
BIDIMENSIONAL MEDIAN FILTER FOR PARALLEL COMPUTING ARCHITECTURES

Ricardo M. Sánchez Paul A. Rodrı́guez

Department of Electrical Engineering
Pontificia Universidad Católica del Perú
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ABSTRACT

The median filter is a non-linear filter used for removal of salt and
pepper noise from images. Each pixel of the image is replaced by the
median of its surrounding elements, the median value is calculated
by sorting the data. The complexity of the sorting algorithms used
on the median filters are O(n2) or O(n), depending on the kernel
size. Those algorithms were formulated for scalar single processor
computers, with few of them successfully adapted and implemented
for computer with a parallel architecture.

In this paper we present a novel sorting algorithm, with O(n)
computational complexity and a highly parallelizable structure,
based on the Complementary Cumulative Distribution Function.
Furthermore, a 2D median filter based on our proposed sorting al-
gorithm can achieve O(1) complexity. We have implemented our
proposed algorithm in two parallel architectures: SIMD Intel and
CUDA, which have a throughput of 12.8 and 35 ∼ 57 megapixels
per second respectively.

Index Terms— Nonlinear filters, Parallel Algorithms

1. INTRODUCTION

The median filter is a basic operation for digital image processing,
as it removes salt and pepper noise while preserving the edges of the
image. This type of noise is usually generated by lost packets on dig-
ital transmission, noisy digital channels, or errors on the acquisition
system (dust on the lens, defective pixels on the sensor) [1]. How-
ever, the usage of the 2D median filter (originally proposed in 1974
[2]) is restricted by its high computational cost and its non-linear
nature.

The algorithms for median filtering differ one from each other by
the sorting algorithm that each one use. For large kernels it is typ-
ical to use sorting algorithms with O(n) computational complexity,
where n is the kernel size. Those algorithms require additional mem-
ory for data structures or containers. Also, they can reduce memory
access by keeping the previous results and use them to calculate de
median of the next pixel [3, 4, 5]. Furthermore, O(1) computational
complexity can be obtained by storing partial results of the contain-
ers needed to get the median value [6, 7]. For small kernels, O(n2)
sorting algorithms are faster than the O(n) ones, and some of them
make use of vector processors to achieve a very high performance
[8, 9, 10]. This improvement is due to the data parallelism of the un-
derlaying sorting algorithm, as the Sorting Network [8], that allows
to sort consecutive datasets with common elements. Parallel sort-
ing algorithms, for multiprocessors systems, have been proposed,
but they have high communication cost [11] or unbalanced compu-
tational load [12].

In this paper we propose a novel sorting algorithm that can be
implemented efficiently on parallel multiprocessors systems. This

algorithm is based on the Complementary Cumulative Distribution
Function (ccdf ) [13] and it has similar properties to the ones based
on probability mass function (pmf or histograms). With this al-
gorithm we develop a new median filter algorithm that is efficient
on parallel systems, such as CUDA-enabled graphics cards, and is
benefited by the optimizations originally proposed for the histogram
(pmf ) based algorithms (i.e.: Constant-Time Median Filter [6]).
The implementation of the new median filter has been developed
for CUDA-enabled graphics card and for Intel processors, as each
one offer different parallel architectures.

This paper is organized as follows: in Section 2 the novel sorting
algorithm and the median filter algorithms are described. In Section
3 we present the complexity analysis and evaluate its parallel capa-
bilities of our proposed algorithm. We describe the median imple-
mentations used and show the computational results on Section 4.
On Section 5 we discuss the results and give our concluding remarks

2. ALGORITHMS DESCRIPTION

2.1. CCDF-sorting

This new algorithm for sorting data needs to generate a vector with
the complementary cumulative distribution function (ccdf) from the
data set to be sorted. From the generated auxiliary vector we can
obtain the kth biggest number in the data set.

Given the vector x = [x0, x1, . . . , xn−1] with n elements,
where xi ∈ N and a ≤ xi ≤ b, the complementary cumulative
distribution function, or reliability function [13], is defined by:

F̄x(j) = 1− Fx(j) = 1− Pr(x ≤ j) = Pr(x > j)

where Fx(j) is the cumulative distribution function of the vector
x and Pr(x > j) is the probability of xi > j. For the sorting
algorithm we replace the probability function Pr(x > j) with a
counting function Cj(x):

Cj(x) =

n−1∑
i=0

I[xi>j] (1)

where I[xi>j] is the indicator function. It is straightforward to show
that F̄x(j) monotonically decreases to zero.

Now, in order to get the sorted vector y, we need to set the aux-
iliary vector τ = {τj} = ccdf(x), j ∈ [a, b], τj = Cj(x) ∈ [0, n].
Then y = {yk} = ccdf(τ ), k ∈ [0, n − 1], yk = Ck(τ ) ∈
[a, b] is the sorted vector of x. For example, given the set x =
[4, 6, 2, 9, 8], with n = 5, a = 0 and b = 10, we can compute τ =
[5, 5, 4, 4, 3, 3, 2, 2, 1, 0, 0] and the sorted vector y = [9, 8, 6, 4, 2].
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2.2. Median filter with CCDF-sorting

To obtain the kth biggest element of x from the auxiliary vector τ
we only need to calculate C(τ > k). Following this, if we require
the minimum, maximum and median value we need to set k = n−1,
k = 0 and k = (n− 1)/2 respectively, we assume that n is odd.

An important property of the ccdf is the separability. Given the
set x, with nx elements and the subsets a,b with na, nb elements
respectively, such that nx = na + nb, x = a ∪ b, it can be shown
that

τ (x) = τ (a) + τ (b).

Given an additional dataset y, with ny elements and the subset
c with nc elements, such that ny = nb + nc, y = b ∪ c, then it is
easy to show that:

τ (y) = τ (x) + τ (c) − τ (a).

This property allows us to reduce memory access by keeping a
τ acc and updating it for the next pixel. The update is done by adding
the ccdf of the new pixels and subtracting the ccdf of the old ones.

This approach was originally proposed for the histogram-based
median filter [3] and it can be applied for the ccdf -based median
filter as well. Another approach is to generate partial histograms for
a whole row of the image and getting the kernel’s histogram using
those partial histograms only. For the next row the partial histograms
are updated (Fig. 1) [6].

(a) τacc (b) Update τacc (c) Update τ i

Fig. 1. O(1) complexity approach (originally proposed by [6]).

This procedure can be also applied for the ccdf-based median
filter. The computational complexity is lowered and the memory
access are reduced, but additional memory is required. Algorithm 1
describes the proposed algorithm for median filtering.

Algorithm 1: Parallel Ccdf-based Median Filter (PCMF)

Input: I: N ×M matrix to be filtered.
Kernel size: k × k, k odd.
Output: O: N ×M filtered matrix
begin

foreach i-th Column in I do
xi,l ← {Ii,n : |n− l| ≤ k}
τ i ← CCDF(xi)

foreach j-th Row in I do
τ

(i,j)
acc ←∑

τ i,j−n, n = −k : k
foreach i-th Pixel in j-th Row do

Oi,j ← MedianFromCCDF(τ (i,j)
acc )

UpdateCCDFfromTempVectors(τ (i,j)
acc )

foreach i-th Column in I do
UpdateCCDFfromMatrix(τ i)

3. ALGORITHM ANALYSIS

3.1. Computational Complexity

In what follows we analyze the computational complexity of the
functions CCDF(x) and MedianFromCCDF(τx) (see Algorithm
1), since our proposed algorithm is based on this two basic opera-
tions.

• CCDF(x): From Eq (1), to get the ccdf of a vector x of n
elements, with a ≤ xi ≤ b, the number of operations needed
is τx = (b−a)((n−1) additions+n comparisons) = O(n)

• MedianFromCCDF(τx): Given τx, the number of oper-
ations needed to get the median value is median(τx) =
(b− a− 1) additions + (b− a) comparisons = O(1).

The complexity to get the median value of a vector x is
median(x) = O(n) +O(1) = O(n).

With this results, and given I , an N ×M image, the computa-
tional complexity of the PCMF (Algorithm 1) for the whole image
is:

NO(n2)︸ ︷︷ ︸
Initialize τ

+NMO(1)︸ ︷︷ ︸
Median Values

+NMO(1)︸ ︷︷ ︸
Update τ

= O(n2)

As the initialization stage takes place only one time per row, a
better representation for the asymptotical behavior of the algorithm
is to find its complexity per pixel. This value is:

Complexity

# of Pixels
=

NO(n2) + 2NMO(1)

MN
= 2O(1) +O(n2)/M

Then, for a big image (large M ), the factor
O(n2)

M
tends to 0. This

consideration allows us to say that the complexity of the PCMF is
O(1).

Regarding memory usage, our proposed algorithm, the PCMF,
needs (b− a+ n− 1)N = O(n) additional memory. This is costly
for parallel architectures with limited memory, such CUDA-enabled

graphics cards, and it can make prevent the condition
O(n2)

M
→ 0 to

be held.

3.2. Parallel Capabilities and Memory Access

In this subsection we are going to compare the ccdf based median
filter against the histogram based median filters. We will focus on the
parallel capabilities and memory access patterns of both methods.
We will consider a parallel computing model with many concurrent
threads available, concurrent read (for aligned data or SIMD access
pattern) and penalized exclusive read and writes access (for random
memory access).

In that context, calculating and updating τx needs the same
number of steps as calculating and updating the histogram (Eq. 1).
The difference is the memory access pattern. For the histograms,
random access is used, while for the ccdf an ordered access pattern
is used. For the ccdf we can use (b− a) threads per τx, and we can
get concurrent read access, but for the histogram we are restricted to
only one thread per histogram and all memory access is penalized.

While the previous point give us a hint about the superior par-
allel capabilities of the ccdf , the main difference is the actual com-
putation of the median value. For the histogram, we need to iterate
over the histogram vector, accumulating its contents until an element
makes a condition met. The median value is the index of that ele-
ment. This procedure is made just by one thread, and the number
of steps required for the search depends on the dataset, giving us
unbalanced loads on the threads and data dependency.
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For the ccdf , we compare each element of the τx vector with the
median index. This operation can be done in parallel, thus we need
only one step to compare all the data. Finally, to get the median
value we do a summation of the result of the previous comparisons.
In the many concurrent threads context, the summation can be done
in log2(b− a) steps (assuming (b− a) a power of two). The whole
procedure to get the median value from the τx is independent of
the data set. From this analysis we can say that the ccdf based me-
dian filter is better suited for parallel computing systems than the
histogram based ones.

Given the vector x = [6, 6, 1, 2, 7], with 0 ≤ xi ≤ 7, its his-
togram h, with eight elements, is calculated by one thread in five
steps. Each element of the vector τ = τj = ccdf(x), j ∈ [0, 7] can
be computed by one thread (8 threads in total) in 5 steps. To get the
median value from h only one thread can be used, and it requires six
steps (each of them include conditional branches and additions). For
the ccdf we can use eight threads to apply the indicator function to
τ in one step, and then we can use a binary reduction of three levels
to solve the summation. The total steps required to get the median
value of x is eleven with the histogram based algorithm, whilst we
need only nine steps with the ccdf based one.

4. PERFORMANCE

The following test were executed on a PC with an Intel Core i7-930
CPU (2.8GHz, 8MB Cache memory, SEE4.2 Instruction set), 4GB
DDR3 RAM memory. A nVidia GeForce GTX260 graphics card
(1.3 computational capability, 16KB shared memory, 216 CUDA
cores, 1.3 GHz GPU clock speed) is connected to a PCI Express
2.0 slot. This is a medium performance graphics card. The operative
system is Kubuntu 10.4, with Linux kernel 2.6.28 x86 64.

Each condition tested (kernel size, input image, algorithm used)
is repeated 1000 times and the result shown is the median value.
The time measures for the CUDA implementations include memory
transfer operations. It is important to note that, for a kernel size k,
the elements to be sorted are n = k2. For the tests we use k =
{3, 5, 7, 9, 11, 13, 15}.

4.1. Description of Median Filter Implementations

We test six implementations, three for Intel processor and the other
three for CUDA graphics cards. For each platform two implemen-
tations are reference algorithms and the third one is a PCMF imple-
mentation.

For CUDA, the first reference implementation is the Branch-
less Vector Median (BVM) algorithm [14]. This O(n2) algorithm
is based on sorting networks; and exploits some of its properties to
insert and remove elements from a previously sorted dataset. Sorting
networks are greatly benefited of the data parallelism (offered by the
SIMD units [8, 10]), but the CUDA approach offers a different type
of parallelism (Single Instruction Multiple Thread - SIMT). The sec-
ond CUDA reference implementation is a closed-source commercial
library for CUDA, named libJacket [15]. This library implements
many general algorithms and it include an implementation of the
median filter for images. The algorithm it uses is not mentioned on
its documentation.

For the Intel processor, the first reference implementation is the
Constant Time Median Filter (CTMF) algorithm [6]. It is a his-
togram based median filter with O(1) computational complexity. It
uses the scalar approach to generate all the histograms required, and
to get the median value. The accumulated histogram is calculated
and updated with vector operations on the SIMD (Single Instruction

Multiple Data) unit. The implementation needs the size of the cache
memory as input parameter, and it uses this information to limit the
quantity of histograms used. The second refence implementation is
provided by the MatLab function medfilt2 [16]. We use MatLab
version 7.9.0.529 (R2009b) 64-bit (glnxa64). The algorithm is based
on histograms and has O(n) computational complexity.

In the Intel implementation of the PCMF, the SIMD unit is used
for almost all the operations, and in the generation of all τ vectors.
This implementation is expected to have a O(1) complexity, as the

condition
O(n2)

M
→ 0 is held. For the CUDA implementation, the

image is split in 32 × 64 pixels subimages. Each subimages is pro-
cessed by one CUDA block with 512 threads per block. The struc-
ture of the algorithm allow us to keep all threads working most of
the time, and help us to avoid the bank conflicts. The dimensions
of the subimages are limited by the size of the shared memory per

block, and this limit prevents the condition
O(n2)

M
→ 0 to be held.

For this reason, the CUDA implementation is expected to not have a
constant computational complexity.

4.2. Computational Results

In the first test we measure the execution time of the median filter
implementations. The size of the test image used are 512 × 512
(0.26MP), 640× 480 (0.3MP), 1280× 720 (0.9MP), 1920× 1080
(2.1MP), 2592×1729 (4.5MP) and 4000×4000 (16MP). It is impor-
tant to note that for the image of 4000×4000 and kernels bigger than
5, the CUDA BVM and the CUDA Jacket implementations caused
CUDA runtime errors and the test failed.

From the results (Fig 2) we can see that the CUDA reference
implementations (Jacket and BVM) has a O(n2) behavior (in log-
arithmic scale), whilst our CUDA PCMF behaves almost constant.
For the Intel implementations we can confirm the expected compu-
tational complexity: O(n) for MatLab (for k ≥ 7) and O(1) for the
CTMF and PCMF algorithms.
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(a) CUDA: I = 512× 512
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(b) Intel: I = 512× 512
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(c) CUDA: I = 2595× 1729
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(d) Intel: I = 2595× 1729

Fig. 2. Computational results in time (μsec per pixel) for images of
0.26 and 4.5 Megapixels

A better measurement for the performance of the implementa-
tion is how many pixels per second they can process. Then we cal-
culate the Megapixels per second (MP/sec) that each implementa-
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tion achieves. The results (Fig. 3) show that for Intel, the PCMF
process at 12.8MP/sec, the Intel CTMF do it in a range of 17.1
to 19.5MP/sec and the MatLab performance drops linearly. For
CUDA, the PCMF can process in the range of 35 to 57MP/sec, the
other two algorithms have a poor performance for k ≥ 7.
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Fig. 3. Comparison of computational results in Megapixels per sec-
ond

Next, the data dependence of the algorithms is tested. We use
two images: Boat (512 × 512) and Goldhill (1600 × 1200), with
different level of salt and pepper noise (0%, 25% and 50% of pixels
corrupted). This test is made because most of the sorting algorithms
are data dependent, and the worst case performance of those algo-
rithm are frequently obtained when the data is corrupted by salt and
pepper noise. For this test we use k = 15 and the CPU cycles re-
quired to process one pixel is measured. The results (Table 1) shows
that the MatLab and CTMF implementatios are data dependent.

Table 1. Computational Results (CPU cycles per pixel)

Algorithm Boat Goldhill
0% 25% 50% 0% 25% 50%

Intel
MatLab [16] 417.74 513.38 580.25 354.85 492.56 563.95
CTMF [6] 143.03 146.12 146.74 139.56 143.70 145.17
PCMF 218.56 218.57 218.58 219.19 219.29 219.25
CUDA
Jacket [15] 11.75k 11.80k 11.76k 12.23k 12.22k 12.23k
BVM [14] 5.10k 5.10k 5.10k 4.93k 4.93k 4.93k
PCMF 78.21 78.22 78.25 74.53 74.45 74.44

5. CONCLUSION

In this paper we propose a new algorithm for sorting and a bidi-
mensional median filter based on it, the Parallel Ccdf-based Median
Filter (PCMF). The structure of the algorithm allows us to get an ef-
ficient and simple implementation for parallel systems. The compu-
tational results show that the CUDA implementation of the proposed
median filter algorithm is efficient and can outperform other generic
median filters for CUDA.

The behavior of the implementation Intel PCMF is clearly O(1)
(see Table 1). The reference algorithm, the CTMF, also has O(1)
computational complexity and has a better performance than our im-
plementation.The MatLab median filter has linear complexity and it
has the worst performance of the Intel implementations tested.

Finally, the CUDA implementation of the PCMF has the best
overall performance of the tested algorithms, and has a lower com-
putational complexity than the reference CUDA implementations.
O(n2) algorithms are usually faster than O(n) and O(1) for small

n, but our implementation has a better performance than algorithms
with that computational complexity (except for the commercial so-
lution Jacket, and only for k = 3).
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[6] S. Perreault and P. Hébert, “Median filter in constant time,”
IEEE Trans. on Image Processing, vol. 16, no. 9, pp. 2389 –
2394, 2007.

[7] D. Cline, K. B. White, and P. K. Egbert, “Fast 8-bit median
filtering based con separability,” International Conference on
Image Processing, 2007.

[8] R. Sánchez, “Diseño e implementación del filtro mediano de
dos dimensiones para arquitecturas SIMD,” Bacherlor’s Degree
Thesis, 2011.

[9] T. Furtak, J. N. Amaral, and R. Niewiadomsk, “Using simd
register and instructions to enable instruction-level parallelism
in sorting algorithms,” SPAA ’07: Proceedings of the nine-
teenth annual ACM symposium on Parallel algorithms and ar-
chitectures, pp. 348–357, 2007.

[10] P. Kolte, R. Smith, and W. Su, “A fast median filter us-
ing altivec,” International Conference on Computer Design
(ICCD’99), pp. 384–391, 1999.

[11] Y. Li, S. Peng, and W. Chu, “An efficient parallel sorting algo-
rithm on metacube multiprocessors,” 9th International Confer-
ence on Algorithms and Architectures for Parallel Processing,
pp. 372–383, 2009.

[12] S. Chen, J. Qin, Y. Xie, J. Zhao, and P. Heng, “A fast an flexible
sorting algorithm with cuda,” 9th International Conference on
Algorithms and Architectures for Parallel Processing, pp. 281–
290, 2009.

[13] T. Ryan, Modern Engineering Statistics, chapter 14, p. 468,
Wiley-Interscience, 2007.

[14] W. Chen, M. Beister, Y. Kyriakou, and M. Kachelries, “High
performance median filtering using commodity graphics hard-
ware,” in IEEE Nuclear Science Symposium Conference
Record (NSS/MIC), 2009.

[15] AccelerEyes, “Jacket library,” http://www.accelereyes.com/
products/libjacket, 2011.

[16] MatLab, “medfilt2,” http://www.mathworks.com/help/toolbox/
images/ref/medfilt2.html, 2011.

1552


