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Abstract. One fundamental step for image-related research is to obtain
an accurate segmentation. Among the available techniques, the active
contour algorithm has emerged as an efficient approach towards image
segmentation. By progressively adjusting a reference curve using combi-
nation of external and internal force computed from the image, feature
edges can be identified. The Gradient Vector Flow (GVF) is one efficient
external force calculation for the active contour and a GPU-centric imple-
mentation of the algorithm is presented in this paper. Since the internal
SIMD architecture of the GPU enables parallel computing, General Pur-
pose GPU (GPGPU) based processing can be applied to improve the
speed of the GVF active contour for large images. Results of our experi-
ments show the potential of GPGPU in the area of image segmentation
and the potential of the GPU as a powerful co-processor to traditional
CPU computational tasks.

1 Introduction

In the area of image based analysis and its related applications, segmentation
is, in many cases, the starting point for further processing. The segmentation
algorithm may provide the foundation for further processing, such as identify-
ing features or objects that subsequently are used for the reconstruction of 3D
models. Among many existing segmentation algorithms, the active contour tech-
nique or snake [I] is an algorithm that uses an external force and an internal
force to progressively fit a closed curve to edges, boundaries or other features of
interest specified via gradient. The snake has been widely used in areas such as
biomedical image analysis and further enhanced for specific problem domains.
For example, Xu and Prince [2] proposed a better way of calculating the external
force of the curve. This improved snake algorithm is called Gradient Vector Flow
(GVF) snake and has two advantages over the original snake algorithm: (1) it
is less sensitive to initialization and (2) it can move into boundary concavities.
This paper introduces a hardware accelerated technique for gradient vector flow
computation, utilizing the vertex and fragment units on today’s graphics pro-
cessing units. Most mid-range GPUs now have a SIMD architecture and deep
parallel processing capabilities on the vertex and fragment units [3], which can be
used as a very efficient co-processor that can take over some of the computation
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tasks otherwise handled by the CPU. These computation tasks are not limited
to graphics and visualization but may also include general purpose computation.
This paper is organized as follows: Section 2 introduces background and prior
work done in related areas. Section 3 gives an overview of GPGPU based pro-
cessing and how it is related to this research. Section 4 describes the GPU
implementation of the GVF snake algorithm. Section 5 provides a performance
and test results.

2 Related Work

The segmentation by active contour or snake algorithm can be found in com-
bination with many image related applications. Kass et al. [I], introduced the
snake algorithm, which uses an external force and an internal force to conform
the contour to certain features in the image. The external force is calculated
from the image and the internal force is derived from the contour itself. The
corresponding curve is defined by:

Xt(svt) = O[XH(S,LL) - ﬂXNN(S7t) - VEE-’M (1)

where X;(s,t) is the curve that represents the snake at time ¢t and X(s) =
[z(s),y(s)],s € |0,1] is the parametric curve, X" and X" are the second and
fourth order derivatives, o and (3 are constants that defines the internal forces.
VE,;+ is the external force. The GVF snake introduced by Xu and Prince [2]
improves the above by introducing a new external force. The revised dynamic
snake function can then be formulated as:

Xi(s,t) = aX"(s,t) — X" (s,t) + V (2)

where V' stands for the new static external force field called gradient vector flow
(GVF). Zimmer et al. [4] applied the algorithm to video tracking for the quanti-
tative analysis of cell dynamics. Ding et al. [5] described a volumetric CT data
segmentation that is based on application of GVF snake to 2D CT slices. Vid-
holm et al. [6] introduced a virtual reality system for the visualization of volume
data combined with force-feedback. GVF snake segmentation of the data was
used for visual augmentation and control of the haptic device. Some of the GPU
processing and bandwidth characteristics can outpace that of CPUs, which make
it appealing to convert processing extensive algorithms to the GPGPU domain
if their nature is compatible. For example, Rumpf et al. [7] introduced a level-set
based segmentation that was leveraging GPU capabilities. Despite of the advan-
tages of the level-set segmentation, the implementation was still limited by the
graphics hardware available at that time and therefore is not completely GPU
centric. Kondratieva et al. [§] described a real-time computing and visualization
technique for diffusion tensor images, which achieves both visual and speed im-
provements over traditional CPU realization. Fan et al. [d] built a computing
cluster based on GPU to achieve greater parallel processing power. Kipfer et al.
[10] implemented a fluid dynamics simulation engine on the GPU, which lever-
ages the GPU to avoid I/O bottlenecks and improves performance. Fatahalian
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et al. [I1] implemented an efficient matrix multiplication algorithm on the GPU.
GPU based computation is not limited to the above mentioned areas and can
be expand to many other areas compatible with the SIMD architecture.

3 GPU and GPGPU

Recent GPUs demonstrate enormous potential for scientific computing tasks in
the form of General Purpose GPU-based processing (GPGPU). In particular,
memory bandwidth and instructions per second highlight potential benefits. For
instance, the Nvidia Geforce 6800 graphics chip can process 600 Million ver-
tices/sec and has a fill rate of 6.4 billion pixels/sec, while the Geforce 7800 series
can almost double that performance. Galoppo et al. [I4] reported that the 6300
could achieve 2.5 billion instructions per second for division, which compare to
6.7 billion for a Pentium4 3.2GHZ CPU. Kilgariff and Fernando [3] demonstrated
that the GPU Memory Interface of the Geforce 6800 series can reach 35 GB/sec,
which compares well against the 6.4 GB/sec of the CPU Memory Interface for a
800 MHz Front-Side Bus. Besides these, the GPU has a very different architec-
ture and processing stream than the CPU. The GPU processing model can be
decomposed into several stages ([15]). Data goes from the CPU to GPU through
system bus. On the GPU, it goes from vertex buffer, the vertex processor, ras-
terization and finally gets to the fragment processor. One important feature of
GPU is its SIMD architecture that naturally supports parallel processing. Most
computation tasks on GPU are parallelized as illustrated in Fig[ll For example,
the Geforce 6800 supports 6 vertex units and 16 fragment units. And each unit
can process 4 components (RGBA or xyzw) in parallel.
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Fig. 1. The parallel nature of GPU
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Fig. 2. The process of GVF Snake
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However, it is important to carefully consider strengths and weaknesses of
GPU-based techniques. First of all, although the GPU has excellent computa-
tional power, the majority of graphics cards are still limited to 16bit floating
point precisions. This means, in many cases, the traditional implementations of
algorithms will be subjected to a loss in precision when migrated directly onto
the GPU. One solution is to use 2 components of texture unit to store one 32bit
float number. With more graphics cards supporting the 32bit floating point tex-
tures, this problem will be reduced in the near future. However, it is still very
important to find a balance between the precision and speed because the 32bit
floating point data lead to nearly half the speed of the 16bit precision data as
reported in [16].

Secondly, while the bandwidth on the CPU or on the GPU alone can be
enormous, the bus I/O between CPU and GPU can sometimes become a bottle-
neck. On the Geforce 6800 card, the PCI Expressx 16 inteface provides 8 GB/sec
throughput while the on-board bandwidth for the GPU is 35 GB/sec. Therefore,
it is worthwhile to optimize the code for fewer I/O on the GPU.

Third, the data structure should fit to the platform architecture. When im-
plementing an algorithm on the GPU, it is important to consider its SIMD ar-
chitecture. The data should be independent from each other, and random access
of data such as a linked-list should be avoided if all possible.

Shader Model 3.0 and the OpenGL 2.0 standard provide a means to resolve
the problems mentioned this far. For example, multiple rendering target could
save rendering passes by using a single input texture to generate multiple output
textures. In addition, Frame Buffer Objects (FBOs) greatly improve the speed
by saving I/O between GPU and CPU. The vertex texturing functionality allows
the texture to be used as a data array. In support of hardware-based processing,
different high-level languages were created, such as CG [I7] and [I8], which sup-
ports most features for Shader Model 3.0. HLSL [19] and the OpenGL Shading
Language [20] are also such languages.

4 Gradient Vector Flow Snake Implementation on GPU

Equation () describes the GVF-based snake function, which introduced the V'
term for the gradient vector flow. V' can be defined as a vector field V(x,y) =
[u(z,y),v(z,y)] that minimizes the energy function:

6://u(ui—i—ui—i—vi+U§)+|Vf|2|V—Vf|2dxdy (3)

where f(z,y) is an edge map of the original image, V f is its gradient map and
i is a constant that represents the level of noise. To solve Equation (@) for the
V(z,y), u and v need to be treated as functions of time by solving the following
equations:

Ut (f, Y, t) = /J“Vzu(x, Y, t) - b(xv y)u(i, Y, t) + cl (1}, y)
v, y,t) = pV2:o(x,y,t) — b(z, y)v(z,y,t) + (2, y)
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where:
b(z,y) = fol(@,9)* + fy(2,9)°, ¢ (2,9) = b(x,y) fo(z,y), (x,y) = b(z,9)fy(2,y)
and V? is the laplacian operator. This can be numerically expressed as:

1 n+1 n 1 n+1 n
ur = At(u” — ), v = At( iy~ Vi)

1
2
Viu = AzAy (Wit1,5 + Uig1 + Uizt + i1 — 4uij)
1
2
Vi = Ay (Vig1,5 + Vi1 + vie1,5 + Vi1 — 4vij)

By substituting the above variables into the equations for us(z, y, t) and v (x, y, t),
an iterative solution to the GVF field can be obtained.

The GVF snake algorithm is composed of two parts: (1) the pre-computing of
the GVF field and (2) the iterative solution of the snake function. Both parts has
the temporal and spatial locality. At any single time step, the u(z,y) and v(z,y)
only involves 4 of its neighboring points and 1 previous time step. The general
flow for this algorithm is illustrated in Figure 2l First, the input image is con-
verted to greyscale and an edge detection filter is applied to obtain the edge map.
Subsequently, a second shader is used to obtain the gradient map and generates
three contants for every pixel, namely b(z, y),c!(z,y) and ¢?(z,y). The multiple
rendering target technique is then used to generate and store the results in two
seperate textures, one for the gradient and the other for the constants. Most
current GPUs only support 16bit floating point precision with values clamped
to the range of [0.0,1.0]. Therefore, we store the data using a packing scheme.
The gradient dx and dy are stored in R and G components and the B and A
components save a flag number identifying how the dx and dy are stored. In
this particular case, the dz is stored as is if |dz| > 0.01, otherwise, as —1/In dx.
Similar packing is performed on the three constants.

After these preparation steps, the iterative GVF field calculation can start.
The iterative computation on GPU can be mapped to a so-called ping-pong
scheme using the FBO(frame buffer objects). Each FBO can be bound to four
framebuffers, namely, COLORO0 through COLORS3. This is illustrated in follow-
ing pseudo code:

Src_Buffer = COLORO; Dst_Buffer = COLOR1;
while (counter<Number)
{Attach Dst_Buffer as DrawBuffer; Src_Buffer = input for fragment shader;
Draw the texture;
Swap the Src_Buffer and Dst_Buffer;
Increase counter;}

The resultant GVF field is stored in one framebuffer and is used as input param-
eter to the snake process fragment shader. The fragment shader for the snake
process involves solving a linear system:

Ax Xy =y« X 1 +K*xV (4)
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where V' is the GVF field and X; is the snake contour at ¢ time, v and &
are constants and A is a constant matrix. Note that solving the above linear
system not only requires an inverse of the matrix, but also brings in the violation
of the spatial locality. While the first problem can be addressed on the GPU
[14], the second problem will dramatically decrease the efficiency of the GPU
implementation because it results in extensive amount of I/O for texel fetch
operations. However, A is very similar to a symmetric band matrix and is positive
definite, with the exception that the upper right corner and lower left corner of
the matrix is not zero. It can be expressed as Equation (Bh).

c b a 0 0 0 ...... 0O a b C B A 0 0 0 ...... 0 A B

b c b a 0 0O 0 ...... 0 a B C B A 0 0 0 ...... 0o A

a b ¢ b a 0 0 ...... 0o o A B C B A 0 0 ...... 0o o

0 a b ¢ b a 0 ...... 0o o 0O A B C B A 0 ...... 0o o
e e, el vl (5
a 0 0 0 ...... 0O a b c b 0O 0 0 ...... 0O A B C B

b a O 0O O ...... 0O a b c A O O O ...... 0 A B

where a,b are positive constant values that are much smaller than 1 and c is
around 1. The major diagonal has the value of ¢, the second major diagonal has
the value of b and the next one is a. Furthermore, its inverse matrix is of similar
type. Because most of the numbers in A are far smaller than 1076 after the third
diagonal, an approximation of A can be given as Equation (Bb). where:

— —bc 27(1(: a—c
A=c(t? —ac)/[X], B= "1 Ll ao)eme ©)

c —C Z—G.C a— 2
C= (x] (c(zb bZ)[)(] ’ )7 [X] = (62 - a2)(62 - b2) - bz(c - a)2

By inserting the above equations to Equation (), a discrete solution for the

snake contour can be obtained and implemented as a shader program: x! =

A Mit’;lvk , % € [1,n] , where n is the number of points in the snake

contour and M tfl is the row i, column k element of the matrix multiplication

t—1

result of A and the column matrix of ;7" and v}, = w:z_l + K[k

5 Experiment Results

All tests were performed on a laptop PC with a 2.4GHZ Pentium processor,
lGB RAM and a Geforce Go6800 card with 128MB on-board graphics memory.
shows the edge map for the U-shape image, followed by the initial curve
in Figi3(b)l a partial result after 150 iterations in Flg and the final result
in Figf3(d)l The result shows that the GVF snake algorithm can contract to
concave shapes where ordinary snake could not. Figll shows a non-continuous
room model results. These two data sets were modeled after the ones by Xu and
Prince [2] to provide a better comparison. Figlhlis an MRI brain scan which shows
the algorithm can be applied to real-world data with non-uniform background
and concave shape. A set of scans of human shoulder was studied at levels of
image ranging from 128 x 128 to 1024 x 1024 pixel resolution in order to evaluate
the scalability of the algorithm and pinpoint performance tradeoffs. The results
for computations on the above data are provided in Figlel

In Figl6l the GVF field calculation was performed both on the GPU and CPU,
and it includes the edge detection stage for the GPU. For the snake algorithm,
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(a) Edge map
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(a) Edge map

(a) Edge map

(b) Initial circle

(c) Partial result

(d)

Fig. 3. U-shape 256 x 256 pixel
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Fig. 4. Room 256 x 256 pixel

(b) Initial circle

(c) Partial result

(d)

Fig. 5. MRI 256 x 256 pixel
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Final result

7P

Final result

Final result

|Tr3ata [Total time [Time for GVF _|Time for Snake |lterations for snake |CPU Time for GVF
}U—Shape 256 7857 ms  |2677 ms 4963 ms 300]1993ms

Room 256 4022 ms  |2461 ms 1368 ms 80[1862ms

[MRI 256 5389 ms [2581 ms 2600 ms 160[1909ms

[MRI'512 6234 ms  [2503 ms 3223 ms 100[15462ms
llshoulder 128 3132 ms  [2527 ms 411 ms 70446 ms
llshoulder 256 5761 ms |3135ms 1266 ms 480[/1853 ms
lshoulder 512 11493 ms |5961 ms 4695 ms 400]15357ms
llShoulder 1024  [11586 ms [2638 ms 8958 ms 250]316073ms

Fig. 6. Benchmark on test images
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Fig.7. MRE comparison

(a) Edge map (b) Initial circle

(c) Partial result (d) Final result

Fig. 8. Shoulder 1024 x 1024 pixel

it can be observed that the speed performance complexity can be expressed as
O(n?k), where n? is the size of the texture and k is the number of iterations.
This means that newer graphics cards with more texture memory will be able
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(b) Partial result (c) Final result

Fig. 9. Spine

(a) Initial circle (b) Partial result (c) Final result

Fig. 10. Spine with Gaussian noise

to efficiently process larger images. For images of 256 x 256, the CPU is about
20% faster than the GPU. But for 512 x 512 image, the GPU technique starts
to outperform the CPU by 4 times. Therefore, the parallel capability of GPU
computing shows its advantages on larger images. Each individual GPU fragment
or vertex processor is lower than the CPU. However, with the increase in data
size, the GPU parallel pipeline becomes more efficient and greatly outpaced the
CPU. Another observation is that texture I/O may become the bottleneck. For
example, the texture fetch for the snake shader is more than two times that of
the GVF shader and so the snake shader is 50% slower.

One test case is studied to analyze the accuracy of the GPU technique (Fig[d
and Fig[I). This test case uses simple harmonic curves given by: r = a +
bcosm@ + ¢ , where a,b, c are constant values and by varying the m, a set of
curves can be obtained. Each image is 256 x 256 and we used m = 0,2, 4,6, 8. The
measure of error is MRE(mean radial error), which is the mean distance in the
radial direction between the final active contour and the harmonic curve. Fig[i]
shows the MRE result. The blue line shows the MRE, the red line shows the
maximum radial error as the worst case scenario and the yellow line shows the
maximum radial error from a CPU implementation of improved GVF algorithm
as stated in [2I]. As we can see, the performance of CPU implementation gener-
ally has better accuracy. The reason for the performance gap is the difference in
the precision of floating point data. Nonetheless, the GPU implementation still
achieves a good overall accuracy and the mean errors are within sub-pixel level.
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Fig[IU shows the robustness of the GPU technique with the addition of gaussian
noise. The image with noise has an MRE of 0.5 while the clean image is 0.35.

6 Conclusion

A hardware accelerated gradient vector flow algorithm for image segmentation
was presented. The algorithm utilizes the fragment and texture units of the
GPU. A set of test cases was presented and evaluated comparing CPU and
GPU results. In addition, some new features of GPGPU are exploited and some
important issues involved in porting algorithms onto the GPU are specified,
which provides a foundation for further exploration in this algorithm.
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