of fitting a constant to the data in the window, i.e.,p = 0. It can be shown, [24, Sec.3.1], [62,

Sec.5.2], that the estimated constant is the value of theNadaraya–Watsonestimatorm̂(x; h) = Pni=1 gh(x�Xi)ZiPni=1 gh(x�Xi) (27)

introduced in the statistical literature 35 years ago. The asymptotic conditional bias of the estimator

has the expression [24, p.109], [62, p.125],E[ (m̂(x; h)�m(x)) j X1; : : : ; Xn ] � h2m00(x)f(x) + 2m0(x)f 0(x)2f(x) �2[g] (28)

where�2[g] = R u2g(u)du. Definingm(x) = x reduces the Nadaraya–Watson estimator to (20)

(in the univariate case), while (28) becomesE[ (x̂� x) j X1; : : : ; Xn ] � h2f 0(x)f(x) �2[g] (29)

which is similar to (19). The mean shift procedure thus exploits to its advantagethe inherent bias

of the zero-order kernel regression.

The connection to the kernel regression literature opens many interesting issues, however,

most of these are more of a theoretical than practical importance.

2.6 Relation to Location M-estimators

The M-estimators are a family of robust techniques which can handle data in thepresence of

severe contaminations, i.e., outliers. See [26], [32] for introductory surveys. In our context only

the problem of location estimation has to be considered.
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Given the dataxi; i = 1; : : : ; n; and the scaleh, will define �̂, the location estimator as�̂ = argmin� J(�) = argmin� nXi=1 � 



� � xih 



2! (30)

where,�(u) is a symmetric, nonnegative valued function, with a unique minimum at the origin and

nondecreasing foru � 0. The estimator is obtained from the normal equationsr�J(�̂) = 2h�2(�̂ � xi)w0@




 �̂ � xih 




21A = 0 (31)

wherew(u) = d�(u)du . Therefore the iterations to find the location M-estimate are based on�̂ = Pni=1 xiw 



 �̂�xih 



2!Pni=1 w 



 �̂�xih 



2! (32)

which is identical to (20) whenw(u) � g(u). Taking into account (13) the minimization (30)

becomes �̂ = argmax� nXi=1 k 



� � xih 



2! (33)

which can be also interpreted as�̂ = argmax� f̂h;K(� j x1; : : : ;xn): (34)

That is, the location estimator is the mode of the density estimated with thekernelK from the

available data. Note that the convexity of thek(x) profile, the sufficient condition for the con-

vergence of the mean shift procedure (Section 2.2), is in accordance with the requirements to be

satisfied by the objective function�(u).
The relation between location M-estimators and kernel density estimation is not well in-

vestigated in the statistical literature, only [9] discusses it in thecontext of an edge preserving

smoothing technique.

3 Robust Analysis of Feature Spaces

Multimodality and arbitrarily shaped clusters are the defining properties of areal feature space.

The quality of the mean shift procedure to move toward the mode (peak) of the hill on which it
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was initiated, makes it the ideal computational module to analyze such spaces.To detect all the

significant modes, the basic algorithm given in Section 2.3 should be run multiple times (evolving

in principle in parallel) with initializations that cover the entire feature space.

Before the analysis is performed two important (and somewhat related) issues should be

addressed: the metric of the feature space and the shape of the kernel. The mapping from the input

domain into a feature space often associates a noneuclidean metric to the space. The problem of

color representation will be discussed in Section 4, but the employed parameterization has to be

carefully examined even in a simple case like the Hough space of lines, e.g., [48], [61].

The presence of a Mahalanobis metric can be accommodated by an adequate choice of the

bandwidth matrix (2). In practice, however, it is preferable to have assured that the metric of

the feature space is Euclidean and thus the bandwidth matrix is controlled by a single parameter,H = h2I. To be able to use the same kernel size for all the mean shift procedures in thefeature

space, the necessary condition is that local density variations near a significant mode are not as

large as the entire support of a significant mode somewhere else.

The starting points of the mean shift procedures should be chosen to have the entire feature

space (except the very sparse regions) tessellated by the kernels (windows). Regular tessellations

are not required. As the windows evolve toward the modes, almost all the data points are visited

and thus all the information captured in the feature space is exploited. Note thatthe convergence

to a given mode may yield slightly different locations, due to the threshold that terminate the

iterations. Similarly, on flat plateaus the value of the gradient is close tozero and the mean shift

procedure could stop.

These artifacts are easy to eliminate through postprocessing. Mode candidatesat a distance

less than the kernel bandwidth are fused, the one corresponding to the highest density being chosen.

The global structure of the feature space can be confirmed by measuring the significance of the

valleys defined along a cut through the density in the direction determined by two modes.

The delineation of the clusters is a natural outcome of the mode seeking process. After

convergence thebasin of attractionof a mode, i.e., the data points visited byall the mean shift

procedures converging to that mode, automatically delineates a cluster of arbitrary shape. Close

to the boundaries, where a data point could have been visited by several diverging procedures,

majority logic can be employed. It is important to notice that in computer vision most often we

are not dealing with an abstract clustering problem. The input domain almost always provides an

independent test for the validity oflocal decisionsin the feature space. That is, while it is less

likely that one can recover from a severe clustering error, allocationof a few uncertain data points
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Figure 2: Example of a 2D feature space analysis. (a) Two dimensional data set of110; 400 points
representing the first two components of theL�u�v� space shown in Figure 1b. (b) Decomposition
obtained by running159 mean shift procedures with different initializations. (c) Trajectories of the
mean shift procedures drawn over the Epanechnikov density estimate computed for the same data
set. The peaks retained for the final classification are marked with reddots.
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can be reliably supported by input domain information.

The multimodal feature space analysis technique was discussed in detail in [12]. It was

shown experimentally that for a synthetic, bimodal normal distribution the technique achieves a

classification error similar to the optimal Bayesian classifier. Thebehavior of this feature space

analysis technique is illustrated in Figure 2. A two dimensional data set of110; 400 points (Fig-

ure 2a) is decomposed into7 clusters represented with different colors in Figure 2b. A number of159mean shift procedures with uniform kernel were employed. Their trajectories are shown in Fig-

ure 2c, overlapped over the density estimate computed with Epanechnikov kernel. The pruning of

the mode candidates produced seven peaks. Observe that some of the trajectories are prematurely

stopped by local plateaus.

3.1 Bandwidth Selection

The influence of the bandwidth parameterh was assessed empirically in [12] through a simple

image segmentation task. In a more rigorous approach, however, four different techniques for

bandwidth selection can be considered.� The first one has a statistical motivation. The optimal bandwidth associated with the kernel

density estimator (6) is defined as the bandwidth that achieves the best compromise between

the bias and variance of the estimator, over allx 2 Rd, i.e., minimizes AMISE. In the

multivariate case, the resulting bandwidth formula [54, p.85], [62, p.99] is of little practi-

cal use, since it depends on the Laplacian of the unknown density being estimated, andits

performance is not well understood [62, p.108]. For the univariate case a reliable method

for bandwidth selection is the plug-in rule [53], which was proven to be superior to least

squares cross validation and biased cross-validation [42], [55, p.46]. Its only assumption is

the smoothness of the underlying density.� The second bandwidth selection technique is related to the stability of the decomposition.

The bandwidth is taken as the center of the largest operating range over which thesame

number of clusters are obtained for the given data [20, p.541].� For the third technique, the best bandwidth maximizes an objective function that expresses

the quality of the decomposition (i.e., the index of cluster validity). The objectivefunction

typically compares the inter- versus intra-cluster variability [30, 28] or evaluates the isolation

and connectivity of the delineated clusters [43].
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� Finally, since in most of the cases the decomposition is task dependent, top-down informa-

tion provided by the user or by an upper-level module can be used to control the kernel

bandwidth.

We present in [15] a detailed analysis of the bandwidth selection problem. To solve the

difficulties generated by the narrow peaks and the tails of the underlying density, two locally adap-

tive solutions are proposed. One is nonparametric, being based on a newly defined adaptive mean

shift procedure, which exploits the plug-in rule and the sample point density estimator. The other

is semiparametric, imposing a local structure on the data to extract reliable scale information. We

show that the local bandwidth should maximize the magnitude of the normalized mean shift vector.

The adaptation of the bandwidth provides superior results when compared to the fixed bandwidth

procedure. For more details, see [15].

3.2 Implementation Issues

An efficient computation of the mean shift procedure requires first the resampling of the input data

with a regular grid. This a standard technique in the context of density estimationwhich leads to a

binned estimator[62, Appendix D]. The procedure is similar to defining a histogram where linear

interpolation is used to compute the weights associated with the grid points. Further reduction in

the computation time is achieved by employing algorithms for multidimensional range searching

[52, p.373] used to find the data points falling in the neighborhood of a given kernel. For the

efficient Euclidean distance computation we used the improved absolute error inequality criterion,

derived in [39].

4 Applications

The feature space analysis technique introduced in the previous section is application independent

and thus can be used to develop vision algorithms for a wide variety of tasks. Twosomewhat

related applications are discussed in the sequel: discontinuity preserving smoothing and image

segmentation. The versatility of the feature space analysis enables to design algorithms in which

the user controls performance through a single parameter, the resolution of the analysis (i.e., band-

width of the kernel). Since the control parameter has clear physical meaning, thenew algorithms

can be easily integrated into systems performing more complex tasks. Furthermore, both gray

level and color images are processed with the same algorithm, in the formercase the feature space
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containing two degenerate dimensions that have no effect on the mean shift procedure.

Before proceeding to develop the new algorithms the issue of the employed color spacehas

to be settled. To obtain a meaningful segmentationperceivedcolor differences should correspond

to Euclidean distances in the color space chosen to represent the features (pixels). An Euclidean

metric, however, is not guaranteed for a color space [65, Secs.6.5.2; 8.4]. The spacesL�u�v� andL�a�b� were especially designed to best approximate perceptually uniform color spaces. In both

casesL� the lightness(relative brightness) coordinate is defined the same way, the two spaces

differ only through the chromaticity coordinates. The dependence of all three coordinates on the

traditionalRGB color values is nonlinear. See [46, Sec.3.5] for a readily accessible source for the

conversion formulae. The metric of perceptually uniform color spaces is discussed in the context

of feature representation for image segmentation in [16]. In practice thereis no clear advantage

between usingL�u�v� or L�a�b� , in the proposed algorithms we employedL�u�v� motivated by

a linear mapping property [65, p.166].

Our first image segmentation algorithm was a straightforward application of the feature space

analysis technique to anL�u�v� representation of the color image [11]. The modularity of the

segmentation algorithm enabled its integration by other groups to a large varietyof applications

like image retrieval [1], face tracking [6], object based video coding for MPEG-4 [22], shape

detection and recognition [33], and texture analysis [47], to mention only a few. However, since

the feature space analysis can be applied unchanged to moderately higher dimensionalspaces (see

Section 5) we subsequently also incorporated the spatial coordinates of a pixel into its feature space

representation. Thisjoint domainrepresentation is employed in the two algorithms described here.

An image is typically represented as a two-dimensional lattice ofp-dimensional vectors (pix-

els), wherep = 1 in the gray level case, 3 for color images, andp > 3 in the multispectral case.

The space of the lattice is known as thespatial domain while the gray level, color, or spectral

information is represented in therangedomain. For both domains an Euclidean metric is assumed.

When the location and range vectors are concatenated in the joint spatial-rangedomain of dimen-

siond = p + 2, their different nature has to be compensated by proper normalization. Thus, the

multivariate kernel is defined as the product of two radially symmetric kernels and the Euclidean

metric allows a single bandwidth parameter for each domainKhs;hr(x) = Ch2shpr k 



xshs



2! k 



xrhr 



2! (35)

wherexs is the spatial part,xr is the range part of a feature vector,k(x) the common profile used

in both two domains,hs andhr the employed kernel bandwidths, andC the corresponding nor-
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malization constant. In practice an Epanechnikov, or a (truncated) normal kernel always provides

satisfactory performance, so the user only has to set the bandwidth parameterh = (hs; hr), which

by controlling the size of the kernel determines the resolution of the mode detection.

4.1 Discontinuity Preserving Smoothing

Smoothing through replacing the pixel in the center of a window by the (weighted) average of the

pixels in the window, indiscriminately blurs the image removing not only the noise but also salient

information. Discontinuity preserving smoothing techniques, on the other hand, adaptively reduce

the amount of smoothing near abrupt changes in the local structure, i.e., edges.

There are a large variety of approaches to achieve this goal, from adaptive Wiener filtering

[31], to implementing isotropic [50] and anisotropic [44] local diffusion processes, a topic which

recently received renewed interest [19, 37, 56]. The diffusion based techniques, however, do not

have a straightforward stopping criterion and after a sufficiently large number of iterations, the

processed image collapses into a flat surface. The connection between anisotropic diffusion and

M-estimators is analyzed in [5].

A recently proposed noniterative discontinuity preserving smoothing technique is the bi-

lateral filtering [59]. The relation between bilateral filtering and diffusion based techniques was

analyzed in [3]. The bilateral filters also work in the joint spatial-rangedomain. The data is inde-

pendently weighted in the two domains and the center pixel is computed as the weighted average

of the window. The fundamental difference between the bilateral filtering and the mean shift based

smoothing algorithm is in the use of local information.

Mean Shift Filtering

Let xi andzi; i = 1; : : : ; n, be thed-dimensional input and filtered image pixels in the joint

spatial-range domain. For each pixel

1. Initializej = 1 andyi;1 = xi.
2. Computeyi;j+1 according to (20) until convergence,y = yi;c.
3. Assignzi = (xsi ;yri;c).

The upperscriptss andr denote the spatial and range components of a vector, respectively. The

assignment specifies that the filtered data at the spatial locationxsi will have the range component

of the point of convergenceyri;c.
The kernel (window) in the mean shift procedure moves in the direction of the maximum
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increase in thejoint density gradient, while the bilateral filtering uses a fixed, static window.In the

image smoothed by mean shift filtering, informationbeyondthe individual windows is also taken

into account.

An important connection between filtering in the joint domain and robust M-estimation

should be mentioned. The improved performance of the generalized M-estimators (GM, or bounded-

influence estimators) is due to the presence of a second weight function which offsets the influence

of leverage points, i.e., outliers in the input domain [32, Sec.8E]. A similar (at least in spirit)

twofold weighting is employed in the bilateral and mean shift based filterings, which is the main

reason of their excellent smoothing performance.

Mean shift filtering with uniform kernel having(hs; hr) = (8; 4) has been applied to the often

used256� 256 gray levelcameramanimage (Figure 3a), the result being shown in Figure 3b. The

regions containing the grass field have been almost completely smoothed while details such as the

tripod and the buildings in the background were preserved. The processing required fractions of

a second on a standard PC (600Mhz Pentium III) using an optimized C++ implementation of the

algorithm. On the average3:06 iterations were necessary until the filtered value of a pixel was

defined, i.e., its mean shift procedure converged.

(a) (b)

Figure 3:Cameramanimage. (a) Original. (b) Mean shift filtered(hs; hr) = (8; 4).
To better visualize the filtering process, the40 � 20 window marked in Figure 3a is repre-

sented in three dimensions in Figure 4a. Note that the data was reflected overthe horizontal axis

of the window for a more informative display. In Figure 4b the mean shift paths associated with

every other pixel (in both directions) from the plateau and the line are shown. Note that conver-

gence points (black dots) are situated in the center of the plateau, away from thediscontinuities
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delineating it. Similarly, the mean shift trajectories on the line remain on it. As a result, the filtered

data (Figure 4c) shows clean quasi-homogeneous regions.

The physical interpretation of the mean shift based filtering is easy to seeby examining

Figure 4a which in fact displays the three dimensions of the joint domain of a gray level image.

Take a pixel on the line. The uniform kernel defines a parallelepiped centered onthis pixel, and

the computation of the mean shift vector takes into account only those pixels whichhaveboththeir

spatial coordinatesandgray level values inside the parallelepiped. Thus, if the parallelepiped is

not too large, only pixels on the line are averaged and the new location of the window is guaranteed

to remain on it.

(a) (b)

(c) (d)

Figure 4: Visualization of mean shift based filtering and segmentation for gray level data. (a) Input.
(b) Mean shift paths for the pixels on the plateau and on the line. The black dots arethe points of
convergence. (c) Filtering result(hs; hr) = (8; 4). (d) Segmentation result.

A second filtering example is shown in Figure 5. The512 � 512 color imagebaboonwas

processed with mean shift filters employing normal kernels defined using various spatial and range

resolutions,(hs; hr) = (8� 32; 4� 16). While the texture of the fur has been removed, the details

of the eyes and the whiskers remained crisp (up to a certain resolution). Onecan see that the spatial

bandwidth has a distinct effect on the output when compared to the range (color) bandwidth.Only

features with large spatial support are represented in the filtered imagewhenhs increases. On the

other hand, only features with high color contrast survive whenhr is large. Similar behavior was
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also reported for the bilateral filter [59, Figure 3].

4.2 Image Segmentation

Image segmentation, decomposition of a gray level or color image into homogeneous tiles, is

arguably the most important low-level vision task. Homogeneity is usually definedas similarity

in pixel values, i.e. a piecewise constant model is enforced over the image.From the diversity

of image segmentation methods proposed in the literature will mention only some whose basic

processing relies on the joint domain. In each case a vector field is defined over the sampling

lattice of the image.

The attraction force field defined in [57] is computed at each pixel as a vector sum of pairwise

affinities between the current pixel and all other pixels, with similarity measured in both spatial and

range domains. The region boundaries are then identified as loci where the force vectors diverge.

It is interesting to note that for a given pixel, the magnitude and orientation of the force field are

similar to those of the joint domain mean shift vector computed at that pixel andprojected into the

spatial domain. However, in contrast to [57] the mean shift procedure moves in the direction of

this vector, away from the boundaries.

The edge flow in [34] is obtained at each location for a given set of directions as the magni-

tude of the gradient of a smoothed image. The boundaries are detected at image locationswhich

encounter two opposite directions of flow. The quantization of the edge flow direction, however,

may introduce artifacts. Recall that the direction of the mean shift is dictated solely by the data.

The mean shift procedure based image segmentation is a straightforward extension of the

discontinuity preserving smoothing algorithm. Each pixel is associated with asignificantmode of

the joint domain density located in its neighborhood, after nearby modes were pruned as in the

generic feature space analysis technique (Section 3).

Mean Shift Segmentation

Let xi andzi; i = 1; : : : ; n, be thed-dimensional input and filtered image pixels in the joint

spatial-range domain, andLi the label of thei-th pixel in the segmented image.

1. Run the mean shift filtering procedure for the image and storeall the information about thed-dimensional convergence point inzi, i.e.,zi = yi;c.
2. Delineate in the joint domain the clustersfCpgp=1:::m by grouping togetherall zi which are

closer thanhs in the spatial domain andhr in the range domain, i.e., concatenate the basins
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Original (hs; hr) = (8; 8) (hs; hr) = (8; 16)

(hs; hr) = (16; 4) (hs; hr) = (16; 8) (hs; hr) = (16; 16)

(hs; hr) = (32; 4) (hs; hr) = (32; 8) (hs; hr) = (32; 16)
Figure 5:Baboonimage. Original and filtered.
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of attraction of the corresponding convergence points.

3. For eachi = 1; : : : ; n, assignLi = fp j zi 2 Cpg.
4. Optional: Eliminate spatial regions containing less thanM pixels.

The cluster delineation step can be refined according to a priori information, and thus physics-

based segmentation algorithms, e.g., [2, 35] can be incorporated. Since this processis performed

on region adjacency graphs, hierarchical techniques like [36] can provide significant speed-up. The

effect of the cluster delineation step is shown in Figure 4d. Note the fusion into larger homoge-

neous regions of the result of filtering shown in Figure 4c. The segmentation step doesnot add a

significant overhead to the filtering process.

The region representation used by the mean shift segmentation is similar tothe blob repre-

sentation employed in [64]. However, while the blob has a parametric description (multivariate

Gaussians in both spatial and color domain), the partition generated by the mean shift is character-

ized by a nonparametric model. An image region is defined by all the pixels associated with the

same mode in the joint domain.

In [43] a nonparametric clustering method is described in which after kerneldensity esti-

mation with a small bandwidth the clusters are delineated through concatenation of the detected

modes’ neighborhoods. The merging process is based on two intuitive measures capturingthe

variations in the local density. Being a hierarchical clustering technique the method is computa-

tionally expensive, it takes several minutes in MATLAB to analyze a 2000 pixel subsample of the

feature space. The method is not recommended to be used in the joint domain since themeasures

employed in the merging process become ineffective. Comparing the results forarbitrarily shaped

synthetic data [43, Figure 6] with a similarly challenging example processed with the mean shift

method [12, Figure 1], shows that the use of a hierarchical approach can be successfully avoided

in the nonparametric clustering paradigm.

All the segmentation experiments were performed using uniform kernels. The improvement

due to joint space analysis can be seen in Figure 6 where the256� 256 gray level imageMIT was

processed with(hs; hr;M) = (8; 7; 20). A number of225 homogeneous regions were identified

in fractions of a second, most of them delineating semantically meaningful regionslike walls, sky,

steps, inscription on the building, etc. Compare the results with the segmentation obtained by one-

dimensional clustering of the gray level values in [11, Figure 4] or by using a Gibbs random fields

based approach [40, Figure 7].

The joint domain segmentation of the color256 � 256 room image presented in Figure 7 is

also satisfactory. Compare this result with the segmentation presentedin [38, Figures 3e and 5c]
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(a) (b) (c)

Figure 6:MIT image. (a) Original. (b) Segmented(hs; hr;M) = (8; 7; 20). (c) Region boundaries.

obtained by recursive thresholding. In both these examples, one can notice that regionsin which a

small gradient of illumination exist (like the sky in theMIT or the carpet in theroomimage), were

delineated as a single region. Thus, the joint domain mean shift based segmentation succeeds to

overcome the inherent limitations of methods based only on gray-level or color clustering, which

typically oversegment small gradient regions.

(a) (b)

Figure 7: Room image. (a) Original. (b) Region boundaries delineated with(hs; hr;M) =(8; 5; 20), drawn over the input.

The segmentation with(hs; hr;M) = (16; 7; 40) of the512� 512 color imagelakeis shown

in Figure 8. Compare this result with that of the multiscale approach in [57, Figure 11]. Finally,

one can compare the contours of the color image(hs; hr;M) = (16; 19; 40) handpresented in

Figure 9 with those from [66, Figure 15] obtained through a complex global optimization, and
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(a) (b)

Figure 8:Lakeimage. (a) Original. (b) Segmented with(hs; hr;M) = (16; 7; 40).

(a) (b)

Figure 9: Hand image. (a) Original. (b) Region boundaries delineated with(hs; hr;M) =(16; 19; 40) drawn over the input.

from [41, Figure 4a] obtained with geodesic active contours.

The segmentation is not very sensitive to the choice of the resolution parameters hs andhr.
Note that all256� 256 images used the samehs = 8 corresponding to a17� 17 spatial window,

while all 512�512 images usedhs = 16 corresponding to a31�31 window. The range parameterhr and the smallest significant feature sizeM control the number of regions in the segmented

image. The more an image deviates from the assumed piecewise constant model, larger values

have to be used forhr andM to discard the effect of small local variations in the feature space.

For example, the heavily textured background in thehandimage is compensated by usinghr = 19
andM = 40, values which are much larger than those used for theroomimage(hr = 5; M = 20)
since the latter better obeys the model. As with any low level vision algorithm, the quality of the
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Figure 10: Landscapeimages. All the region boundaries were delineated with(hs; hr;M) =(8; 7; 100) and are drawn over the original image.

segmentation output can be assessed only in the context of the whole vision task, and thusthe

resolution parameters should be chosen according to that criterion. An importantadvantage of

mean shift based segmentation is its modularity which makes the control of segmentation output

very simple.

Other segmentation examples in which the original image has the region boundaries super-

posed are shown in Figure 10 and in which the original and labeled images comparedin Figure 11.

As potential application of the segmentation, we return to thecameramanimage. Figure 12a

shows the reconstructed image after the regions corresponding to the sky and grasswere manually

replaced with white. The mean shift segmentation has been applied with(hs; hr;M) = (8; 4; 10).
Observe the preservation of the details which suggests that the algorithm can also be used for image

editing, as shown in Figure 12b.

The (unoptimized) JAVA code for the discontinuity preserving smoothing and image seg-

mentation algorithms integrated into a single system with graphical interface is available at

http://www.caip.rutgers.edu/riul/research/code.html
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Figure 11: Some other segmentation examples with(hs; hr;M) = (8; 7; 20). Left: original. Right:
segmented.
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(a) (b)

Figure 12:Cameramanimage.(a) Segmentation with(hs; hr;M) = (8; 4; 10) and reconstruction
after the elimination of regions representing sky and grass. (b) Supervised texture insertion.

5 Discussion

The mean shift based feature space analysis technique introduced in this paper isa general tool

which is not restricted to the two applications discussed here. Since the quality of the output is

controlled only by the kernel bandwidth, i.e., the resolution of the analysis, the techniqueshould

be also easily integrable into complex vision systems where the control is relinquished to a closed

loop process. Additional insights on the bandwidth selection can be obtained by testingthe stability

of the mean shift direction across the different bandwidths, as investigatedin [57] in the case of

the force field. The nonparametric toolbox developed in this paper is suitable for a large variety

of computer vision tasks where parametric models are less adequate, for example, modeling the

background in visual surveillance [18].

The complete solution toward autonomous image segmentation is to combine a bandwidth

selection technique (like the ones discussed in Section 3.1) with top-down taskrelated high level

information. In this case each mean shift process is associated with a kernel best suited to the

local structure of the joint domain. Several interesting theoretical issueshave to be addressed

though, before the benefits of such a data driven approach can be fully exploited. We are currently

investigating these issues.

The ability of the mean shift procedure to be attracted by the modes (local maxima) of an

underlying density function, can be exploited in an optimization framework. Cheng [7]already

discusses a simple example. However, by introducing adequate objective functionsthe optimiza-
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tion problem can acquire physical meaning in the context of a computer vision task. For example,

in [14] by defining the distance between the distributions of the model and a candidate of the target,

non-rigid objects were tracked in an image sequence under severe distortions. The distance was

defined at every pixel in the region of interest of the new frame, and the mean shift procedure was

used to find the mode of this measure nearest to the previous location of the target.

The above mentioned tracking algorithm can be regarded as an example of computer vision

techniques which are based onin situ optimization. Under this paradigm the solution is obtained

by using the input domain to define the optimization problem. Thein situ optimization is a very

powerful method. In [23] and [58] each input data point was associated with a local field (voting

kernel) to produce a more dense structure from where the sought information (salientfeatures, the

hyperplane representing the fundamental matrix) can be reliably extracted.

The mean shift procedure is not computationally expensive. Careful C++ implementation of

the tracking algorithm allowed real time (30 frames/second) processing of the video stream. While

it is not clear if the segmentation algorithm described in this paper can be madeso fast, given

the quality of the region boundaries it provides, it can be used to support edge detection without

significant overhead in time.

Kernel density estimation in particular and nonparametric techniques in general do not scale

well with the dimension of the space. This is mostly due to the empty space phenomenon[20,

p.70], [54, p.93] by which most of the mass in a high dimensional space is concentrated in a small

region of the space. Thus, whenever the feature space has more than (say) six dimensions the

analysis should be approached carefully. Employing projection pursuit, in which thedensity is

analyzed along lower dimensional cuts, e.g., [27], is a possibility.

To conclude, the mean shift procedure is a valuable computational module whose versatility

can make it an important component of any computer vision toolbox.

Appendix

Proof of Theorem 1

If the kernelK has a convex and monotonically decreasing profile, the sequences
�yj	j=1;2::: andnf̂h;K(j)oj=1;2::: converge, and

nf̂h;K(j)oj=1;2::: is also monotonically increasing.
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Sincen is finite the sequencêfh;K (21) is bounded therefore it is sufficient to show thatf̂h;K
is strictly monotonic increasing, i.e., ifyj 6= yj+1 then f̂h;K(j) < f̂h;K(j + 1), for j = 1; 2 : : : .
Without loss of generality can be assumed thatyj = 0 and thus from (16) and (21)f̂h;K(j + 1)� f̂h;K(j) = ck;dnhd nXi=1 "k 



yj+1 � xih 



2!� k�


xih 


2�# : (A.1)

The convexity of the profilek(x) implies thatk(x2) � k(x1) + k0(x1)(x2 � x1) (A.2)

for all x1; x2 2 [0;1), x1 6= x2, and sinceg(x) = �k0(x), the inequality (A.2) becomesk(x2)� k(x1) � g(x1)(x1 � x2): (A.3)

Using now (A.1) and (A.3) we obtainf̂h;K(j + 1)� f̂h;K(j) � ck;dnhd+2 nXi=1 g�


xih 


2�� kxik2 � kyj+1 � xik2 �= ck;dnhd+2 nXi=1 g�


xih 


2�� 2y>j+1xi � kyj+1k2 � (A.4)= ck;dnhd+2 "2y>j+1 nXi=1 xig�


xih 


2�� kyj+1k2 nXi=1 g�


xih 


2�#
and recalling (20) yieldsf̂h;K(j + 1)� f̂h;K(j) � ck;dnhd+2kyj+1k2 nXi=1 g�


xih 


2� : (A.5)

The profilek(x) being monotonically decreasing for allx � 0 the sum
Pni=1 g �

xih 

2� is strictly

positive. Thus, as long asyj+1 6= yj = 0, the right term of (A.5) is strictly positive, i.e.,̂fh;K(j +1) > f̂h;K(j). Consequently, the sequence
nf̂h;K(j)oj=1;2::: is convergent.

To prove the convergence of the sequence
�yj	j=1;2::: (A.5) is rewritten for an arbitrary

kernel locationyj 6= 0. After some algebra we havef̂h;K(j + 1)� f̂h;K(j) � ck;dnhd+2kyj+1� yjk2 nXi=1 g 



yj � xih 



2! : (A.6)
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Summing now the two terms of the inequality (A.6) for indicesj; j +1 : : : j +m� 1 it results thatf̂h;K(j +m)� f̂h;K(j) � ck;dnhd+2 kyj+m� yj+m�1k2 nXi=1 g 



yj+m�1 � xih 



2!+ : : :+ ck;dnhd+2 kyj+1� yjk2 nXi=1 g 



yj � xih 



2!� ck;dnhd+2 �kyj+m� yj+m�1k2 + � � �+ kyj+1� yjk2�M� ck;dnhd+2 kyj+m� yjk2M (A.7)

whereM represents the minimum (always strictly positive) of the sum
Pni=1 g�


yj�xih 


2� for

all
�yj	j=1;2:::.

Since
nf̂h;K(j)oj=1;2::: is convergent, it is also a Cauchy sequence. This property in con-

junction with (A.7) implies that
�yj	j=1;2::: is a Cauchy sequence, hence, it is convergent in the

Euclidean space.

Proof of Theorem 2

The cosine of the angle between two consecutive mean shift vectors is strictlypositive when a

normal kernel is employed.

We can assume w.l.g. thatyj = 0 andyj+1 6= yj+2 6= 0 since otherwise convergence has

already been achieved. Therefore the mean shift vectormh;N(0) ismh;N(0) = yj+1 = Pni=1 xiexp

�� 


xih 


2�Pni=1 exp

�� 


xih 


2� : (B.1)

We will show first that when the weights are given by a normal kernel centeredatyj+1 the weighted

sum of the projections of
�yj+1 � xi� ontoyj+1 is strictly negative, i.e.,nXi=1 �kyj+1k2 � y>j+1xi�exp

 � 



yj+1 � xih 



2! < 0: (B.2)
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The spaceRd can be decomposed into the following three domainsD1 = �x 2 Rd ����y>j+1x � 12kyj+1k2�D2 = �x 2 Rd ����12kyj+1k2 < y>j+1x � kyj+1k2�D3 = �x 2 Rd ��kyj+1k2 < y>j+1x	 (B.3)

and after some simple manipulations from (B.1) we can derive the equalityXxi2D2 �kyj+1k2 � y>j+1xi�exp

�� 


xih 


2� == Xxi2D1[D3 �y>j+1xi � kyj+1k2�exp

�� 


xih 


2� : (B.4)

In addition, forx 2 D2 we havekyj+1k2 � y>j+1x � 0, which implieskyj+1 � xik2 = kyj+1k2 + kxik2 � 2y>j+1xi � kxik2 � kyj+1k2 (B.5)

from whereXxi2D2 �kyj+1k2 � y>j+1xi�exp

 � 



yj+1 � xih 



2!� exp

�


yj+1h 


2� Xxi2D2 �kyj+1k2 � y>j+1xi�exp

�� 


xih 


2� : (B.6)

Introducing now (B.4) in (B.6) we haveXxi2D2 �kyj+1k2 � y>j+1xi�exp

 � 



yj+1 � xih 



2!� exp

�


yj+1h 


2� Xxi2D1[D3 �y>j+1xi � kyj+1k2�exp

�� 


xih 


2� (B.7)

and by adding to both sides of (B.7) the quantityXxi2D1[D3 �kyj+1k2 � y>j+1xi�exp

 � 



yj+1 � xih 



2! ;
after some algebra it results thatnXi=1 �kyj+1k2 � y>j+1xi�exp

 � 



yj+1 � xih 



2!� exp

�


yj+1h 


2� Xxi2D1[D3 �kyj+1k2 � y>j+1xi�exp

�� 


xih 


2���exp

�� 2h2 �kyj+1k2 � y>j+1xi��� 1� : (B.8)
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The right side of (B.8) is negative because
�kyj+1k2 � y>j+1xi� and the last product term have

opposite signs in both theD1 andD3 domains. Therefore, the left side of (B.8) is also negative,

which proves (B.2).

We can use now (B.2) to writekyj+1k2 < y>j+1Pni=1 xiexp

�� 


yj+1�xih 


2�Pni=1 exp

�� 


yj+1�xih 


2� = y>j+1yj+2 (B.9)

from where y>j+1 �yj+2 � yj+1�kyj+1kkyj+2 � yj+1k > 0 (B.10)

or by taking into account (24) mh;N(yj)>mh;N(yj+1)kmh;N(yj)kkmh;N(yj+1)k > 0:
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[24] W. Härdle,Applied Nonparameteric Regression. Cambridge University Press, 1991.

[25] M. Herbin, N. Bonnet, and P. Vautrot, “A clustering method based on the estimation of the probability
density function and on the skeleton by influence zones,”Pattern Recog. Letters, vol. 17, pp. 1141–
1150, 1996.

[26] P. J. Huber,Robust Statistical Procedures. SIAM, second edition, 1996.

[27] J. N. Hwang, S. R. Lay, and A. Lippman, “Nonparametric multivariate density estimation: A compar-
ative study,”IEEE Trans. Signal Processing, vol. 42, pp. 2795–2810, 1994.

[28] A. K. Jain and R. C. Dubes,Algorithms for Clustering Data. Prentice Hall, 1988.

[29] A. K. Jain, R. P. W. Duin, and J. Mao, “Statistical pattern recognition: A review,”IEEE Trans. Pattern
Anal. Machine Intell., vol. 22, pp. 4–37, 2000.

[30] L. Kauffman and P. Rousseeuw,Finding Groups in Data: An Introduction to Cluster Analysis. J.
Wiley & Sons, 1990.

[31] D. T. Kuan, A. A. Sawchuk, T. C. Strand, and P. Chavel, “Adaptive noise smoothing filter for images
with signal dependent noise,”IEEE Trans. Pattern Anal. Machine Intell., vol. 7, pp. 165–177, 1985.

[32] G. Li, “Robust regression,” in D. C. Hoaglin, F. Mosteller, and J. W. Tukey, editors,Exploring Data
Tables, Trends, and Shapes, Wiley, 1985, pp. 281–343.

[33] L. Liu and S. Sclaroff, “Deformable shape detection anddescription via model-based region group-
ing,” in Proceedings of 1999 IEEE Conference on Computer Vision and Pattern Recognition,Fort
Collins, Colorado, volume II, June 1999, pp. 21–27.

[34] W. Y. Ma and B. S. Manjunath, “Edge flow: A framework of boundary detection and image segmen-
tation,” IEEE Trans. Image Processing, vol. 9, pp. 1375–1388, 2000.

[35] B. A. Maxwell and S. S. Shafer, “Segmentation and interpretation of multicolored objects with high-
lights,” Computer Vision and Image Understanding, vol. 77, pp. 1–24, 2000.

[36] A. Montanvert, P. Meer, and A. Rosenfeld, “Hierarchical image analysis using irregular tessellation,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 13, pp. 307–316, 1991.

[37] J. Monteil and A. Beghdadi, “A new interpretation and improvement of nonlinear anisotropic diffusion
for image enhancement,”IEEE Trans. Pattern Anal. Machine Intell., vol. 21, pp. 940–946, 1999.

[38] Y. Ohta, T. Kanade, and T. Sakai, “Color information forregion segmentation,”Computer Graphics
and Image Processing, vol. 13, pp. 222–241, 1980.

[39] J. Pan, F. McInnes, and M. Jack, “Fast clustering algorithms for vector quantization,”Pattern Recog-
nition, vol. 29, pp. 511–518, 1996.

[40] T. N. Pappas, “An adaptive clustering algorithm for image segmentation,”IEEE Trans. Signal Process.,
vol. 40, pp. 901–914, 1992.

[41] N. Paragios and R. Deriche, “Geodesic active contours for supervised texture segmentation,” inPro-
ceedings of 1999 IEEE Conference on Computer Vision and Pattern Recognition,Fort Collins, Col-
orado, volume II, June 1999, pp. 422–427.

35



[42] B. Park and J. Marron, “Comparison of data-driven bandwidth selectors,”J. of Amer. Stat. Assoc.,
vol. 85, pp. 66–72, 1990.

[43] E. J. Pauwels and G. Frederix, “Finding salient regionsin images,”Computer Vision and Image Un-
derstanding, vol. 75, pp. 73–85, 1999.

[44] P. Perona and J. Malik, “Scale-space and edge detectionusing anisotropic diffusion,”IEEE Trans.
Pattern Anal. Machine Intell., vol. 12, pp. 629–639, 1990.

[45] K. Popat and R. W. Picard, “Cluster-based probability model and its application to image and texture
processing,”IEEE Trans. Image Process., vol. 6, pp. 268–284, 1997.

[46] W. K. Pratt,Digital Image Processing. Wiley, second edition, 1991.

[47] D. Ridder, J. Kittler, O. Lemmers, and R. Duin, “The adaptive subspace map for texture segmen-
tation,” in Proceedings of 2000 International Conference on Pattern Recognition,Barcelona, Spain,
September 2000, pp. 216–220.

[48] T. Risse, “Hough transform for line recognition: Complexity of evidence accumulation and cluster
detection,”Comput. Vision Graphics Image Process., vol. 46, pp. 327–345, 1989.

[49] S. J. Roberts, “Parametric and non-parametric unsupervised cluster analysis,”Pattern Recog., vol. 30,
pp. 261–272, 1997.

[50] P. Saint-Marc, J. S. Chen, and G. Medioni, “Adaptive smoothing: A general tool for early vision,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 13, pp. 514–529, 1991.

[51] D. W. Scott,Multivariate Density Estimation. Wiley, 1992.

[52] R. Sedgewick,Algorithms in C++. Addison-Wesley, 1992.

[53] S. Sheather and M. Jones, “A reliable data-based bandwidth selection method for kernel density esti-
mation,”J. Royal Statist. Soc. B, vol. 53, pp. 683–690, 1991.

[54] B. W. Silverman,Density Estimation for Statistics and Data Analysis. Chapman & Hall, 1986.

[55] J. Simonoff,Smoothing Methods in Statistics. Springer-Verlag, 1996.

[56] Special Issue on, “Partial differential equations andgeometry-driven diffusion in image processing
and analysis,”IEEE Trans. Image Process., vol. 7, March 1998.

[57] M. Tabb and N. Ahuja, “Multiscale image segmentation byintegrated edge and region detection,”
IEEE Trans. Image Process., vol. 6, pp. 642–655, 1997.

[58] C. K. Tang, G. Medioni, and M. S. Lee, “Epipolar geometryestimation by tensor voting in 8d,” in
Proceedings 7th International Conference on Computer Vision,Kerkyra, Greece, volume I, September
1999, pp. 502–509.

[59] C. Tomasi and R. Manduchi, “Bilateral filtering for grayand color images,” inProceedings 6th Inter-
national Conference on Computer Vision,Bombay, India, January 1998, pp. 839–846.

[60] A. Touzani and J. G. Postaire, “Clustering by mode boundary detection,”Pattern Recog. Letters, vol. 9,
pp. 1–12, 1989.

[61] T. Tuytelaars, L. Van Gool, M. Proesmans, and T. Moons, “The cascaded Hough transform as an
aid in aerial image interpretation,” inProceedings 6th International Conference on Computer Vision,
Bombay, India, January 1998, pp. 67–72.

36



[62] M. P. Wand and M. Jones,Kernel Smoothing. Chapman & Hall, 1995.

[63] R. Wilson and M. Spann, “A new approach to clustering,”Pattern Recog., vol. 23, pp. 1413–1425,
1990.

[64] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland, “Pfinder: Real-time tracking of the human
body,” IEEE Trans. Pattern Anal. Machine Intell., vol. 19, pp. 780–785, 1997.

[65] G. Wyszecki and W. S. Stiles,Color Science: Concepts and Methods, Quantitative Data andFormu-
lae. Wiley, second edition, 1982.

[66] S. C. Zhu and A. Yuille, “Region competition: Unifying snakes, region growing, and bayes/mdl for
multiband image segmentation,”IEEE Trans. Pattern Anal. Machine Intell., vol. 18, pp. 884–900,
1996.

[67] X. Zhuang, Y. Huang, K. Palaniappan, and Y. Zhao, “Gaussian mixture density modeling decomposi-
tion, and applications,”IEEE Trans. Image Process., vol. 5, pp. 1293–1302, 1996.

37


