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Sorting networks and their applications

by K. E. BATCHER

Goodvear Aerospace Corporation
Akron, Ohio

INTRODUCTION

To achieve high throughput rates today’s computers
perform several operations simultaneously. Not only
are 1/O operations performed concurrently with com-
puting, but also, in multiprocessors, several computing
operations are done concurrently. A major problem in
the design of such a computing system is the con-
necting together of the various parts of the system (the
1/O devices, memories, processing units, etc.) in such
a way that all the required data transfers can be ac-
commodated. One common scheme is a high-speed
bus which is time-shared by the various parts; speed
of available hardware limits this scheme. Another
scheme is a cross-bar switch or matrix; limiting factors
here are the amount of hardware (an m X n matrix
requires m X n cross-points) and the fan-in and fan-out
of the hardware.

This paper describes networks that have a fast
sorting or ordering capability (sorting networks or
sorting memories). In (42)p(p + 1) steps 2P words can
be ordered. A sorting network can be used as a mul-
tiple-input, muitiple-output switching network. It has
the advantages over a normal crossbar of requiring
less hardware (an n-input n-output switching network
can be built with approximately (%) n(log, n)* ele-
ments versus n? in a normai crossbar) and of having a
constant fan-in and fan-out requirement on its ele-
ments. Thus, a sorting network should be useful as a
flexible means of tieing together the various parts of a
large-scale computing system. Thousands of input and
output lihes can be accummodated with a reasonable
amount of hardware.

Other applications of sorting memories are as a
switching network with buffering, a multiaccess
memory, a multiaccess content-addressable memory
and as a multiprocessor. Of course, the networks aiso
may be used just for sorting and merging.

Comparison elements
The basic element of sorting networks is the com-
parison element (Figure 1). It receives two numbers
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over its inputs, A and B, and presents their minimum
on its L output and their maximum on its H output.

—=1A L——=MIN (A,B)
A e —— e ——- !

—1B H —— MAX (A,B)
B'———- e« — —H !

Figure | — Symbol for a comparison element

If the numbers in and out of the element are trans-
mitted serially most-significant bit first the element
has the state diagrami of Figure 2. A reset input places
the element in the A = B state and as long as the A and
B bits agree it remains in this state with its outputs
equal to its inputs. When the A and B bits disagree the
element goes to the A < B or the A > B state and re-
mains there until the next reset input. In the A > B
state the output H equals the input A and the outpuf L
equals the input B. In the A < B state the opposite
situation occurs.

Figure 2 —State diagram for a serial comparison element (W0

significant-pat first)
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A serial comparison element can be implemented
with 13 NORS and can be put on one integrated-
circuit chip. When used in sorting networks each
H and L output will feed an A or B input of another
element so the fan-out is constant regardless of net-
work size; this fact could be used to simplify the de-

k. sign of the chip. With several of the currently avail-
i able logic families speeds of 100 nanoseconds/bit
) with a propagation delay from inputs to outputs of
k. 40 nanoseconds are easily achieved.

Faster operation can be attained by treating several
bits in parallel in each step with more complex com-
parison elements.

Some of the applications described below will re-
E quire “bi-directional” comparison elements. Besides
. the A and B inputs and the H and L outputs there are
¥ H' and L’ inputs and A’ and B’ outputs (see Figure 1).
g If A> B then B'=L"and A’ = H', if A < B then
¥ B’ = H" and A’ = L', otherwise A’ and B’ are left
k- undefined. Information flows from left-to-right over
E the solid lines and from right-to-left over the dotted
E: lines.

i Liagic

Odd-even merging networks

Merging is the process of arranging two ascendingly-
¥ ordered list of numbers into one ascendingly-ordered
g list. Figure 3 shows a symbol for an ‘s by t”” merging
e network in which the s numbers of one ascendingly-
f ordered list, a,, a,,...,a, are presented over s inputs
R simultaneously with the t numbers of another ascend-
Vingly-ordered list, by, b,, . . ., b, over another t inputs.
£ The s + t outputs of the merging network present the
2 s+t numbers of the merged lists in ascending order,
’ ‘c., Coy.. .
%

» Cseq-

A “1 by |” merging network is simply one compari-
son element. Larger networks can be built by using the
%!eralive rule shown in Figure 4. An ''s by t”” merging
fhetwork can be built by presenting the odd-indexed
fnumbers of the two input lists to one small merging
_' twork (the odd merge), presenting the even-in-
dexed numbers to another small merging network (the
en merge) and then comparing the outputs of these
all merges with a row of comparison elements.!
iThe Jowest output of the odd merge is left alone and
:,v- omes the lowest number of the final list. The i
Butput of the even merge is compared with the i + 1
Sutput of the odd merge to form the 2i* and 2i +
Bumbers of the final list for all applicable i's. This
," or may not exhaust all the outputs of the odd and
Wen merges; if an output remains in the odd or even
grge it is left alone and becomes the highest number

“ final list.
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Figure 3 — Symbol for an *'s by t” merging network

Appendix A sketches the proof of this iterative
rule. Figure 5 shows a “2 by 2" and a “‘4 by 4" merg-

ing network constructed by this rule. '
A *2° by 2°” merging network constructed by this

rule uses p.2P+1 comparison elements. The longest
path goes through p+1 comparison elements and the
shortest path through one element. Doubling the size
of a merge only increases the longest path by unity so
the merging time increases slowly with the size of the
network.
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Figure 5 — Construction of “2 by 2" and “*4 by 4" odd-even merging
networks
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Bitonic sorters

Another way of constructing merging networks
from comparison elements is presented here. While
requiring somewhat more elements than the odd-even
merging networks, they have the advantage of flexi-
bility (one network can accommodate input lists of
various lengths) and of modularity (a large network
can be split up into several identical modules).?

We will call a sequence of numbers bitonic if it is
the juxtaposition of two monotonic sequences, one
ascending, the other descending. We also say it re-
mains bitonic if it is split anywhere and the two parts
interchanged. Since any two monotonic sequences
can be put together to form a bitonic sequence a
network which rearranges a bitonic sequence into
monotonic order (a bitonic sorter) can be used as a
merging network.

Appendix B shows that if a sequence of 2n numbers,
ay, dg,...,8, IS bitonic and if we form the two n-
number sequences:

min (a,, ap+), MIN (Ag, Ansz), . - ., MIN(An, 3gn) (1)

and

max (a,, an4,), MaxX (az, anes), - - - » MAX (an, Bzn), (2)

that each of these sequences is bitonic and no number
of (1) is greater than any number of (2).

This fact gives us the iterative rule illustrated in
Figure 6. A bitonic sorter for 2n numbers can be con-
structed from n comparison elements and two bitonic
sorters for n numbers. The comparison clements form
the sequences (1) and (2) and since each is bitonic they
are sorted by the two n-number bitonic sorters. Stince
no number of (1) is greater than any number of (2) the
output of one bitonic sorter is the lower half of the sort
and the output of the other is the upper half. ‘

A bitonic sorter for 2 numbers is simply a compan-
son element and using the iterative rule bitonic sorters
for 2° numbers can be constructed for any p. Figure
7 shows bitonic sorters for 4 numbers and 8 numbers.®
A 2P-number bitonic sorter requires p levels of 2°7'
elements each for a total of p-2P~! elements. It can act
as a merging network for any two input lists whos¢
total length equals 2°.

Large bitonic sorters can be constructed from @
number of smaller bitonic sorters: for instance, a‘|6'
number bitonic sorter can be constructed from 618'}'
4-number bitonic sorters, as shown in Fig. 8. This
allows large networks to be built of standard modules
of convenient size.

=.Readers may recognize the similarity between the topologies
the bitonic sorter and the fast-fourier-transform.
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Figure 6 — [terative rule for bitonic sorters

iorting networks

¥ A sorter for arbitrary sequences can be constructed
om odd-even merges or bitonic sorters using the
WClI known sorting-by-merging scheme: The numbers
Fare combined two at a time to form ordered lists of
_ length two; these lists are merged two at a time to
f form ordered lists of length four, etc. until all numbers
fare merged into one ordered list.
# To sort 2° numbers using odd-even merges requires
f2"! comparison elements followed by 2°-2 *2-by-2"
Mmerging networks followed by 2°™ “4-by-4" merging
metworks, etc., etc. The longest path will go through
3‘ )P (p + 1) elements and the shortest path through
P elements. The network requires (p> — p + 4)2°-2 — |
@omparison elements.
#'To sort 2° numbers using bitonic sorters requires
B3)p(p + 1) levels each with 2°~! elements for (p? + p)
% elements. Each path goes through (%)p(p + 1)
Bvels,
kA sorter for 1024 numbers will have S5 levels and
8.063 clcments with odd-even merges or 28,160 ele-
®Nts with bitonic sorters. With a 40 nanosecond
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Figure 7—Construction of bitonic sorters for 4 numbers and for

8 numbers
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Figure 8— A 16-number bitonic sorter constructed from eight
4-number bitonic sorters

propagation delay per level the total delay is 2.2
microseconds. Serial transmission of the bits would
require about this much time between successive bits
of the numbers unless re-clocking occurs within the
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network. Parallel-input-parallel-output registers of
1024 bits each can be placed between certain levels to
perform this task or the re-clocking may be incorpo-
rated within each canparison elanent with a pair of
flip-flops on the outputs. The latter scheme does not
add to the terminal count of the comparison element so
the cost of the added flip-flops on the comparison
element chip is small. One can use any of the familiar
techniques for driving shift registers such as the “A-B"
technique where successive levels are clocked out-of-
phase with each other. With present circuit and wiring
techniques a bit rate of 10 megahertz may be possible
with 50 nanosecond delay per level (2.75 microsecond
delay from input to output of a 1024-word sorter).

With re-clocking in the elements and odd-even
merges extra elements are needed to balance the un-
equal-length paths. Bitonic sorters do not have this
problem.

Applications

The fast sorting capability of these networks al-
lows their use in solving other problems where large
sets of data must be manipulated. Some of these appli-
cations are sketched below.

Switching network

A sorting network can connect its input lines to its
output lines with any permutation. The connection is
made by numbering the output lines in order and pre-
senting the desired output address for each input line
at the input. The sorting network sorts the addresses
and in the process makes a connection from each in-
put line to its desired output line for the transmission
of data. Bi-directional paths will be obtained if bi-
directional comparison elements are used.

An alternative permuting network has been shown
in the recent literature® which has less elements
[tp— 2%+ 1 versus (p? —p + 4)2°~2 — | for permuting
2° items] but a more complex set-up algorithm.

Switching network with conflict resolution

The aforementioned switching network assumes
each input wants a unique output line. In many ap-
plications conflicts between inputs occur and must be
resolved by inhibiting conflicting inputs. Figure 9
sketches an m-input, n-output network that performs
this task. Each input line inserts a word containing the
output address desired (or zeroes if the line is inac-
tive), a control bit equal to 1 and a priority number into
an m-item sorting network with bi-directional ele-
ments. This orders the items so input items with the
same output address are grouped together and ordered
by their priority number. The ordered set of m-input
items is merged with a set of n items,each containing

a fixed output address and a control bit equal to O,

At the right side of the m by n merge the m+ n items
are in one ordered list; each address-inserter item will
be directly below any input items with the same ad-
dress. The adjacent word transfer network, looking at
the control bits, connects each address-inserter item
to the input item directly above it if one exists (the
input item with lowest priority number is picked in
each case). The elements in the sort and the merge
are bi-directional so two-way paths are formed from
input to output. The adjacent word transfer sends
back signals over each path to signal each input and
output line whether or not a connection has been
established. Data can then be transmitted over each
of the connected input lines.

—
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INPUT ITEM NETWORK{| M § f
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Figure 9— An m-input, n-output switching network with conflict
resolution

Multi-access memory

Re-clocking delays in the comparison elements
give a sorting network some storage capability which
can be augmented if needed with shift registers on the
outputs. When the output lines are fed back to the in-
put lines a recirculating self-sorting store is crea(ed
(Figure 10). In each recirculation cycle word posi-
tions are changed to keep the memory in order.

Inputs to the memory can be made by breaking the
recirculation paths of some words and inserting new
words. To prevent destroying old information durifl!
input we use the convention that words with all bits
equal to “one"” are “empty’’ and contain no informa-
tion: these will automatically collect at the “high-
end” of memory where input lines can use them (0
insert new words.

Outputs from the memory can be accommodated by
reserving the most-significant-bit (MSB) of each
word: “1" for normal words and **O" for words t0
outputted. Words for output will automatically collect
at the “low end” of memory where output lines caR
read them. Selection of which words to output is 86,
commodated by reserving the least-significs
(LSB) of each word; 1" for normal words and
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Figure 10~ A multi-access memory

. for “output requests”. Logic between adjacent words
causes an output request to affect the word directly
above it.
¢ During one recirculation cycle new words and out-
iput requests are entered into memory. During the
g next recirculation cycle all words are recirculated with

Mo new entries. At the end of the cycle the LSB of
h word will precede the MSB of the same word (no
gfeordering occurs in the second cycle). Qutput re-
tuests are identified by a “*O” in the LSB and for each
Hequest logic performs the following action: if the
jword above the request is a normal word ("1 in the
LSB) change its MSB to a “O" and empty the request
fichange all its bits to 1" as they fly by), if the word
Move the request is another request change the MSB
N the first request to “O”. During the following re-
Jirculation cycle the selected words and unfulfilled
gequests flow to the low end of memory and are read
By output lines. Because the request itself is outputted
f no word is found, as many outputs as original re-
ests occur. If the original requests were in order
outputs directly correspond to them (a second
Fting network can put the original output requests
rder).

i Use the more-significant part of each word is used
iB0 address and the rest as data. To request a cer-
R address an output request is sent in with that ad-
8 and zeros for data. The word returned will be
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at that address or a higher address if the requested
address is empty.

While a complete cycle may be long in this memory
(50-bit words at 100 nanoseconds/bit 5 micro-
seconds/recirculation 10 microseconds/complete
cycle) many inputs and outputs can be accommodated
in each cycle. An effective rate of 100 nanoseconds/
word is achieved with 100 inputs and outputs.

Such a memory could be useful as the “common
memory” of multiprocessors. The self-sorting capa-
bility could be useful for keeping “‘task lists™ up to
date and performing other housekeeping tasks.

Other uses may be as a message ‘“‘store-and-for-
ward” system and as a switching network with buf-
fering capability. In these uses each output device is
given a unique address which it continually interro-
gates; input devices send their data to these addresses.

Multi-access content addressable memory

By adding facilities for shifting the bits within the
words in the aforementioned memory different fields
of the words can be brought into the more-significant
portions which govern the ordering of the words.
Addressing can then take place on any part of the
words. As long as the same field positions are being
searched more than one search can be accommodated
simultaneously.

Multi-processor

By adding processing logic to perform additions,
subtractions, etc., on groups of adjacent words of a
sorting memory one can impiement a muiti-processor.
The sorting capability is used to transmit operands
between processors. Merely by changing address
fields the multiprocessor can be reconfigured quickly.
Such a muiti-processor can keep up with the “‘dy-
namic topology” of certain real-time problems.

To simplify the processing logic une might use the
same network or another network to perform table
look-up arithmetic. It is possible to have all the pro-
cessors search the same tables simultaneously.

SUMMARY

Sorting networks capable of sorting thousands of items
in the order of microseconds can be constructed with
present-day hardware. Such fast sorting capability
can be used to manipulate large sets of data quickly
and solve some of the communications problems as-
sociated with large-scale computing systems.

Standard modules of convenient sizes can be picked
and used in any size network to lower the cost. Large-
scale integration can be applied if the problem of
laying out the rather complex topology of the network
can be solved. Studies of this problem are being con-
ducted at Goodyear Aerospace.
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APPENDIX A —-SKETCH OF PROOF OF
ITERATIVE RULE FOR ODD-EVEN
MERGING

Leta,, a,, a5,...and b, by, b,, ... be the two ordered
input sequences. Let ¢,, Cy, C3,...be their ordered
merge, d,, d,, ds,...be the ordered merge of their
odd-indexed terms and e,, e,, €;,...be the ordered
merge of their even-indexed terms.

Foragiveniletkof thei+ I termsind,,d,, d,, ...,
d;; come from a,, a;, a5,...and i + 1 — k come from
by, by, bs, ... The term d,,, is greater than or equal to
k terms of a,, a, a,, - . - and therefore is greater than or
equal to 2k — 1 terms of a,, a,, a;,... Similarly it is
greater than or equal to 2i + | — 2k terms of b,, b,
bs, .. .and hence 2i terms of ¢,, ¢,, Cy,... Therefore

(A1)

Similarly from consideration of the i terms of e, e,
€s, ..., ¢ the inequality

diey = Cy

(A2)
is obtained.

Now consider the 2i + | terms of ¢y, C3,Ca, . - . , Ca141
and fet k come from a,, a,, a,,...and 2i + 1 — k come
from b,, by, by,... Hf k is even we have that c,,, is
greater than or equal to:

k terms of a,, a,, a,, . . .
(Y2)k terms of a,, a;, as, . ..
2i+1—ktermsofb,, b, b,,...
i+ 1—(%)k terms of b,,by,bs, . ..
i+ 1termsofd,, d,, ds, ...

and similarly c,,,, is greater than or equal to i terms of

€1,€5, €3, ...
SO

Catsy = disy (A3)
and

Cai+1 = € (Ad)

If k is odd, (A3) and (A4) still hold.

Since every item of d;, dy, d3,...and e, e,, €3, ...
must appear somewhere in c,, ¢y, C;,...and ¢, < C,
< ¢, <. ..inequalities (A1), (A2), (A3) and (A4) imply
that

Cyy=min (d4, €) (AS)

and

Cais1 = Max (dj,q, &) (A6)

APPENDIX B-SKETCH OF PROOF OF
ITERATIVE RULE FOR BITONIC SORTERS

Let a,, a,, a,,...,a,, be bitonic. Let d; = min (a,
a,,;) and e, = max (a;, a,4) for I < i < n. We want ta
prove that d,, d,,...,d, and ¢, €,...,¢, are each
bitonic and
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max (d,, d,,...,d;) < min (e,, e,5,....2,). (A7)

If a,, a,, a,,...,a,, is split into two parts and the
parts interchanged d,, d,,...,d, and e,, e,,... e,
undergo a similar interchange. This does not affect the
bitonic property nor affect (A7) so it is sufficient to
prove the proposition for the case where

a,Saz$as$...$a,_lSa,?a,“?,,,

= a;, (AB)

is true for some j (1=<<j=<2n).
Reversal of the terms of sequences does not affect
the bitonic property nor maximums and minimums so
it is sufficient to assume n<j<2n.
If a,<a,, then a;<a,,; so d; = a, and ¢; = a,,, for

1 <i1<n and the proposition holds.
If a,>a,, then from a,_, < a, we can find a k such
that j<sk<!In, a,_,<ay and ay_n+;>ay,, (the sequence
.., gy is decreasing while the sequence
., a, 1s increasing). Then

aj, Ayeyy Ajaz, -
Ay_p, Ayrg—n, jr2-ns - -

d, = a
for 1 <i<k-n

€ = A4

(A9)
and

dl = Qj4n

} for k—n<i<n: (A10)

€ =4q
The inequalities

(AlD)
(A12)
(A13)
(Al4)
(A15)

d, < dy,, for 1si<k—n,
d, = d,,, for k—n<i<n,
e, < e, for k—n<i<n,
eh < ey,

et < e, for I si<j—n,

and
e, = e,,, for jn=i<k—n (A16)
can be shown which prove that d,, dy, . . .. d, and €w
€s...,e, are bitonic and max (d,, dy,....dn) = max
(ak—nsak+|) = min(ak,ak_n,,,)= min(elve'b s Cn)~
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