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ABSTRACT

Synthetic aperture radar(SAR) imagery is gaining increased usage as more
systems become available and more applications are being developed. An *unfor-
tunate” problem with SAR imagery is the high level of noise, often called speckle,
The speckle effects reduce the utility of SAR imagery a great deal. 'This thesis will
address the causes of speckle and many of the current methods that are used to
reduce the speckle noise. Kalman filtering methods will then be adapted for nse on
SAR imagery taking into account the special properties of this type of filter and

images.
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Notation

Various symbols, superscripts, subscripts, and abbreviations used [requently in
this thesis are summarized helow, All notation is {ully defined where it first avises

in the text.

Symbols

Zic  Integers quantized to 16 bits.
E() The mathematical expectation.
z(i,7)  The state values of the image.
X  Block state space value of image.
y(i,7)  The observed values of the image.
Y  Block state space value of observed image.
I Identity matrix
¢°(R) Mean backscatlter received from transmitted radar.
P() Probability distribution.
Z(t)  Innovation/Estimation error.
K Kalman gain.

L  Parameter estimation gain.

Xil



PO Error Covariance of Kalman Filter.

R Approximation of Hessian of quadratic norm.
2. Covariance of innovation process.

', Cocllicient of variation.

¢,  Contrast Ratio.

Greek Letters

/1" Multiplicative observation noise

/W Multiplicative dynamic process noise
st The mean of the value x

Statistical variance of x

¥, [Estimation derivative

¢  Parameter vector

A Gradient

&  Derivative of Kalman Gain

A Forgelling Factor



Special Symbols

E-o7]

=y

¥

Acronyms

2-D
AR
ABKF
ENL
SAR
RUPK
NSHP
LS1
RPE
EKF

MAP

The mean of the value x
The estimate of the value x

Spatial shift operator

and Definitions

Two Dimensional
Aulo-regressive

Adaptive Block Kalman Filter
Equivalent Number of Looks
Synthetic Aperture Radar.
Reduced Update Kalman filter
Non-Symmetric Half Plane
Linear Space Invariant
Recursive Parameter Estimation
Extended Kalman Filter

Maximum A Posteriori

Xiv



MMSE  Minimum Mean Square Error
LEMMSE  Localy Lincar Minimum Mean Square Lrror

SNIt  Signal to Noise Ratio
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Chapter 1

Introduction

In this thesis Kalman filtering techniques are applied to reduce speckle noise in
synthetic aperture radar{SAR) images. Synthetic aperture radar images suffer from
speckle noise that greatly impair their utilization. Current filtering technigues for the
processing of SAR imagery are examined. Existing two-dimensional Kalman liller
based techniques are also examined. Problems with existing Kalman filter techniques
are identified and several variations are derived. These modified Kalman filters are
implemented and compared with both previous Kalman filtering technignes and one

of the most common speckle reduction methods, the Lee filter.



1.1 Rationale

The observation of the Barth from some sale high ground has always been an im-
portant task [rom the earliest times in human history. The high ground has been
extended from trees Lo early observation balloons, reconnaissance aircraft, and finally
to cameras in space. This desire to view Lhe earth has extended to the observation
of things in ways thal could never be achieved with our own eyesight. Observation
using radiation invisible to the human eye is also becoming very important. It is
the ability of radar imagery to penetrate most atmospheric barriers to observation
that makes it very desirable. The capability of synthetic aperture radar (SAR) im-
ages to give reasonable detail from hundreds of miles above the Earth’s surface in
all weather conditions makes it absolutely essential to many who study the Earth’s

surface[9).

As we use different parts of the electro-magnetic spectrum to observe the earth,
we often loose sight of how these differ from our normal sight capabilities. SAR
imagery is typically very difficult to interpret for this reason. The most significant
difficulty in using SAR imagery is the high degree of noise that is found in the
images. It is not uncommon for an image to contain as much noise as information.

in images such as SAR, this noise is referred to as speckle noise.

"The speckle noise present in SAR imagery results in the poor performance of
many existing techniques for the detection of edges [31],(17], and the classification

of regions[35),[23],[15},[42]. The utility of SAR images may be greatly improved by

[ S}



the removal of this speckle noise. Speckle noise is created in an image by hoth
the properties of the illuminating radar beam and the objects being imaged. Due
to the complexity of the SAR image formation process and the complexity of the
scenes that are imaged, the process of removing the noise can be extremely diflicult.
Some people have taken simple assumptions about the propertics of the image and
developed ad-hoc/simple methods for noise reduction. Many others have derived
statistical models of SAR imagery and used these to develop methods of reducing
the high noise levels caused by the properties of the illuminating radar heam and
the objects being imaged. Speckle noise is most commonly modeled as a noise term
multiplied by the input signal, ie. multiplicative noise, when the speckle is said
to be “fully developed”. Methods have also been developed that attempt to take
advantage of the statistics available from the image itself and approximate an image

formation process that is used to determine how to remove Lhe noisc.

One such method that utilizes the image statistics is Kalman fillering. Kalian
filtering is commonly used to determine linear approximations to dynamic systems
in the presence of noise. The advantages of Kalman filters include the ability to
determine an optimal estimate in the mean squared error, Lhe ability to adapi Lo
changing conditions in the input using the input statistics, and the ability to measure
filter performance by monitoring several filler values such as the gain matrix. It is
possible to model the SAR image as a two dimensional dynamic process such that,
each pixel is related to all the previous pixels. Using this model and a description of
the noise in the system, a IKalman filter can be used to filter the image and reduce

the noise present. In many instances, the noise statistics of an image are considered



unchanging over the entire image, ie. globally stationary. It is possible to also
consider the noise as being only consistent over subregions or locally stationary.
Azimi-Sadjadi et al [5] developed a Kalman filter for speckle noise reduction in SAR

images.

When using the Kalman flter or any other filter with an auto-regressive model,
it is not always known what the relationship between the current location is to the
following locations. In these cases, it is necessary to estimate the parameters for the
stale transition. One method for estimating the parameters of an unknown system
when using the Kalman filter is the extended Kalman filter. A method developed by
Ljung and Séderstrom[37) called recursive parameter estimation(RPE}, was adapted

by Azimi-Sadjadi et al [5] for use in Kalman filtering for speckle noise reduction.

T'his thesis covers the application of Kalman filtering and recursive parameter
eslimation for the reduction of speckle noise in synthetic aperture radar images. Dil-
ferent Kalman filtering techniques are developed to better process the SAR imagery
for speckle reduction. The adaptive-block Kalman filter(ABKI') given by Azimi-
Sadjadifs] is modified so that the multiplicative noise statistics are considered only
jocally stationary. This allows the filter to model regions where the multiplicative
noise assumption does not hold, The filter is also adaptive over the whole image so
that changes in the image model that are due to large variations in the image, such
as over urban areas, can still be filtered. The problem of filtering non-homogeneous
regions is also approached from two different directions. One method involves in-

corporating an adaptive additive noise term in the system dynamic equations to



compensate for changes in the image at edge boundaries. A second method that is
demonstrated involves the use of a multiplicative noise term in the system dynamic
equation to follow sharp changes in highly dynamic regions such as urban arcas. i
nally, the methods used for the modified 2-D ABKF [ilter will be applied to a model
using a full plane region ol support instead of the hall plane region of support. This
use of the full plane model reduces the asymmetric distortions that result with the

hall plane model.

In this thesis it will be shown that the original assumptions made by Azimi-
Sadjadi et al. were invalid for use in speckle reduction of complex images that did
not remain statistically homogeneous. This caused the filter to become less stable
over highly variable regions such as images of urban centres. The modifications made
to the filter in this thesis resulled in better performance over these highly variable
regions as well as improved performance near edge regions. The adaptation of all
of these methods to the full plane model of the Kalman filter also resulted in much
better performance due to the symmetric estimator. This overcame problems with
the block effects of the non-symmetric half plane model. Several scientific criteria
were used in evaluating the performance of the different Kalman filters and some of

the existing standard speckle reduction techniques.

The thesis outlines the details of the development of modifications to existing
Kalman filters to enhance their utility for processing SAR imagery. Chapter 2
introduces the models that have been developed to describe the image formation

model of synthetic aperture radar images. Several current noise reduction methods



are introduced with a review of their capabilities. including the use of Kalman
filtering for speckle noise reduction. Chapter 3 shows the development of kalman
filters 1o reduce speckle noise in SAR imagery. The dynamic model of the SAR image
is defined and the Kalman equations for the quarter plane model are developed. The
alman filter is adaptive over the entire image as a parameter estimation technique
for the state transition paramelers is included. Two alternate models, the hall-plane
and the full-plane, are described as well. Chapter 4 covers the implementation of the
Kalman filters described in chapter 3. Modifications to the models given in chapter
3 arc developed to improve the performance of the filters. Chapter 5 demonstrates
the performance of the modified Kalman filters on both test and real images. The
results are compared to results obtained from the original unmodified Kalman filter
and some of the other techniques given in chapter 2 using both scientific criteria
and subjective visual inspection. Chapter 6 presents the conclusions of the work

and describes {urther work that may be carried out.



Chapter 2

SAR Image Processing

Demand for synthetic aperture radar (SAR) imaging has increased greatly recently
due to the all-weather capability of a radar imaging system and the unique propertics
of the radar image. SAR imaging modes are being uscd for such systems as fighter
aircraft, battle field surveillance(JSTARS), remote sensing aircralt{SAR-580), and
spacecraft(Almaz, ERS-1, JERS-1, SIR-C/X, and Radarsal). The SAR image is
created by measuring the reflected return from a region illuminated by a coherent
radar. Thus, in radar imagery, the carth does not appear as white clouds, blue
ocean and green vegetation, dependent on the sun angle(9]. Rather, the image is
dependent on the geometrical properties of the surface and is further influenced by
the presence of moisture, For example, it is difficult to determine the exact coastline
in a SAR image because the scatiering from the surface waves of the water equals
or exceeds the surface scattering of the shoreline[31]. Hendry et al.[22] demonstrate

the difficulty of viewing linear features in SAR images due to the variability of the



image that is dependent on the viewing geometry. The primary drawback of SAR
imagery is the low signal to noise ratio due to the granular noise known as speckle.

‘I'his limits the resolution of the image as well as its utility.

The largest source of noise in a SAR image, is the speckle noise that is caused
by the interaction of the coherent imaging radar beam and the relatively rough
surface being imaged [19]. For a typical single-look intensity image the signal to
noise ratio is often as low as 1:1. Because of this speckle noise, typical image
processing techniques experience great difficulty when applied to SAR imagery[35].
As an example, many segmentation schemes require prefiltering [15] or modified
techniques that take into account the special requirements of SAR imagery [23},[42].
'The problem is even greater when one attempts edge detection. Many specialized
edge delection methods have been developed solely for application to SAR imagery
[17),[54),[49],[10] and many prefiltering techniques developed are specifically modified

to prescrve edges in SAR imagery[51],{30).

An example of a single-look intensity image is given in Figure 2.1. The image
is of the downtown region of Victoria, B.C. taken by ERS-1 in August 1993 and
is marked on the map given in Figure 2.2. The dark region in the left third of
the image is Victoria Harbour and the Victoria Arm. The bright region in the
centre is a highly developed urban region. The image is 256x256 pixels, but is
displayed here with non-square pixels due to the higher along-track sampling rate of
the single-look image. This image illustrates how the speckle noise severely reduces

the interpretability of the image. The large variations in the image make it difficult



to clearly identify region boundaries, and this problem is greatly exacerbated when
computer algorithms are used. This image was chosen as a test image for this thesis
for its great variability. Many processing algorithms assume homogeneous regions

and have difficulty handling images that have such different regions.

Figure 2.2: Map of Victoria, B.C. Showing Area of SAR Image.



2.1 SAR image formation

A radar image is created by measuring the returning radiation from a coherent radar
source. A coherent radar beam is emitted by the imaging plat{orm and is absorbed
and reflected by the target region. The poition of the beam that returns to the
receiver is measured and used to create an “image” of the illuminated region. The
clectro-magnetic field equations used to express the transmission and reflection of
the radar beam are linear in field intensity. Thus, radar systems are designed to
be linear in voltage and the radar parameters are typically measured in terms of

voltage rather than power. The resuliing radar equation for SAR imagery is given

as [13]
o0
ve(R) = f MR|R')C(R)dA' (2.1)
where:
v (R) is received complex voltage signal

h(R|R') is impulse response for the radar

¢(R") is the complex random scattering coefficient of the terrain
dA’ is the area element or resolution cell, and
R is an arbitrary space point

The image will consist of estimates of the scattering coefficient, ((R), which

are referred to as ¢ (R). This results in the following image formation model:

(R = [~ (RIR)on (R)dR (2.

[V
g™
—

Since the system is resolution limited by the processing algorithm, the area dA

consists of many scattering elements. This results in {(R) being a random process.

10



Direction of Flight
v (R)
h(RIR)

Coherent Waveltont

Rough Surfuce
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Figure 2.3: Illustration of SAR image formation

The radar back-scatler coefficient over the resolution cell, dA, is given as

G(R)

I

C(R)/dA

= [{(R)] (2.3)

The ensemble mean of these values is the expectation, £( ) [14], and is referred to

as the mean backscatter given as
¢°(R) = E(C(R))
= E(I¢(R)*) (2.4)

The difference between any particular measurement or realization of {,(R) and {*(R.)

is referred to as speckle noise.

Goodman [19] summarizes the speckle effect as a random walk phenomenon.

In order for this to be valid, three assumptions must be true.

o the number of elementary contributions to the signal at one location is large,

il



o the amplitude and the phase of each elementary scatterer are statistically

independent., and

e the phase of the clementary scatterer is uniformly distributed, ie. the surface

is rough compared with the wavelength.

If all of the above assumptions are true, the speckle is called “fully developed”
[40], and can be treated as strictly multiplicative noise in the observation equation
as

i, j) = (i, J) - (i, 5) (2.5)

where:
y(i,7) € |R| is the observed image
x(z,7) € |R| is the actual image or state, and

i, J) is the multiplicative noise term.

The multiplicative noise assumption results in the distribution of the intensity,

P(1), being a negative exponential of the following form(53).

Lexp(5h), 120
pry= TPCT) 12 (2.6)
0, otherwise
where the intensily is defined as
I = [E®)° (2.7)
O'.f =T (2.8)

In many cases, the amplitude of the image is used instead of the intensity. The

distribution of this type of image is described as a Rayleigh distribution[44] and is

12



given by[55]

A - s A=
p(ay= 7 Plagh A2 (2.9)
g, otherwise

where

A = [{(R)]

2 T ‘
Note: ¢% is the variance term found in ( 2.8). (2.13)

It is often the case in real SAR imagery that certain regions will be dominated
by a single point reflector, or that the surface is not rough with respect to the
wavelength. This becomes more likely as the resolution of these systems improves.
In these cases, the assumption of strictly multiplicative behaviour of speckle is no
longer valid and the image must be modeled in a different manner. This often

requires weakening the multiplicative noise condition in the observation equalion,

Aside from the multiplicative effect of the speckle, there is also additive noise
in the processing of the SAR data through the matched inverse of Lthe radar impulse
response, h(R|R’). Although this term is typically small in SAR imagery, there are

cases where the noise may influence the observed image.

It is assumed in many SAR speckle reduction procedures that the speckle noise

in adjacent pixels is independent. It has been noted by Raney[47], thal in real

13



cases of SAR imagery, this assumption is invalid and that the speckle measured in

adjacent pixels must be considered correlated.

2.2 Speckle Noise Reduction

There exist several methods of speckle reduction, many of which will be summa-
rized here in order of increasing complexity. One method of speckle reduction is
multi-look processing. The image is sampled as several independent, lower reso-
lution images or looks, which are then averaged together. Sampling is achieved
by dividing the Doppler {requency spectrum into M segments and processing each
segment independently. This method leads to a reduction in the speckle noise of in-
tensily images by a factor of 1/v/M, where M represents the number of independent
looks[19]. This results in the amplitude and the intensity of the image becoming

gamma distributions{36].

=AM
MMM=] . =z
Pliy) = I 120 (2.14)
0, otherwise
where
Iy = the intensity image after M look processing (2.15)
Iy = o} (2.16)
o}, = of/M (2.17)

Multi-look processing is very common, due to its reduction of the processing

14



complexity by 1/M. However, it reduces the resolution of the image by L/ while
improving the signal to noise ratio by !/ VM, and does not take into consideration
the spatially varying statistics of speckle over the image. Also, the additive noise
from these independent samples is added, which may bias the image and reduce the

gain in signal noise reduction by a value less than v M[13].

Since speckle noise is considered multiplicative in nature for fully developed
speckle, homomorphic filtering has been used as suggested in Jain[25]. This method
involves a non-linear transform to a domain where the multiplicative noise may be
treated as additive noise and removed. The corrected image is then retrieved using
a corresponding inverse transform. The process is illustrated in Figure 2.4. ‘The
most common homomorphic transform for multiplicative noise is the log operation.
Multiplicative terms in the normal domain become additive in the logarithmic do-
main. Thus, noise may be removed using an additive noise model in the logarithmic
domain. The restored image is recovered by taking the exponent of the cleancd
logarithmic image. Durand et al.[15] analysed several filters including homomorphic
versions of the box filter, and the homogeneous block filter. They found that the
non-homomorphic fillers performed better on real SAR imagery despite the more

appropriate multiplicative noise model used.

(i, j

y(i, i G(i,§) Linear Additive | 5(4,7)

e H -

H-!

Processing

Figure 2.4: Homomorphic Filtering Process

Another speckle reduction method that does not use a model of the SAR image

15



is the Crimmins geometric filter[12]. The Crimmins filter uses a morphological
process referred to as the complementary eight-hull algorithm to “fill in the narrow
valleys and break down the narrow peaks”. This algorithm utilizes the correlation
hetween the speckle of adjacent pixels and results in a smoothed image. However,
the Crimmins geometric filter does not take into account the multiplicative nature
of the speckle noise. Thus, the noise at higher intensities will remain while the
values at, lower intensities will be overly smoothed. It also requires that the image
be detected and mapped to a relatively small dynamic range to work reasonably

well.

One simple speckle reduction filter is the Lee-sigma filter[33]. The Lee-sigma
filter uses an eslimate of the variance of the image for a multiplicative model of the
speckle noise. A (2n+1) x (2m +1) window about the current pixel is defined. The
central pixel of the window is assigned the average grey level of those pixels in the
window that are within an intensity range defined by twice the multiplicative noise

standard deviation from the centre pixel’s grey level.

I, if(1 =20 )y < yrgt S (14 204)ysy

- (2.18)
0, olherwise
vidn  ypitm 5
~ Hhmjan == - k'!ykJ
&= k=i-n—=j=-m (2‘19)

widn  wJtm 6k ]

Hhzmfen =l=j-m
where:
# is the estimate of the original image,

y  is the observed image, and

g, is the multiplicative noise variance.
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This filter is based on the fact that 95.5% of all values are within two sigma of
the mean in a Gaussian distribution. However, the assumption of a local gaussian

distribution is often not valid for SAR imagery.

Lee also derived very popular statistical fillers using data models for both ad-
ditive and multiplicative noise [32], [34]. The Lee statistical filter for multiplicative
noise assumes the noise-corrupted image is described as

Yij = Tijvij (2.20)

where:
yi; is the observed image

x;; s the desired original image, and

4:; is the muitiplicative noise.

A linear approximation to the image model in Equation 2.20 is given such that
$ij = Axij+ Byvij+C (2.21)

and A.B, and C are nonrandom variables. [n order to ensure an unbiased estimate

the value of C must be constrained such that
C = &%, — AZij — B (2.22)
This results in a linear approximation of the form
i = @igYig + Zig(Yig — i) (2.23)

which is optimal in the mean square error of (# — y). Approximating the necessary

terms using local statistics gives a filter of the following form:

&

Ti;

(2.24)
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Lo = Ll Pt 2.25
Trij = a‘?r + :j'z T (-'-3)
o2

RLFEE:
foo = o 2.26
] -i'f'la.i + :i'zaf. i ( )
. Vi _ 5 g
By o= ':,_J + ki (41— Fig) (2.27)

where §; ; and oy ;; are the first order image statistics calculated for the local win-

dow, k;; is the gain, and & ; is the new image estimate at i.j.
In further work, Lce (36] uses a linear model where
& =aZ + by (2.28)

in which & is the mimimum mean square estimate, and ¢ and b are chosen {o minimize

the mean square error. This results in a minimum mean square estimate of the form
Eij =&+ My — ig) (2.29)
where the gain term Ay is
v = gl 2 :
k,'} =, i'j/O'” ij (2.30)
The difference between this filter and the previous Lee filter is only in the calcula-
tion of the gain term. Lce found that there was little difference between the two

filkers when using 4-look amplitude images, but the newer Lee filter had significantly

improved performance with single look intensity images over the original derivation.

The Lee statistical filter assigns a value to the central pixel that is between the
mean of the given window and the observed value. As the local mean value gets

larger or the ratio between the local variance and the local mean gels smaller, the
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output tends to be closer to the mean. This filter was rated very favourably by
Durand et al [15] and by Lee et al [36] in terms of performance and efliciency. The
previous four filtering methods were also compared by Dewacle et al. [I4]. They
found that the Lee statistical filter performed well, but preferred the Crimmins flter
for preserving edges. The primary drawback of the Lee statistical ilter is the over-
smoothing of edges. This effect can be seen in Figure 2.5 when compared to the
original image in Figure 2.1. The single bright lincar feature in Fignre 2.5 in the
harbour region in the left third of the image is actually two separate targels that

have been smoothed together.

Figure 2.5: Results of Lee Statistical Filter(5x5) Applicd to SAR Image

In order to overcome the problem of over-smoothing of the edges, Lee further
refined the filter to use edge directed windows[30]. [n this algorithm, eight non-

square windows for eight edge orientations are created within a 7x7 window. The
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local statistics are calculated using the windows for the edge model sclected and
then the Lee filter is applied.  For homogenous regions, this performs similarly
to the original Lee statistical filter, but gives much better performance near edge

houndaries[36].

Arsenault [3] expressed the observed image as a result of the addition of the

original signal and a signal dependent term.
yi; = i+ KNrgn (2.31)

where:
i is a constant, and

n is a Gaussian noise source with zero mean and unity variance.

A homomorphic transformation of the form

-

255

Cij = 17336

In(zi; + 1) (2.32)

was applied to the data to convert the signal dependent noise to additive noise. The

noise was then removed using the additive noise model given by Lee [32].

Si = Gij+Qi(Gi - Gis)s (2.33)
o?
Qi = 1- ;:?u (2.34)

where:
S;; is the estimate in the transformed domain,

(2i; is the gain,
2 s the image variance, and

2 is the local window variance.



The image was then restored using an inverse transform of {2.32). However, Du-
rand et al[l5] found that this filter performed less satisfactorily than the extended

multiplicative noise model derived by Lee {32] discussed above.

Kuan et al. [27] developed a locally linear minimummean square ervor {LLMMSE)
filter using a nonstationary mean, nonstationary \-'ari;.mcc model of the image. The
resulting filter for signal dependent noise is the same as the Lee filter except for the
k term which is given as

2

e, .
ki = 19 (2.35)

=2 2 =22 2.2
705 + Orij + a0

Although this method is better optimized than Lee's method, the improvement. in
g P

the results is usually reported as negligible [L5], [40].

Ikuan further developed a maximum a posteriori MAP) method for gamma and
Rayleigh distributions[28}, two distributions which are often associated with multi-
look and amplitude SAR images. The MAP estimatc of the image is obtained by

maximizing the a posteriori probability density function, (2.37) with respect to .

Plaly) = Lkl

() (2.37)

"This method requires solving a cubic equation(2.38) for each pixel to determine the

optimal MAP result for the given distribution.

= &rap ilEarap i — &)+ 07, i — Esar i) =0 (2.38)



Ihe LLMMSIE filter is used to reduce the computational load of the MAP filter by

solving for the cubic root only when the data changes significantly.

Frost et al.[16] developed a minimum mean square error {(MMSE) filter for a

stationary image model. The radar image is modeled as
¥is = laij - i) * b (2.39)

The minimization of the mean square ervor results in the impulse response of the
filler being given as

m'(t) = Ky exp(=KC21]) (2.40)

where K is a normalizing constant, A" is the filter parameter and C, is the locally

derived coeflicient of variation

C, =i (2.41)

iy ij
This filter performs fairly well in comparison to several of the others described above
as illustraled by Shi and Fung [50}, but it does fail to model additional additive noise
as pointed out by Woods and Biemond [58]. Quelle and Boucher[46] combined the
Frost. model of SAR imagery with spectral estimation techniques to develop an

adaptive Frost filter.

"Tlicre exist many slight variations of the above fillers. Lopes et al [40],[39],[38]
have modilied several of these filters to apply different criterion so that they are
bounded to operate only in regions where the assumptions made in the flter design
are valid. These modified filters use the local statistics to verify the assumption of

mudtiplicative noise and vary the filter parameters when the assumption does not

)
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appear valid. In {40], the coefficient of variation, C\. is the criterion, while in [39].
the contrast ratio, Cy, is the criterion. The contrast ratio, C'y, is defined as the ratio
of the mean of two adjacent windows in the image. If the local variation of the image
is small as determined by either of these criteria, then the region is homogeacous
and the multiplicative speckle assumption is not. used. If the criteria indicated that
the variation of the image is too great to be accounted for by the image maodely
then the assumption of multiplicative speckle is also invalid and the value is lelt
unfiltered. This results in greater averaging in homogenous regions while edge arcas

are lelt intact.

2.3 Kalman Filtering

In the previous seclion, each successive method involved a more complex model
for speckle reduction. Images may also be nodelled as a lincar two dimensional
autoregressive {AR) process[24]. Kalman filtering has been used extensively in pro-
cessing of 1-D AR processes to achieve a lincar estimate of the least square error
solution[20]. The Kalman filter was extended to the 2-) case by Habibi [21]. How-
ever, the straight application of a Kalman filter to the 2-13 case is difficult due to

the large computational and spatial requirements.

The problem of large computational and spatial demands was first reduced
] P
when Woods et al. developed several filters, such as the reduced update Kalman

filter (RUPK) [60] [57], that were efficient and could he used to process images that



were modelled as lincar AR processes. These filters were expanded to include online
parameler estimation[26], linear space invariant(LSI) blur correction[59], and multi-
ple parallel models for edge preservation[53]. Roesser[48] also derived a single input,
single output 2-D state space model that possessed a separable impulse response and
divided the state into vertical and horizontal components. Zhang and Steenart[62]
presented a high speed Kalman filter with LST blur correction based on Roesser’s

model.

Azimi-Sadjadi and King[7] derived a general 2-1) recursive multiple input, mul-
tiple output system based on the Roesser 2-1) state space model. This system took
advantage of special block structures to implement efficient 2-D filters by applying
fast convolution methods[l]. The concept of a 2-D block processor was extended
to Kalman filtering and applied to SAR imagery [4]. In order to model SAR im-
agery, the speckle noise was approximated by the inclusion of a multiplicative noise
term in the equations. The 2-D block Kalman filter also included online parameter
estimation based on local statistics. The adaptive nature of the online parameter
estimation allowed the filter to be applied to a globally non-stationary image while
assuming only local stationarity of the image within the blocks being processed,
and global stationarity of the noise process{6]. Further modifications included the
expansion of the region of support to a non-symmetric half plane block with special

block attributes that increased the order of the filter[3).

The 2-D adaptive block Kalman filter(ABKF) was demonstrated to reduce

speckle on relatively homogenous images. However, several simplifications were
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made in order to reduce the computational work load for this algorithm. lor the
case of images with large non-homogenous regions such as urban regions or land/sea
boundaries, these simplifications create difficulties. The main computational bur-
den of the filter in [3] is the calculation of the derivative of the Kalman gain term
for the parameler estimation. It was assumed that the gain would converge to its
steady stale value very quickly, and the gain was set to a constant value after an
experimentally determined number of runs. The model also weighted the online
parameter estimation so that the filter parameters would converge to global steady
state values. The combination of selecling a steady state gain and using the steady
state filter parameters removes the filter’s adaptive capability, leading to blurring
at edges and large block effects. The Kalman filter, as presented by Azimi-Sadjadi,
also assumes a stationary multiplicative noise condition, ie. il assumes thal the

multiplicative noise statistics are constant over the entire image.

In the next chapter, the Kalman filter technique will be discussed and refer-
ences Lo the improvements designed into this technique in order to apply it to SAR

processes will be given.



Chapter 3

2D Kalman Filtering

T'he Kalman filter is a very powerful tool that can be applied to many problems to
determine the optimal estimation of a system in the presence of noise. A dynamic
tmodel of a system is defined and the Kalman filter is applied to the model to
estimate the system state variables, It is also possible to extend the Kalman filter
so that it may estimate the parameters of the model of the system. One method for
developing a dynamic model of a system is to approximate the system as an auto-
regressive( AR) linear process[24]. This chapter will outline the development of some
two dimensional AR processes that can be used to apply Kalman filter techniques
to the speckle problem. Then various Kalman filters are derived for the different

models and a parameter estimation technique is also outlined.



3.1 2-D AR state space model

Since an image is a two dimensional object, it is desirable to use a two dimensional
model of the image. Each pixel of the image is represented by a value x(i. f) € [Tl
The use of a dynamic lincar process implies that the vatue of a single point. (s, 1),
can be calculated using a general 2D input-output model as given in (3.1) which
uses a quarter-plane vegion of support ol size m x n. This single input-single output
model must be converted into a state space model in order to be able to apply a

Kalman filter.

i+ 4L,j+1) = ape(f+1,j) Fapax(i + 1, =)+ rapuopr(i + 1,5 — a4 1) -+

aror(i, g+ D dFaga(i,j)+ ey ety =1+

Fepqprli —m+ L+ D+ apoqge(@—m¢ 1 g)4---
o pmr{i=m+ L j~n+ 1)+ bu(i + 1,5+ 1) (3.1)
yli+ L, j+1) = ex(i+ L, j+1)+de(id1,5+1) (3.2)

where:
x(i+1.j+1) is the value of the system al location i+1,j4+1,

y(i+1,j+1) is the observed valne of the system at location i+1.j+1,
a,b,c and d are the parameters of the system,
u{i+1,j+1) is the additive input noise, and

v(i+1.j+1) is the additive observation noise.

The general scalar state space model for a two dimensional process has Leen

given by Kurek [29]. In this model, the current state, X, is the result of the previons
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states in both the i and j directions. The state model clements are defined as

X(i,J) as the state
Y(i,j) as the observed state
U(i,j) as the additive state noise

V(i,j) as the additive observation noise

Ay as the state transition matrices

1y as the state transition matrices for the additive state noise

C as the observation transition matrix, and

D as the observation transition matrix for the observation noise.

Then, the general scalar state space model may be given as below[29].

XG4 1j+1) = ApX(,J)+ AX( +1,J)+ AX(i,j+1)
+ BU(i )+ BiU(i + 1,) + BU(i,j+ 1) (33)

Y(i,j) = CX(i,j)+DV(i.J) (3.4)

O A . e .'l.']‘_l‘! X?-J

[, —— | ¥o0,0/%0,1|0,2| ¥o,3] T04]: - -

T 1,0
$o.N-1 . :L'()Ig 3:0.1 :l:()‘g l

Figure 3.1: Example Mapping of 2-D blocks to Block Vector.

Azimi-Sadjadi and King [7] developed a block state realization of the 2-D AR

process based on Roesser’s model [48], which allows the extension of the scalar 2-D
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Figure 3.2: Example Mapping of Parameter Vector to Quarter Plane Region of

Support.

state space model (single input-single output) to a multiple input-mmltipte outpnt
system. The input sequence, x(7,j) is partitioned into non-overlapping blocks of
dimension A x L, where K is greater than the order of the filter in the vertical
direction and L is greater than the order of the filier in the horizontal direction,
These blocks are then mapped into a one dimensional vector to become block vectors,
X;j. A diagram of this mapping is given in Figure 3.1. The 2D block is overlaid with
the (k4 1) x ({ 4 1) region of support for the xpg point that corresponds to the 2D
input-output equation given in (3.1). A diagram of the mapping of the parameters to
the region of support is given in Figure 3.2. The actual mapping of the block to the
block vectors can be arranged to allow the most cfficient implementation. For the
quarter plane region of support, the block vectors are defined by Azimi-Sadjadi[]

as in (3.5),(3.6) and illustrated in Figure 3.3.

Xij = INiwGL+L=1),Xw(GL+L=2),--, XiGIT (3.5)

Xiw(m) = [e(iK,m),z2(iK + 1,m),---,z(iK + K = 1,m)) (3.6)



l Past->

I X(i.j) X+l I
<X(i+1|j+1) I
x(m(i+]),m(i+ 1)

Figure 3.3: The quarter-plane region of support for a 2D AR model for images.

Depending on the region of support chosen, the current state is dependent on
various neighbouring past state vectors. For the quarter plane case given in Figure

3.3, the state vector will be formed following [4] as

Xi.i = [X;"-.-l,j-l Xg;l.j X.?.}-l-\'.:‘.rj]T (3-7)

Combining the above state vector formulation, (3.7), and the 2-D general state
space model, (3.3,3.4), it can be scen that the overlap in adjacent states results in

a stale equation of the form [5]:

Xi; = AoXij1 + A Xio; + BUy (3.8)
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where

0 I 0 0] (000 o]
0 0 0 0 000 I
Ay = and A, = (3.9)
0 0 0 I 000 0
|0 Ap 0 A [0 0 0 Ay ]

B = [pooB"

Since the models will be used for speckle reduction, a multiplicative noise term,
T, is included in the observation equation (3.10). This I' term is a result of the
typical characlerization of speckle noise as reviewed in the previous chapter and

given in (2.5).

Vij=Cli; Xij+ Vi (3.10)

3.2 Kalman Filter Equations

Using the block state space model given above, the block dynamic model equalions

for the Kalman filter can be defined[5].

Xij = AoXij + A Xio; +BUs; stale transition {(3.11)
Yij = CIyXi;+ Vi, observalion (3.12)
where the noise processes are Gaussian with the statistics as follows

ElUi;l = 0 process noise (3.13)
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S[Ur‘.iU.:{k.j-t] = ‘7315&.1

EVi;] = 0 observation noise
AN V"AJ_,] = o6y

Elii] = 1y multiplicalive noise

E[ri.jl‘?-'-k.j-rl = 0'316k,l+,u.2,1

Note that the various noise parameters, u, and v, are independent of the signal,

X, and are uncorrelated with respect to each other.

Using the block form of the filter and following Grewal and Andrews [20], the

Kalman equations given in [5] can be derived as follows:

a priori estimate
- X+
XE,J‘) = S[X,J|X(_1J, ) ]

i1

foj—= i—-1,7

a priori error covariance
P = elXi; - X7)(Xe = X5
= AoP,(f_)lAT + AP AT +
AoP{IAT + A PYTAT +
Bo’BT
a priori error cross-covariance
PR = E((Xigmr — XKy = X))
= [I— 4 Kij1ClALP c-——l J—1AT[I ﬂ'vf\l—l..:c]
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innovation

gain calculation

R: i

a posteriori estimate

Zij = &Y =¥
= —Eleri; XS 4+ viy]

= Y- pu,Cx (3.22)

E[Z;‘j ZIIJ]
E[(Cl‘;‘j.\',‘,j + Vij— I"’rcxi{.;))

(CTij Xij + Vij = s, C XN

p2CPCT 4 ¥ L4 oo+ 4k CCT (35.23)

= (X - X5h2h)RDY
,u.,Pl dol Ii’_‘u (4.24)
X,-(.:-') = X}.}’-H\’,-J-Z,-,,- (4.25)

a posteriori error covariance

The values of g,

image.

E(Xis = XIT) X5 = X3V
(I— p K ;C )P( NI = p i iC)T
+ KijC(o2(o? i+ p2  ))CTKE + a2 Ky KT (3.26)

(I— p ki ;C) P (3.27)

and o3 ; ; must he estimated from the local statistics of Lhe
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3.3 Parameter Estimation

The Kalman filter requires that the filter parameters A, B. and €' be defined. Unfor-
tunately, it is very common for the matrices A and B 10 be unknown before the image
is processed. The purpose of the filter for SAR imagery is to reduce the amount of
noise that is present in the image. Thus. it will be assumed that the ¢ matrix is
known for this problem and is equivalent to the identity matrix. If there were any
known systematic distortions in the imagery, these distortions could be placed in
the € matrix as well. In order to determine the unknown Kalman filter parameters,
a parameter estimation technique is required. The extended Kalman filter(ERF)
is often proposed for parameter estimation[20]. Several methods for developing the
estimation for the reduced update Kalman filter (RUPK) are summarized by Kauf-
man ct al.[26]. A faster implementation of the parameter estimation for the RUPK
is given by Tekalp et al. [52]. One of the difficulties with the EKF and its derivatives
is its convergence properties[37]). The 1-D recursive prediction error(RPE) method
derived by Ljung and Séderstrém[37] that is based on the stochastic Gauss-Newton
approach includes extra features that aid in parameter convergence. The RPE tech-

nique will be used in this thesis as detailed in [3].

A recursive formula must be developed for the estimate of the parameters of
the form [37]

(1) = (1 — 1) + L(OZ(2) (3.28)

where
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(1) is the vector containing the parameter estimates at time 4.
Lt} is the gain for the parameter estimate, and
Z(1) s the innovation or observation error as in (3.22).
In order to derive a model for parameter estimation, a criterion to be minimized

is required. A quadratic criterion of the form

N() = C[%Z"'(l)l'l“‘Z(f)] (3.29)
where II is a positive definite matrix. is often used {37).[3]. It is shown in [37] that
the best choice for I is the true prediction error covariance matrix. It is important
to note that this form of criterion gives a substantial penalty for large errors and is

sensitive to large measurement errors in the obscrved process[37].

For such a model of parameter estimation, the criterion may be minimized using
the stochastic Newton method. The Newton method is generalized as a successive

approximation process of the form

JlE+ 1) = f{t)+ k7 (3.30)

L k)
dh( )

where:
f(t) is the solution,

h(t) is the function being solved, and

k is a gain factor,

Applving this method to solve for the optimal solution to N{®), te. solving
pplying I
%&” = 0, gives an equation of the form [37]

£ Ul d T
o) = @(f-—l)—u(t)[[d)z!\'((b)} [':EN("’)] (3.31)

= d(t—1) +u(z)[-@7:\f(¢)]— AL -D"Z(L=1)  (3.32)
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where

A() is the gradient of the observation error, and

p(l) s a time decaying gain factor.

The second derivative, or Hessian, of the criterion can be approximaled recur-

sively using the lollowing form {4]:

R(l) = ——N(b) (3.33)

R(1) = R( = 1)+ u()[AWITAT() = R(t = 1)] (3.34)

The gradient of the observation error can be derived from the Kalman equations

(3.22) [4] as

T
AP, 1) = [-{-%}"H((I),t)]

<4 cx(@,1) !
([(I)“"T “ 1

A1) = [(,CTi(@,0)] (3.35)
where Sy(b, 1) is the derivative of the a priori estimate [rom the Kalman filter (3.19).
(b, ) = —(-I-X(')(d) t) (3.36)

k] d‘p H

The caleulation of (3.36) requires the derivative of the Kalman equations (3.19) -
(3.27), and it should be noted that the calculation of the derivative of the gain

function is computationally intensive[3].

The best estimate for the value IT has been shown to be the covariance of the
innovation process Z({)[37]. This covariance is the R. term used in the formation

of the Kalman filter as given in (3.23).
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The formula for the calculation of the estimate of the Hessian given in (3.34)
is very sensitive to round-ofl errors. It is desired that an alternative dervivation be
used that is more numerically stable. Towards this purpose a sequence, A1), called
the forgetting factor is defined. This factor is dependent on the gain sequence, v(1),

as follows [37):
vt —1)
v(t)

Using this sequence and a new factor P(t) related to the Hessian by

L) =

[1=»(1)] (3.37)

Pty = w()R™(1) (1.38)

a form of the parameter gain function £(£) may be written that is more numerically

stable[37].

L) = Pl - DAWAT)P(L = DA + M) RA(1)]™ (3.39)
P(t) = [-LOAT)P( - DHI-AMLT W/
+L{)R(LT (1) (3.40)

O(1) = [B(t—1) + LU)Z(L)]pu (3.41)

The calculation of the gain must also be modified so that the parameter vector
always results in a stable system as indicated by the mapping function in the right-
hand side of (3.41) which has been marked as | }pm as specified in [37]. A common
method to achieve this is to multiply the gain L£({) by a weighting laclor that
decreases [rom 1 to zero, and Lo select the greatest factor that results in a choice of
parameters that yield to a stable system. The stability of the system may be verificd

by solving for the cigen values of the solution and ensuring that all are within the
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unit cirele [37). A priori knowledge of the stable parameter space may also be used

to force the parameters to remain in the region that guarantees a stable solution {2].

3.4 Online Parameter Estimation equations

e Kalman equations have been given in terms of two dimensions, while the pa-
rumeter estimation is given in the onc dimensional terms of the filter. The 2-D
terms must be converted into a form compatible with the parameter estimation.

Therefore, a parameler & is defined:
k=i+step; + j * siep;;

where slep; and step; are the number of iterations of the function that occur for
each change in i and j respectively. For the block Kalman filter, step; is 1, and step;

is equal to the number of blocks in one path across the image.

As well, it is necessary to define a sequence for the forgetting factor, A{1). The
forgetting factor indicates the rate at which new information overrides the past.
This factor should be a low value initially and should approach a value near 1 as

the image is processed in order to achieve a stable result. The function
’\k = /\as + /\m!c(/\k—-l - /\sa)

defines the forgetting factor [37], where Ay is the steady state value of A, and Aqqpe

determines the rate at which the A1) approaches A,,.
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All of the equations required for the online parameter estimation may now be

given in terms of the Kalman equations derived carlier [5, 37).

k= ixstep;+ f+slep; (3.12)
Moo= A+ Aratel et — Aas) (3.43)
AL(®) = pyC () (3.41)
Sk = AL®YPi Ak(®) + M Regry (3.15)
Ly = P Ay(9)S; (3.46)

P = K(I—LkA,{.(tb))Pk_l(I—L.A.A,‘\’.(tb))'+£kli’.=(k)£,,{. (3.47)

b = [Ppoy + LiZilpy, (3.48)
d . .

K = rT('I-)'hk((b) (.49
. d .,
San(®) = mXi"

= (I- [t-,f\'k(‘[’)C)Sb(k}(‘b) + kg Zp(9) {3.50)
" d -
Epren(P) = ;[3-\1-’

dA(D)

= A(®)Zuy(P) + Xi-t (3.51)

dd

The initial conditions required for the parameter estimation are Py, Ry, Ao,

Arates Asss and E11(0)

3.5 Non-symmetric Half-plane ABKF

The 2-D ABKF equations were derived for the case of a quarter plane region of

support as given in {4]. It is possible to develop a similar Kalman filter for different
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Mock structures having other regions of support. For example Woods[60] defines a
non-symmetric hall plane region of support. Due to the inherent nature of scanning
an image top to bottom, left to right, it is possible to declare all those regions to the
left, and above the current point as being in the past. Thus, it is possible to derive
a causal filter that uses points in a non-symmetric window aboul the centre point,
that extends npwards by the window size directly to the left, as well as above and to
the right. The reduced update Kalman filler(RUPK) described in [60] used this non-
symmetric hall plane(NSHP) region of support. Also, Azimi-Sadjadi and Bannour(5]
developed an adaptive block Kalman filter{ ABIKT) using this same region of support
over a larger diagonal block. Several non-overlapping diagonal blocks are used to
compose the state vector. The structure of the diagonal blocks is chosen to reduce
the computational burden of the filtering and parameter estimation process|7],[1].
The structure of the diagonal blocks and an overlay of the NSHP region of support

for one point are illustrated in Figure 3.4,

wlmi+ g +1) = aoga(mi+1,nf) +agox(mi+lnj—1)+---
apar(mi+ linj—n+1)+
ay—px{mi,ni +1+n)+ - +agx(minj+1)+

ooty az(mini—-n+ 1)+

+apy—pr(mi—m+tnj+l+n)+---
+atpoypt(mi—m+lnj—n+1)+

buli + 1,5 +1) (3.52)
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ymi+lbong+1) = ce(mi+linj+ ) +e(mi+linj+1) (3.53)

Past -»
X(idl.0) X{{-1dt1)

AR non-symnetric
hall-plane region
of suppon for
x{ni,mj).

(i)-1) (i)
RAmifmj)

Figure 3.4: The NSHP region of support for the 2-D AR model for images

The mapping of the parameters within an NSHP region ol support having
m = n = 2is illustrated in Figure 3.5 along with the mapping of the diagonal block

onto the 1-D X vector.

tz,2 | 2,1 {¢2,0] 02,12, -1 . -
16 13)10) 7 (441
21011 (11'0 fll_..|a|._2 l? l‘l ll 8 5 2
. ¥
@02 [%0,1] %00 1811511219161 3 »~ Vector Index
Parameter Map for @ Mapping of Image Block to X vector

Figure 3.5: The Mapping of Parameters and Image Values to the NSHP Region of

Support for m=n =2,

Using the non-symmetric hall planc region of support, the state vector X is

changed to reflect the diagonal nature of the blocks in the following manner [5].

iio= (XD XD X XD (3.54)
i ApXij-1 + A1 Xicy jyr + BU;; (4.55)
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The Ay, Ay, and A matrices need to change to reflect the different block state vector

being used in the system dynamic equation.

(0 I 0 O

00 0 0
A()=

0 0 0 I

|0 Ao 0 A |

and A, =

B=[000B""

Yi; =CTli;Xi;+ Vi

000 O
000 I
000 O
000 A |

(3.56)

(3.57)

Note that this results in a change in the parameters contained in the A and

X matrices, but the remaining Kalman and parameter estimation equations remain

unchanged. 'T'he mapping of the parameters within the A matrices for the case of

m = n =2 is given below.

oo 0 0 tp,1 0 Q0,2
Ay=| a2 o 0 |A1=]| a1 aoy A= | ap
0 a2 agp 0 ai-1 toq (2,-2
0 0 0 0 0
A= a, 0 0|A=|az 0 O
q,-) G1.1 0 dzp 12 0
0 00 0 00
A= 0 o00|As=| 0 00
ay; 0 0 aze 0 0

0
0

1,0 CGo,z2



AOO

AIO =

Ay =

Ay

0 0 a2

0
0

!
A

0
0

A,

t

Ag

0 ‘lll; =

0

0 ap-

0 0

! !
s Al
2 A3

'
Ay

! !
o A

0 0 ay -y - 0 ay-2 iy

0 0 0 A=0 0 w

00 0 ] 0 0 )]
1 [ 0 arp w2

g [A=10 0

0 _0 0 0

0 0 a2 O

s, A;— 0 0 (PR

0 0 ¢ 0
AL L0 0 0 0 0
' A, AL 0 0 0 0
A Ag, = Al A, A; 0 0 0
A AL Ay AL A 00
) p Ay Ay A Ay 0
:, R A
0 ] [ AL A AL A A A
0 0 Ay A} Ay Ay A
RN IR
0 0 0 0 Ay A A
0 0 0 0 0 A, A
Ag | 00 0 0 0 A
Ao = AgAw

Ag

(3.59)
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A] = AEOI'A(" (361)

Ay = Aaul Al (362)

3.6 Full Plane Kalman Filter

Kalman fillering is usually limited to the quarter plane or half plane regions of
support in 2D image processing so that the filter remains causal [21],[48],[62],[60].
This limitation has the drawback of ignoring those pixels adjacent to the pixel being
caleulated that are in the “future” of the dynamic process, resulting in directionally
biased estimates. Therclore, there are asymmetric distortions to the image that
greatly detract from the image. Another limitation with the NSHP filter given
above is that requires the staies for the entire previous row processed to be saved.
In order to reduce the problems of directional biasing and storage requirements of
the filter, Citrin and Azimi-Sadjadi[11] also developed a semi-causal Kalman filter
with a full plane region of support. The filter processes {rom left to right in strips
without using the results of previous passes above the current pass. The mapping for
the region of support for this filter is given in Figure 3.6. The full-plane Kalman filter
is the combination of four Kalman filters, three employ causal regions of support
while the fourth is semi-causal and is dependent on the output of the first three.
The forward most block, Xg, possesses a simplified quarter plane region of support
for cslimating its points. The upper and lower forward blocks also use a quarter

plane region of support. The combined resulis from these three filters are applied
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to calculate the final block using the full plane region of support. The full plane
model, although requiring less storage, has a much greater complexity due to the
four parallel filters, each with its own set of parameters. As well, lewer image points
are processed pér iteration of the filter for the same size region of support. These
factors greatly increase the computational requirements of the full plane filler over

those of the half plane filter.

SR
PRl

Figure 3.6: Full Plane region of support for 2-D) AR image model.

In the original full plane Kalman filter {11], the system parameters were calen-
lated @ priori using the complete image statistics. The filter will be modified in this
thesis to include the parameter estimation technique given by Ljung and Soderstidm
[37]. The basic blocks of the [ull plane filter arc given as in Figure 3.6. The image
blocks on the trailing edge, Xo, X, X3, Xy, and Xy, are copied from the block
to their right. The remaining blocks are calculated using the 2-1 dynamic process

equations.



Xo & X (3.64)

X < X; (3.65)
X « X3 (3.66)
Xy <= X (3.67)
X, <« X (3.68)
AXe < AbXe (3.69)
ALXs & ALX, + ALXs + ALXe + AL X (3.70)
AbXe & ALXy+ ALXs + AbXs + AL X (3.71)
AlXs & AlXo+ Ab Xy +... + AeXs (3.72)

1 2

3 4

Figure 3.7: Example Mapping of 2-D blocks to Block Vector. Number corresponds

Lo Localion in X Vector.

The A’ matrices are combined to calculate the state transition equations. One
possible choice of input-output model parameters for the parameter estimations and
the mapping to the full plane model for m = 2 is given below. The ap parameter
is shown set to -1. The mapping of each X block to a vector is given in Figure 3.7.

‘The mapping of each parameter to the local region of support for each block is given
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3 4 4 l 210
Mapping For X 1,2 Mapping for X 3,4

718 0 20 | 21 | 22

9 110 {11 T[S |19

12 | 13 | 14 1511610
Mapping for Xj Mapping for X5

37 (38 [ 39} 40§ 41

42 | 43 | 44 | 46 | 47

Mapping [or Xg

Figure 3.8: Example Mapping FullPlane Paraineters to Each Region of Support.,

Number corresponds to Location in Parameler Veclor.



in Figure 3.8.
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The dynamic equation lor this filter is given as

Xi; =AX, - +BU;; (3.91)
where
0 I 0 0 0 0 0 0 0|
0 0 0 0 0 I 0 0 0
0 0 0 I 0 0 0 0 0
0 0 0 0 0 0 0 I {
A={0 0 0 0 0 0 I 0 0 (3.92)
0 0 0 0 Asy Asg Asg Asr 0
0 0 0 0 0 0 Ag 0 0
0 0 0 0 Ap Axm Ay A U
| A Az Agz Ay Asi Ass Ass Agr Ay |

The filter requires no history from cach pass through the image, lelt to right.
The filter processes only one strip at a time, using the data from three strips from

the image. Only the centre strip from each scan through the image is saved.

In reviewing the development of the original ABKF by Azimi-Sadjadi [5], it
can be seen that the derived Kalman filter is adaptive only in teris of a variable
parameter system and even this condition is weakened when the filter is used 1o
determine a steady state solution for both the Kalman gain and the parancters,
The next chapter deals with the development of modified adaptive block Kalman
filters for hoth the halfplanc and fullplane cases. These filters will be modificd so
that they are truly adaptive over the entire image by cvaluating the multiplicative

noise assumption for each set of blocks processed. This will allow the filter to better
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follow the large variations found in a “speckled” image of urban regions such as that

fonnd in the test image of Victoria, B.C..



Chapter 4

Modified Adaptive Block Kalman
Filters

In the implementation of the ABKF as given by Azimi-Sadjadi [5],[37], several sim-
plifications were made that had a negative impact on the noise reduction capabilities
of the filter for SAR imagery. These simplifications were made in order to reduce the
computation time and were based on the assumption that the image process pos-
sessed homogeneous statistics, ie. that the process was stationary. In this chapter,
the simplifications used in the original hall-plane ABKEF will be reviewed and maod-
ifications to improve the performance of the filter will be proposed and developed.
To improve filter performance, the assumption of stationary multiplicative noise will
be modified to allow the multiplicative noise terms to vary over the image. Lastly,
in order to more closcly model the rapidly varying SAR image characteristics in

the presence of several strong point reflectors, a dynamic model incorporating mul-



tiplicative noise in the state transition matrix will be derived and applied 1o SAR

iimage processing.

4.1 Modifications to the Original Adaptive Block

Kalman Filter

In the development of the original ABKF [5], it was assumed that the parameter
relationships in the state transition matrix were constant, and that the Kalman
gain would converge Lo a steady state value. In conducting tests on the ABKF,
it. was found that the parameters often converged to values not optimal for the
entire image. In addition, the generating equation for the forgetiing factor, A ,
decreased the weighting of newer information to such a degree that the parameter
vector remained constant after a short period of time. The Kalman gain was also
assumed constant over the entire image and the “steady state” values were used after
a refatively few number of iterations. For many real SAR images, these limitations
are unacceptable. The optimal parameters will change for the different regions
within the image, such as the water regions and the urban regions. The IKalman
gain factor and parameters that arc valid for darker water regions will certainly not

be the best choice for a highly variable urban region.

The concept of a steady state Kalinan gain for the multiplicative noise model is
invalid when one considers the Kalman gain equation, (3.24). The R. term includes

a signal dependent term as shown in (3.23) and thus varies proportionally to the



local statistics as given in (:L.1).
R.x al(oF i+ 1505 (-1.1)

For single look images where the multiplicative noise variance, o, is approximately
one, this term is not negligible. To illustrate the importance of a variable gain tern,
consider the outlined region from the single look image of Victoria, B.C. given in
Figure 2.1. The variability and mean of that portion of the SAR image of Vicloria
is evident in the scatter plot of the intensity of three adjacent rows of the image
given in Figure 4.1. The effect of the local image mean and variance on the gain is
illustrated by the variation of the norm of the Kalman gain over this portion of the
image as shown in Figure 4.2. The gain tends to a low value over regions of high
variability and high mean, such as those in the built-up urban area in the centre of
the image, and is close Lo unity over regions with low variability and low mean, such
as the water regions in the harbour that have almost no variation. The norm of the
gain peaks at the boundary conditions of the image due to the use of a constant
value for pixels that fall outside of the original image boundaries. As the figures
show, the gain will be inversely proportional to the local mean and variance of the
image. Azimi-Sadjadi[5] assumed these terins to be negligible. In the case of single

look intensity images this is demonstrably not a valid assumption.

The parameter estimation process is controlled by the forgetling factor, A. This
factor limits the impact of new information on the caleulation of the new parameter

estimates at each step of the algorithm. Recall that the parameter forgetting factor,
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A was generated as a sequence using the formula
M= A+ Aareldimt = Ad) (1.2)
In the original ABKF[3], the forgetting factor generating function was given as
A = 0.99M5_, + 0.01 (4.3)

which is equivalent to a Ay, of 1.0 and a M. of 0.99. The suggested Ay was 0.95, This
form of the forgetting {actor gencerating [unction applics to a time-invariant solution
as given in [37]. If instead, a time-variant solution is allowed for the parameter
estimation, the parameters will continue to change over the remaining image as the
image properties vary over diflerent regions. This may be achieved by simply setting
Ass 10 a value less than 1.0. In mosl cases, setting Ay, too low, will result in the
parameters nol converging. An appropriate value for Ay, is between 0.95 and 0.99
for most time-variant cases. An initial condition ol Ay = 0.95 is still suggested to be

acceptable,

Since the filter is no longer assumed to reach a steady stale solution, it is
necessary to recalculate the Kalman gain for every iteration. This also requires
the computation of the derivative of the Kalman gain & for use in the parameter
estimation. Calculating the derivative is, by far, the largest computational burden
in the recursive parameter estimation. ‘To calculate x;;, the derivative of the gain
equation given in (3.24) is nceded. This in turn is dependent on the derivative of
the a priori error covariance, P,-(';), given in (3.20) and R, ;;, the covariance of the
innovation process given in (3.23). The derivative of P,-(';) requires Lhe derivative

of past a posteriori covariances (3.27) and (3.21) as well as the derivative of cach
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of the state transition matrices: Ag, Ay, and B as detailed in (4.4) and (4.5). The
resolution of the above variables involves as much calculation for the one &;; term
as for the entire remainder of the Kalman filter. In order to reduce the complexity

of the filter, this calculation must be simplified as much as possible.

LKD) = e PICTRT)
= m%é,;—,CTRJ‘.—,,- +1t-ff’e(,}’CT£%li-‘i (4.4)
% = %{AOP};},AOT + AP AT +
APAT + M PTAT +
Bo?BT| (4.5)

Ljung and Soderstrdm[37] show that the recursive parameter estimation(RPE)
technique and the extended Kalman filter(EKF) are asymptotically equivalent in
calculating the parameters of the state space model. Anderson and Mooref2] refer
to models such as the RPE as an augmented innovations model of the extended
Kalman filter. As well, the major differences between the two parameter estimation
techniques are the cross-covariance terms, P(X), and the coupling of the parameters
¢ and the Kalman gain A(®) that results from the & term in the RPE in (3.50).
By rerioving the & term from (3.50), the calculation of & is no longer required and
the computational requirements are greatly reduced. Based on {37}, the filter should
asymptotically converge to the same solution. However, the rate of convergence

would be adversely affected [2],(37]. This results in a modified RPE equation as

58



given in (4.6).

Zat) (P) = (T = jiy Ki( @)C) Sy (D) (-1.6)

In order to avoid convergetice problems with the recursive parameter estimation,
the full RPE technique will be applied for the initial iterations of the filter. T'his
will allow the parameters to quickly converge o those values appropriale for the
initial portion of the image. Assuming that the parameters for different regions
change relatively slowly, the EKF approximation of the RPE can then be used. It
is also importani to maintain the heuristic limitations on the parameter vector as
specified on page 38 to ensure convergence {2]. Thus, the RPE [rom the ABKF
is modified so that the initial parameter estimations are carried oul using the full
RPE, and that continued estimations are done with the derivative of the Kalman
gain, &, set Lo zero. This removes a large portion of the computational burden from
the parameter estimation technique while having little affect on the performance
of the filter. The value for the number of iteralions to wait belore switching [rom
the full RPE to the extended Kalman filler approximation will be affected by the
choice of the parameter estimation lorgetting factors, Ag, and Aque.. The Taster A
approaches Ay, the sooner the switch may be made from using (3.50) to using (4.6)

in the parameter estimation process.

Since the filter is to be used for speckle reduction, the observation matrix, €,
can be set to the identity matrix, I. For the special case of no blur in the observation,

i.e. C = I, the calculation for the local state statistics, ptz i j, and o2 ; ., can he based
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on the observed local statistics as detailed in (4.7) [3].

2 —_— et 2 2 2 2 2 rd

Uﬂ W= G',.’ :'.jlu.'r i,] + (U"f i,J + nu-¢ iJ )O’_,,, i + Ty (‘1")
where

Pr i = My iifly i
y i is the local mean for block i,j,

0'3 is the local variance for block 1,].
O i is the local variance for

the multiplicative observation noise (4.8)

This equation can be rearranged to give a calculation for the local state variance

obii=(03;;—02 TR A VL CAPE S (4.9)

It is important Lo realize that the blind application of these equations to determine
the local state statistics can lead to errors involving the use of negative values for
. 2 + : :

the variance, oz, The negative values are result from very homogeneous regions,
where the variance of the observed image is very low and the speckle assumption
is no longer valid. In order to avoid this and to better model the image based on
its true statistics, the vari [the i 2 is set to zero and il Itiplicati

its true statistics, ariance of the image o2 is set to zero and the multiplicative
noise variance o3 is recalculated as in (4.11) so that (4.7) remains true. Thus,
the multiplicative noise variance will be reduced in regions with the homogeneity

exceeding that of the original estimate of the multiplicative noise.

2
05 i = 00— 12 0n = ot E s+l ) (4.10)
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Given that g, = 1 and for this special case, 0, ;,; = 0, (4.10) can be simplified to

o3 =0y = ok i (4.11)

In examining the original implementation of the ABKI given by Azimi-Sadjadi
[5) several simplifications and assumptions were made that are not valid for the
processing of single look intensity SAR images. The forgelting factor generating
function (4.3) for the time-invariant case as given in [3] was replaced with a time-
variant version (4.2). The Kalman gain was assumed to be dependent on local
statistics requiring updates for every iteration of the filter. To reduce the computa-
tional burden that was required by setting the gain to a non-constant value, the RPE
technique used for parameter estimation was modified by removing the derivative of
the gain, #, from (3.30) after some number of initial iterations with the full ABKT.
The inclusion of the & term at the beginning allows the estimated parameters to
converge to an initial value quickly. As well, a check was placed on the calenlation
of the local statistics in order to prevent inadverlent use of negative terms for the
local variance, 2 ; ;. These changes should result in a filter with belter performance

than the original ABKF over single look intensity SAR images.

4.2 Adaptive Observation Multiplicative Noise Pa-

rameters

It has been shown by many [32),[15],[27] that, over homogencous regions, the speckle

statistics of SAR imagery remain stationary and close to the theoretical values of
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1 /VM ; where M is the number of looks. However. in arcas with strong point
reflectors. such as urban regions, the assumption of fully developed speckle is no
longer true, Consider the observation effected by a multiplicative noise as given in

the relationship:

Yi; = CLi;Xi;+ Vi obscreation (4.12)

with the following multiplicative noise conditions:

Elijl = po mulliplicative noise (4.13)
EriT T jmt] = O2E6ig+ i1 (4.14)

Ifit is assumed that the statistics of the multiplicative noise are non-stationary over

the entire image, then a variable value of @2 must be considered.

Lopes et al.[0] developed a criteria to assess the validity of the multiplicative
noise assumption for use in many SAR imagery filters. This criteria, known as the
coelficient of variation, (. is the ratio of the square rool of the variance of a region
to the mean of the region. For a homogeneous region, this coefficient is also known
25 the speckle index. This parameter can be used to modify the multiplicative noise

term in the state observation equation (3.10).

Co = ;—?’—’ (4.15)
i

For regions where the muitiplicative noise assumption is valid, the algorithm

may be left unchanged. For regions where the coefficient of variation exceeds a given
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limit, the multiplicative noise assumption is deemed invalid and must be relaxed,
Two values must be defined: o2 is the value of the multiplicative noise variance over

the majority of the image and is typically ~ 1/vVM: o2, is a localized value of

the multiplicative noise variance that is ralculated for cach iteration. For a smooth
decrease in the effect of this variation = lincar decay Tunction. f(C,), is defined.

l lf C 5 Cmrmrl
f{co) = < 2=Ca !f Comu.rl < Co < (-"urrm.r'z (l l(‘)

C‘.arrm.rz —Comu:l

0 otherwise
The decay [unction may now be applied to the multiplicative noise term, oy so
that the value of the noise term will be decreased as the assnmption becores less

likely, until the multiplicative noise parameter is sct to zero at Comase

o, ij = f(Co)oy (L1T)

As well, the parameter estimation must be reduced or terminated for the iteration
when the mode! assumptions no longer hold. This will prevent the parameters from
being alfected by the errors created by applying the model to localized regions of
. ‘ . .

images that do not fit the model. Consequently, the calculation of the parameter

vector i {3.48) must be modified as given in (4.18).
by = [Dpy + S(Co)LrZilpy (1.18)

The effect of this modification can be determined by examining the formulation of
the gain in (3.24) and (3.23). By setting the multiplicative noise variance term, .,
to zero the value of the gain, K, will have a larger magnitude allowing the filter to

better track the change in the image. The parameter estimation is halted so that

any large transients are not introduced into the parameter vector.
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The values Tor Cymar must be chosen so that the Kalman filter is capable of [ol-
lowing Lhe changes in the image over highly variable arcas without under-smoothing
more homogeneous regions. For an intensity image, the values should be larger than
the expected value over a liomogencous region of €, = 1/V/M. Lopes et al.[40] sug-
gest a value of Comar = /1 +2/M for an intensity image. For a one-look intensily

image, this results in a value of Coper = 1.73.

Although there are various means of determining an optimal estimate of the
multiplicative noise parameter, it is only required here to ascertain the effectiveness
of varying the multiplicative noise paramecter. This may lead to other methods in

future work.

By combining the limitations of & given herein (4.11), the multiplicative noise

variance can be calculated as [ollows:

2 _ _2\/,2 2 _ 2 2
0',.2’ L= (ay i,j O'u)/.u.z.' i a'y ] a, < a"y k (419)
HCo)o, otherwise

The calculation of the variable a?, term will effect the calculation of the R,
term (3.23) which in turn effects the value of the Kalman gain (3.24). The aflected

equations are given below,

R.ij = p2CPSCT 0%+ a2 (o, +uk ;00" (4.20)
Kij = uPCTRTY, (4.21)
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A block diagram of the resulting Kalman [Her is given in Figure <13,

Au . = Ny .

f: s
hﬂ‘ B Q‘) o MO A)——h—""’
3

A| z-! ’—]

&

k Y-_- 4
5 Ll et j1oC T
A Kij e -
Zi
X (1, PR )

Figure 4.3: Block Diagram of Modified Block Kalman Filter.

The filter derived by combining both the modifications to the ABKI discussed
in Section 4.1 and in this section were applied to the non-symmmetric hall plane
region of support model detailed in Section 3.5 and the full plane mode! detailed in
Section 3.6. In the tests of the filters, these will be referred to as the MABKI for
the modified ABKF with the half plane region of support and the FABKF for the

modified ABKI with the full plane region of support.

4,3 Adaptive Multiplicative Noise Parameters in

the Dynamic Equations

In examining the image formation model of a SAR image and the nature of nrhan

regions containing many strong reflectors, it has been proposed that the change in
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the radar response between adjacent regions may be related using a multiplicative
noise term in the state transition equation (3.8). This is a result of the property of
vadar in regions of strong returns that are due to point reflectors. Urban regions
tend to consist of complicated regions that vary quickly from strong point reflectors
to “dark” regions cansed by building shadows or multi-path effects on the radar.
The use of a multiplicative noise parameter in the dynamic equation would allow
the filter to follow the image in regions of fast change such as sharp edges. These

modilied block dynamic equations would be expressed as

Xij = AoVXijo1 + A UXiy; +BU slate transition (4.22)
Yij CTXi;+V nbservalion (4.23)

where the noise process W is Gaussian with the lollowing statistics:

gl = 1 multiplicative stale noise (4.24)
EWi Vi = olT6u+]1 (4.25)

and the remaining noise paramelers are

EUi;l = 0 process noise (4.26)
EUUE o] = oMby (4.27)
EVi;] = 0 observation noise (4.28)
EViiVilism] = P18y (4.29)
il = ity multiplicative noise (4.30)
EriV i) = o2Léka+ 31 (4.31)

Note that the various noise parameters, v, and v, are independent of the signal,

X, and are uncorrelated to each other.
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We also assume that the multiplicative noise parameters W, are independent of

the signal, X, and the other noise parameters. Iy UL and V.

The local statistics of the image model are also defined for the state variable X

das

EIN] = uriy (1.:32)
E[.Y,"J'. ’l:l;k.j—l] = O'f_ ,‘.jlﬁk.l + ﬂ:! "IJ-I (l.:‘:‘}

The resulting dynamic model is given as a block diagram in Figure 4.4, Recall

that the terms z7' and z;! are the shift operators in the & and y directions. The

derivation of the required Kalman cquations will be given nexi,

Xi; Vi

Ap | W z,
Yy ._I : ' Yij
-—u-@- ‘J= C =~ I pE&—T

A
1
1

L1
D\
L/

nC

zZ i\

., PLCT R

F)

[ 3

4
X5

Figure4.4: Block Diagram of State Space Model with State Transition Multiplicative

Noise.

L
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4.3.1 Derivation of Modified Kalman Equations

The derivation of the Kalman equations is done similarly to the dervivation of the
equations given in chapter 3. The re-evaluation of cach of the Kalman equations is
given here to determine the effects of including a multiplicative noise term, ¥, in

the state transition equation (4.22).

a priori estimate

X{7 = EXijlXic1 Xij-)
= E[Ag¥Xi -1 + AVXi; +BU;
P and X are independent, therefore
EWX] = EWEX] = £X]
Recall E[U;;] =0, giving

X7 = A

1=

1t Ale-f{.,- (4.34)

Assuming x and y are jointly Gaussian, then an optimal estimator may be
expressed as a function of the a priori estimate, X,-(_;), and the observation, Y in

the form:
+ p - - =
XM = kXG4 ReY (4.35)
"The orthogonality condition [20] must be met to determine the minimum mean
squared error. This can be written as

X=Xyl = 0 1<k<ilgl<j (4.36)

68



Using this relationship and the fact that E[Vi;Yeg] = 0 for k0 < i.j, the

expression for the factor A} may be derived.

SN - N (H)A f)

t]
substituting (-1.35)
E[Xi ¥ = KEXEVT - mviuvl = 0
substituting {4.23)
E[Xi ¥l = KAXEV = KO X vl — Byl = 0
ElXiYd - Wi Xt ‘t“ — R CTXGY = 0
ElX - KCD)X 0 — KIXEVE = 0
E[(I = ReCT = KD Xig¥h = KL(XS = Xap)¥il) = 0
nsing (4.36)
E[I- Kyl = KHXi¥h] = 0
(I- RCEN) - KHEX,YE = 0
(I-KCp, — KDEX;YE = 0 (1.47)
This restriction will remain true if the first portion of the expression is zero, “There-
fore
Kl =1-KCp, (1.38)

where Ay is the Kalman gain and will be simplified to Iy from now on.
Now the estimetor, X ,(:,H is expressed as
X}J-') = (I-KCp,) \’( V4 KV
= X7+ KulYij - Cp, X[7) (4.39)
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Using the definition of the innovation

# - (_) ¢

A,“j = },',J' - C}l-,.\’;_j (140)
the a pesteriori estimate now assumes Lhe standard Kalman filter form

X = x4 K2 (4.41)

Using the orthogonality condition again, the two equations

El( Xy - XINYE = 0

El(Xey = XN Cm XY = 0
may be combined to give
ENXis = XYy = Cpp X)) =0 (4.42)

This equation may he arranged using (4.39), (4.23), and the definition for P(J given

in (3.20) to determine an expression [or the Kalman gain

0 = E(Xi;— X7 = KVij+ KCu, XNy - Cuy X))
0 = E[((Xij—XF) = N(CTX;; + Vi) + KCua X{7)
(CTXij + Vi = Cpa X
0 = &(Xi;—XxThx,TTe” -
(Xij = X5 \'.-‘.;’)”';:ﬂc"f‘ +
(Xij = X,

KC(TX;; = py X XTTTCT +

70



Simplilying the expectation expressions and substituting for

gives

0

KO(UXiy = i, XWX ¢ =

KON = XV" -

KVii X T0TCT 4+ RV (XY, €T = KV (4.43)

i b

E[(‘\,i,j — '\’l'(;))LY i — \r( )) ]‘” (1 L" ( ..
KCEMX;; X, T = i XI5 X071 -
F“."J‘X-i(‘;) H"r + ﬂ'y \rr(J)-\r( ) ‘“ ]C.'T _

RKCETX;; — !‘-w’*'s(.?]S[Vs.,-"'] _

- X{levi) -

KEWVi JE1X:TTTICT + KEWAUNTNNia T = KEW VI (4.4)

= P5cr -
KCErx,; x;; rhet -
KCua P 1, C7 +
K c,;.,S[X,-,,-x;{;] 1,07 -
KEWi,; VY
= mPycr -
KC((o3+ p3) (o2 + p2))CT =
I\C,u"P( ot 4
KC(pi(ok + u2))C"
—Ko?
= IHP;(.;}C! K(Ca(a? + p2)C”? +1t‘CP(

7l

the expression of I’,-(‘;)

(4.45)

(4.46)

et 4 rr"‘I) (1.47)



Rearranging for the Kalman gain results in

N = !D.'(,;)C'Tﬂ.,[,rtgcp( )C'l + Co (0’ +” )C-I +O'EI]_

To derive the « posteriori error covariance,

PP = €l = XXy = X))
substituting in (4.39)
P = g(Xej— (I- KCy) X7 = KY ) (X — (@ = KCp)X3)

= E[Xu(X]) = (XTI = ju CR)T = (K(CT X+ Vig) )] =

(4.48)

- KYi )7

E[1 = KCp) XX A= p,CRY = (K(CT X + Vig)")] -

ERCTXIXINT (T = j,CK)T = (K(CT X5 + Vig) ) -
ERVis( X5 (X = pyCK)T = (K(CT X5 + Vi)
= E{I- KCT)Xi ;X1 (1— KCT)YT] -
(I - KCry) X XTI - KCT)T] -
E(T~ KCuy) X7 XTI~ KCT)] +
I - KCw) X (X (T - KCpa) '] +

SRV VERT)

iJvij

the equation becomes
P = (I- KCpy)E[(Xij — X)Xy = X)TIT = KCpo) +
KCEN Xy XEIMCTRT — KCpa€lXi X5 CT KT

KEV.;VEIKT

=TI
(A

(4.49)

(4.50)

Now adding extra terms to complete the expression for (X;; — X,-(_;))(X;' i= X,-(;))T,



The expression for P{ ) may now be substituted, and the expectations veplaced by

their values so that

P = (I= i KOS =y KOV 4
KC(aX (a2 + 12 )CTRT +
Ko? KT {(-1.51)
= (I-pu KCVPF — iy PEICTRT 4

KC(o(a? + pu2))CTRT +

K(CPCT + a2 T)RT (11.52)

-

By substituting the expression for ;L.,[Z’,-(';)CT from (1.47) into the above equation,

the expression simplifies Lo

P = (1- p, KO P} (4.53)

The expression for the « priori error covariance
P = El(Xig = X{FH(Xii = X7

is now determined by substituting the expressions for X;; and X,-(J-) and expanding

the resulting expression.

I

Pl = E[(AoWXijoy + Ay WXy + BU = AgX!E) + A X))

fJ-1

(Ao Xi ot + AU XLy + BU — AoX{T), + ALXT ) (4.54)

= i-1.4
= E[AoWXijoi X WTAY + AgW X o XL, WA + AW X T BT -

AgUX; ;i XETAT _ AgWx; L XETAT 4

= i-1,7
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AN XT_ WTAT + AW X, XT OTAT + A 0N UTBT -

i=1.f

AWX XU AT A wX  XTAT

=1 i-1,j
BUXT_\WTAL + BUXE, ,WTAT + BUUT BT —

BUXI AT — X AT -

e 1 =1,
r(+) 1 T r(+) T TaAT "(+) T 7
AoXUXT_ WTAT — A XUV XT | WTAT — Ao X[ UTB

Ao XV xUTAT L A X X AT

fg=1ri3=1 Lj=1+%i=1,3

AP XT_WTAT - A XEVXT WTAT - A X UTBT 4

i=1, i=1,j

AXET XTAT 4 A XY X AT (4.55)

f=1,7=Yi~1,§

Substituiing the expressions for the earlier P+ in both the a and y directions and

the cross covariance term, the equation now becomes

Pi(.;) = A P(HIAI + Aog[‘ll Yu lx

f.f=

VAT — AoE[Xi -1 XT_ AT 4+

iJj—=1 b=

A PEVAT 4 AN XE UTIAT — AEXG X AT +

AUP(X)AI' + A.[)E[‘I! Y -1 X-' . J\I’T]Al A[]SLYI-;J— Y‘] | J]A'j

A.|P,(|;()Ag' + A.l [\IJ Y, —-1,j- Y"’J_ I’j]Ag‘ - A.l [\’, 1,j- !\’ ij- I]A‘g‘ +
BEUUT| BT (4.56)

Since the multiplicative noise, ¥, and the original image, X, are independent, the

result of the combined expectation can be expressed as

EN X X W) = o302 + 13) + 0% + 483 (4.57)
Recall that

‘-‘[Xl w14 XIJ 1] - UE- + 1"'3- (458)
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resulting in the final expression lor the « priori error covariance of

P = AP AT 4 AP AT 4
APPAT 4+ A PGTAT
Aolof (o} + )AL + Ar(aifod + iSNAT +
Ao(ai (a2 + ENAT + A(ok(o? + 12) AT +

Bo2B" (1.39)

The above derivations show that only the a priori error covariance term changes
when the multiplicative noise mean of one is included into the model. The formula-
tion of the recursive parameter estimation remains the same as in [18], with only the
derivative of a priori covariance changing to reflect the new equations. The effect
of these new terms will be that the Kalman gain value will become more sensitive
Lo local statistics. The a priori covariance will become larger as a resull of these
new terms, while the gain will become marginally larger as the covariance term is
present in the Kalman gain equation as a multiplicative term and as part of the
inverse of R., as shown in (4.48). In homogenecous regions and regions of low mean
value, the effect of the multiplicative noise term in the state transition matrix will
be negligible, and the effects should only become noticeable in regions of greater
variance and mean. Currently, there is no proven method of estimating the desired
value of the multiplicative noise term, but values less than one are recommended in

order to maintain filter stability.

Using these derivations, the Kalman filter using multiplicative state transition



noise was applied to the NSHP model given in Section 3.5 and tests involving this

filter will be referred to as the multiplicative modified ABKE (MMABRKIY.

At this point the derivation of the various modified Kalman Glters has been
given. The following chapter details the vesults ol applying these filters to a series of
test images and an actual SAR image. These results are compared with the original

8 )

ABKF and other SAR speckle processing techniques.



Chapter 5

Results and Performance

Evaluation

It is important Lo compare the performance of the modified filters to the original
filters in terms of the variation of many of the parameters and Kalman gain during
the use of Lhe filters, The evaluation of the effectiveness of a filter is highly dependent

on the final use of the output.

Shi and Fung [30] developed a series of criteria to compare the processing of
SAR imagery by different filters. These criteria will be adapted in order to compare
the performance of the modified non-symmetric half-plane and the full-plane ABKF
filters developed in this thesis to the original ABKF filter and the Lec statistical
filter. The criteria for filters for SAR imagery include: the speckle reduction capa-
bility, the change in the average mean of the image, the edge handling capability,

point target capability, and distortion of angular structures. The filters will also be
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evaluated using actual images. and the performance will be monitored by hoth the
filter output and the behaviour of various filter parameters extracted lrom the test

of the filter.

5.1 Implementation Considerations

The four Kalman filters used in the tests are: the original ABKY as described by
Azimi-Sadjadi et al[5]; the modified ABKF{(MABKF) as developed in chapler 4 with
the same image model as the ABKF; the full-plane modificd ABKF{FABIIEF) is the
same as the MABKF but modified to use the semi-causal full-plane region ol support
as outlined in [11}; and the multiplicative modified ABKIF(MMABKI) that includes
the multiplicative noise terms in the model with the modifications outlined in the
latter portion of chapter 4. The form of the MMABKF uses the saime non-symmetric

half-plane region of support as the ABKF and MABKIF.

All of the Kalman filters use a region ol support of 5 pixels in the x direetion.
The filters using the hall-plane region of support, ABKF, MABKF, and MMABKI",
use a region ol support of only 3 pixels in the y direetion, while the FABKI uses a
5x5 region of support for its final estimate for block 8. These values correspond to
the dimension parameters of the filters as given in chapter 3 of m = n = 2, These
values were chosen since the results of Azimi-Sadjadi in [3] suggested that this was
the best choice for the ABKF. Although the performance of the original full-plane

Kalman filter in [11] suggested an optimal size of m = n = 1, the dimension was



kept al = 1 =2 for comparison purposes.

In the implementation of the FABKFE, it was found that altempting parameter
estimation on the Agg matrix, ie. block 6, was highly sensitive to initial conditions,
and parameter estimates were consequently highly untrustworthy. This was deter-
mined 1o be caused by the relatively small region of support that was used for the
iller estimation of the parameters in matrix Agg. This small region of support did
nol. allow sullicient statistical information {or proper parameter estimation. In order
to rectify this problem, the Agg matrix was removed [rom the parameter estimation
and set constant as a Gaussian smoothing lunction. The Gaussian smoothing func-
tion was chosen as an approximation to a decaying weighting function such as the
Frost filter that is often used in SAR speckle filters. The remaining parameters
were still estimated using the RPE and EKF approximation to the RPE as given in

chapter 4.

In order to simplify the implementation of the coefficient of variation cutoff,
as derived in Section 4.2, the algorithm was implemented so that the user entered
in one parameter, Cruge. The relationship of Crypg, to the values of Copar and

Comazz found in (4.16) are as follows:

Canm:zl = C"mn_r - 0 . 5

.
C‘omux? = Conm:rl +1

In the implementation of each of the filiers tested, it is necessary to determine

the most clfective values of the parameters. Those input values in the Kalman filters
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that have been fixed are listed below.

Ao 0.95 Initial forgetting lactor
Arate 0.99  Forgetting faclor convergence rate
h 0.1 Initial estimate of Hessian of quadratic norm N = #1
Yal(0) 0 Initial estimate of Estimation Derivative
¢, 1/p  Initial Parameter Vector (Equal weights
| &
Y i-j fty  Observations outside image boundarices.

PH0) oL Initial Error Covariance
The input parameters that are used are listed below.

ol State transition variance: U = o}l
Ass Steady state forgetting factor

Crimer  Maximum Coefficient of variation parameter

crﬁ, MMABKTF only, Multiplicative state transition variance
k Iteration to switch from full RPE to approximate EKEF method

5.2 Evaluation of Modified Kalman Filters

The performance of the Kalman filters to reduce speckle will be evaluated using fonr
criteria as given by Shi and Fung [50]. The first criterion is the speckle rednction
capability. This consists of comparing the image variance of a homogencous region
before and after filtering to determine the improvement in the SNR. The bias of
the mean of the image that the filter introduces is also measured. The second
criterion involves the distortion introduced to a straight edge or step response in

the image. The third criterion examines the filters™ ability to preserve large point
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responses without distorting the surrounding image. The rounding of sharp two-
dintensional structures in the image is the final criterion that is used with the special
test images. In general, the filters should be able to reduce the effective level of
speckle while maintaining the average mean of the image and without displacing
edges or distorting the image. The effects of varying the inpul noise parameters on
each filter will also be demonstrated. The filters are used on single look intensily
images, so the correct level of multiplicative observation noise input, o‘f,, equals one.
This value was verified to be approximately correct for all speckle test images since
the actual values were between 0.98 and 1.05. The additive observation noise input,
o2, is set very low since this type of noise has very little impact on SAR imagery. The
additive state transition noise input, o2, is dependent on both the original scenc and
the level of noise excursions. Since there are large excursions of the data expected
in SAR imagery, it is often the practice to limit the data to a threshold, to reduce
the effect of these large values that occur at the tail of the probability distribution
[5]. In Kalman filtering, it is often required to set o2 higher, so that the filter will
recover from unexpected noise excursions [20]. I this value is too low, the filter will
diverge. If it is too high, the filter will not remove any speckle, as the speckle noise
will be within the range of noise associated with the error in the state transition.

The value of Cr gy is also allowed to vary for the modified Kalman filters.



5.2.1 Speckle Reduction Capability

The evaluation of speckle reduction is carried out by determining the perlformance
of each of the filters, by measuring the induced bias and equivalent number of looks
over homogeneous regions. The test images are two statistically homogencous single-
look intensity sub-images of 64xG4 pixels, extracted from an ERS-1 image, The liller
resulls in terms of output image mean and variance are given in Table 5.1, ‘I'he
bias terms are calculated as Lthe proportion of change, (mean filter output}/{mean

original), and are given in dB. The equivalent number of looks(ENL) is based on
]

(2.14).

ENL = ;tf,/o';‘: (5.1)

Bias = 20 log(py/ﬂ'arl‘yinul)

= 20log(p,/942) (5.2)

The data indicates that the Lee statistical filters result with the least change in
the average of the image. When using any of the Kalinan filters, the bias is higher.
For the cases where the additive state transition noise is sel low, o2 = 3.0¢4, the filler
diverges and the output values becomes unpredictable. For all other cases, the mean
is reduced by an amount usually proportional to the amount of smoothing doue by
the filter. This is due to the Gaussian noise assumption in the derivation of the
Kalman filter. The filter smoothes the low probability, higher intensity pixels in the

image so that they fit within the envelope of the given Gaussian noise distribution.
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hinage A Image B

Filter Mean | Varianee | Bias(dB) | ENL || Mean | Varianee | Bias{dB)} | ENL
None 012 9, 18eh 0497 2837 6.69006 .96
L, Sx5 i1, 1.20305 -3, 702 7.1 25050 9.47e5 -2.4¢-2 6.8
{ioe, TXT 9148 G. 79 -2 Te-2 12.0 25136 5.7 leh =3ade-3 11.0
ABKY, ﬂ'f, = LUed HEH f.ded -5,50-2 16 3020 4,87eh 1.5 18
ABIKK, n?, = 3.0eh e 1.4905 -1.8e-] 5.7 2313 237605 -8.0e-1 22

ABIE, 72 = 3,06 U7 5.33ehH =lde-1 1.6 2317 1.15¢6 -G.8e-1 4.8

MABKF, a2 = 3.0e4 817 373004 -1.2 20 REH 0.11e5 2.7 13.4
MABKF, 72 = 3.0e5 HoY 1.83e5 -3.le-] 4.5 2595 1.52¢5 9.53e-2 14.6
MABIKE, 02 = 3.0e6 920 5.805 -1.2e-\ 1.5 2376 1.44e6 -5.7e-1 3.9
MMABKE, 02 = 3.0¢4 | 850 6.88¢4 -8.9¢-1 1.5 | 235 4.74e5 -6.6 .7
MMABKF, a% = 3.0e5 | 922 1.91e5 -1.9e-1 1.5 2394 G.0e5 -5.0e-1 0.55
MMABKF, a2 = 3.0e6 | 927 5.72¢5 -bade-1 1.5 2017 15406 -1.2e-1 3.8
FABKF, 02 = 3.0c4 BYT 8994 -6.2¢-1 8.6 2703 | 8.65¢5 5.50.1 8.1
FABKP, o2 = 3.0e5 B3 1.85e5 -0.6Ge-1 38 27H3 1.17e6 Tile-1 6.5
FABKF, a? = 3.0t 896 5.51e5 -1.3e-1 1.4 25473 | 2.0Te6 2.1e:2 3.1

Table 5.1: Speckle Reduction Performance of Filters

Sinee most SAR imagery is re-mapped for display in such a way thal these points are
compressed into a smaller dynamic range, this bias will have little elfect on image
clarity but may negatively affect various classification algorithms. From Table 5.1,
the data shows that the higher the noise parameter, o2, the lower the bias that
the image suffers, and the lower degree of smoothing that takes place. The very

large ENL values, > 18, typically correspond to those tests where the Kalman filter

diverges from the image.

"The effect of the tested filters on a left to right cross section of the image are
shown in Figure 5.1. For a value of o2 of 3.0e3, the MABKF and the FABKF give
results similar Lo the 5x5 Lee statistical filter. Figure 5.2 illustrates the effect of
varying the noise parameter in the MABKF. The MABKF result with o? equal to

3.0c6 closcly follows the original image. The MABKF result diverges [rom the image
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when o2 cquals 3.0cd. When the lters are applicd to an image having a low mean

value this dependence on the transition noise parameter is much reduced.

10000 ¥ T T Y T T
Original ~-
Loe 5x5 ----
9000 MABKF #2 --- -
FABKF #2 -
8000 <
7000 1 _
€000 H 4
5000 H N
4000 <
3000 ‘.".. E
2000 | y 4
1000 | -
0 1 L
0 10 20 30 40 70

Figure 5.1: Cross Section ol Results of Filters on High Mean lntensily Inage.

5.2.2 Step Response

The step response is measured by determining the ability of the filter 1o locate the
boundary between two homogeneous regions. Two sub-images from the original
FERS-1 test image are placed together in one image. The result is a 64x64 image
with a statistically homogeneous region lefl of the edge with a mean of 1192, and
another statistically homogeneous region right of the edge with a mean of 2107.

Following Shi and Fung [50], the performance of the filters will be evaluated on the
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Figure 5.2: Effect of Transition Noise Parameter, o2.

displacement of the edge and the slope of the edge. The displacement is determined
by the location of the nearest point to the midpoint level near the edge boundary.
The slope is calculated as the change in intensity between the 20% upward and 10%
downward points in the slope. These terms are defined in Figure 5.3 using the Lee
statistical filter results and the original image for comparison. The values avgy, and
avgyi are the low and high nominal values of the step. The process (i) is defined
as the nominal value of the image [rom left to right. The equations for calculating

the midpoint and slope are therefore given as:

Midpoint = i|min(z(i) — (evgn + avgi)/2) (5.3)

UpperPosition = i min(a(i) — (avgn — 0.1(avgn — avgr))) (5.4)
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UpperValue = r(8)| min(a(i) = (avgn; — 0.1 (argn — avqa))) (H.5)
LowerPosilion = i|min{e(i) + (evg, + 0.2(avgn; — avg,))) (H.6)

LowerValue = a(i)|min(e(i) + (avgn + 0.2{avyn — avg)))  (5.7)

(UpperValue — LowerValuc)

Slope = — —
¢ (UpperPosition — LowerPosition)

(5.8)

The results are given in Table 5.2. The multiplicative noise reacts slightly faster
to changes in the input timages, which is most likely due to the larger error covariance
matrix. A decrease in the maximum coeflicient. of variation, ('ry,.., has little affect
on the ability of the filter to track the test edge, since Lhe statistics do nol. vary
greater than expected using the multiplicative noise model. The magnitude of the

step is locally lost within th)e speckle noise.
¢

5.2.3 Point response

The test image lor the point response was generated by taking a 64x64 statistically
homogeneous region from an ERS-1 image and inserting a 3x3 point with similar
SAR statistics(p® = ¢2). Each of the fillers was run using a stale transition noise
value of 3.0e5, and the modified filters used a Crpge of 2.5, The MABKE was also
run against the point target with a Cry,. of 2.0 and 3.5. The results are given in

Figures 5.4 and 5.5.

All of the filters, greatly reduce the level of noise in the original image. The Lee
statistical filter smoothes out the image, but also severely reduces the values of the

point target. The ABKF completely removes the point target, while the three mod-
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Figure 5.3: Measurement of Step Response

ified Kalman filters all preserve the point target at values near the original. Of the
modified Kalman filters, the FABKI results are the best compromise of smooth-
ing the homogeneous region while maintaining the point target. The MMABKF

smoothes the homogeneous region the least while maintaining the point target.

Il is interesting to nole that increasing the state transition noise, o2, in the
image is not the best means to bring out point targets. The ABKF did not preserve
the point target at all. The maximum coefficient of variation was the determining
lactor in the ability of the modified Kalman filters to detect the point target within
the clutter. This is demonstrated in Figure 5.5 where the results of the MABKF

with various coeflicient of variation threshold values, Cryp,z, are given. When Cry0z



Filter Midpoint | Slope
Lee, 5x5 31 165,
Lee, 7x7 31 [51.2
ABRF. 62 = 3.0c1 3l 3.8
ABKF, 02 = 3.0¢5 32 82.5
ABKF, a2 = 3.0¢6 32 756
MABKF, a2 = 3.0¢d 3 32.3
MABKF, ¢% = 3.0¢5 32 80,1
MABKF, o2 = 3.0¢6 32 Shl
MMABKF, o2 = 3.0ed 31 82.13
MMABKF, o2 = 3.0e5 32 136.7
MMABKF, 62 = 3.0¢6 32 831
FABKF, o? = 3.0¢d 3 GL.6
FABKF, ¢2 = 3.0e5 33 8.5
FABKF, o2 = 3.0¢6 32 390

Table 5.2: Step Response Values for Fillers.

is set to 3.5 or higher, the entire point is filtered out as with the ABKI.

5.2.4 Distortion of an angular object

The distortion of an angular object is measured by evaluating the output of a filter
alter processing a parallelogram with no noise. The parallclogram is the equivalent
to a two-dimensional step function. From the results of the four filers tested, it is
obvious that the ABKF and the other NSHP filters suffer from block effects that

cause undesirable local distortions in the image. The fullplane filter, the FABKF,
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Figure 5.4: Comparison of Results of Filters on Noisy Point Target.
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Figure 5.5: Comparison of Results of MABKF Filter with Varying C'ry,. on Noisy

Point Target.

does not suffer from these distortions due to the different arrangement of the hlock
and the smaller region over which the same paramcters are applied. ‘The effect
of varying the state transition noise is analagous to a damping lactor, where the
smaller the value of o2, the slower the filter responds to the change. In processing
the homogenous region, a value of o2 set too low causes the filter to diverge from
the actual image value creating invalid output. As the value is increased, the fil-
ter responds much quicker. but it becomes more susceptible to an increase in the
noise. The inclusion of the multiplicative term in the state transition matrix in
the MMABKF seems not to have very much effect. This image contains no noise,
so that the error covariance matrix will be very small resulting in little difference
achieved by changing the multiplicative state transition noise term. However, vary-
ing the maximum coefficient of variation, (/rur, results in much improved response

to sharp edges and points.
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‘e box results arc illustrated by the contour lines at 1% around the maximum
and minimuns values and at 10% and 90% between the maximum and minimum
values. This indicates the degree of overshoot and undershoot in the filter output

and it is shown in Figure 5.6,
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Figure 5.6: Levels of Contour Indicators for Angular Object Results.

5.3 Results of Filters on an Image of Victoria B.C

The Lest image was taken from the ERS-1 satellite data of Victoria, BC. taken in
August, 1993, The test data is a single look intensity image and is shown in Figure

2.1 corresponding to the highlighted region in Figure 2.2. The test data is given
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again in Figure 5.10 displaying the pixels with equal dimensions in both the cross-
track and along-track directions. This image was chosen because of the different
classes of data that is present. It includes very low intensity regions that correspond
to the harbour region juxtaposed with the high intensity dock and city regions, The

image also contains large regions that fall between these two extremes,

Due to the use of the quadratic noise reduction criterion {3.29), the Kalman
filters will be sensilive to large changes in the image process. This is very common
in SAR imagery, and these statistical outliers must be removed, The tests were
run using an image with the upper 2% of the image compressed Lo 5 values al the
peak of the image intensity level. This reduces the mean value of the image to some

degree, but does not greatly allect the distribution of the image intensily data.

It was found during testing that attempting to run the ABKYF on images with
less than the upper 2% of the image compressed, the [ilter would often become
numerically unstable. The modified fillers, the MABKF, the MMABKF, and the
FABKF all maintained stability operating on images with only 1% of the image

compressed.

In analysing the results of the various filters on the image of Victoria, we will
consider in turn the filter output, the behaviour of the Kalman gain, and the be-

haviour of the parameter vectors.



Figure 5.10: Single-Lock Intensity Image of Victoria, B.C. from ERS-1.

5.3.1 Analysis of Kalman Filter Output

The output of the test runs of the filter are given in Figures 5.11 - 5.13. Figure
5.11 shows the results of all four Kalman filters with ¢2 = 3.0e¢5 and Cryg. =
2.5. This value of the state transistion noise parameter, o2, was found to give
salisfaclory results over both the high intensity urban arca in the centre of the
image and the regions at the lelt and right of the image. The maximum coefficient
of variation value, Cry,,,, was chosen so as to affect regions where the multiplicative
noise assumption is no longer true, ie. C, > 2.0. The MMABKF result in Figure
5.11d uses a value of the state transition multiplicative noise parameter, oy, = 0.25.
The NHSP flilters shown in a, ¢, and d all suffer from the asymmetric distortions

due to the use of the hall-plane region of support. The MABKF and ABKFT results
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are indistinguishable over the homogenous regions at the left and right of the image.
However, the major improvement in the MABKFE is identifiable in the high inteunsity
urban region. Here the filter distorts the dark lines and edges of the intense region
much less. The MMABKF was run with a value of gy = 0.25 and the results show
a slight improvement in the edge regions as well as some improvement in image
contrast. Currently there is no theoretical means of determining the ideal value of
oy for such complex images. Experimentation suggests that 0.25 is acceptable but
that a value too large, ie. > 0.5 results in very little improvement in the image
over the input image. The FABKF results given in Figure 5.11b indicate a slight
reduction in the smoothing of homogenous regions for the same value of a2 but lack

the asymmetric distortion that is prevalent in the NHSP based filters,

The effect of varying the additive state transition noise parameter, a2, is shown
in Figure 5.12. The MABKF filter was chosen for these detonstrations because of
its faster execution time with respect to the FABKF. Figure 5.12a was processed
with ¢ = 3.0e4. This image is highly oversmoothed in the urban region, while the
smoothing may be acceptable in the lower intensity regions. Processing the image
with o2 = 3.0¢6 resulted in very little reduction in the speckle noise over the lower
intensity images, but an acceptable level of smoothing with less distortion over the

high intensity region in the centre of the image.

The maximum coefficient of variation parameter, Cry,y, is designed Lo affect,
the filter most in the high intensity urban regions where the multiplicative noise

assumption does not hold due to large numbers of strong reflectors. The effect of
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Figure 5.11: Results of Kalman Filters Applied to SAR Image a) MABKF,
b)FABKF, c)ABKF, d) MMABKF , 62 = 0.25. The state transistion covariance,

o2, is set to 3.0eb for all images.
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Figure 5.12: Comparison of MABKT with varying State Transition Variance on a

SAR image a) 02 = 3.0e4, b) 02 = 3.0¢5, ¢) o2 = 3.0c6,

processing the image with a lower maximum threshold is scen in Figure 5.13. As in
Section 4.2 the suggested Copar is approximately 1.73. A C7pue value of 2.0 beging
the detuning of the Kalman filter at a local coefficient of variation of 1.5, just below
the value suggested by Lopes et al. [40]. The results indicate that this factor is very
important in the use of the Kalman fitler as the high intensity region suffers from

much less distortion using the lower value of Crypys.

5.3.2 Evaluation of Kalman Filter Gain Behaviour

Although the final test of the utility of a filter is to visnally inspect the output,

the evaluation of the filter should also be based on performance measures that are
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Figure 5.13: Effect of Changing Threshold Coefficient of Variation on a SAR image,
Crmer = 2.0, Using MABKF.

identifiable within the filter. The behaviour of the Kalman gain is determined by
monitoring the norm of the Kalman gain matrix. The norm used is defined below
in (5.9) and is taken from [8]. Although this is only a partial indicator of the state
of the filter it allows the easy display of the information [5].

N
RKuorm =[| A lloo= max, 3, | ais | (5.9)

= =1

The Adaptive Block Kalman Filter (ABKF) was developed by Azimi-Sadjadi
{5] assuming a steady state Kalman gain and space-invariant parameters in the
statc transition matrix. When processing the single-look intensity or single-look

amplitude SAR images over targets such as urban regions, these assumptions are
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unacceptable. The assumption of a steady state Kalman gain after as few as 20
iterations was shown to be invalid in Section 4.1, duc to the signal dependent term
(3.23) in the Kalman gain equation (3.24). The actual performance of the Kalman
gain using the Modified ABKF (MABKF), the multiplicative MABKF (MMABRKF),
and the Fullplane ABKF (FABKF) on the image of Victoria, B.C. is showu in Figure
5.14. This Figure illustrates the norm of the gain matrix for the first 10 rows of the

test image for each iilter.

P f.
,; (TR T
18 (a). T EL ] (I)) ¥ L}
i, P
(c) (d)

Figure 5.14: Comparison of Ky, for Adaptive Block Kalman Filters. a) ABKF b)
MABKF ¢) MMABKF d) FABKF
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Fros inspecting the norms of the K matrix in Figure 5.14, the Kalman gain for
the ABKF converges o a repetitive sequence that is dependent on the local image
statistics. The large peaks that exceed the value of one are due to the image edges,
where the error covariance is greatly reduced. Recall that points outside of the image
boundaries were assigned to the image mean value so that the covariance of these
regions approaches zero. The repetitive cycle can be seen to be true for the MABKF
and the MMABKFE as well. The FABKF, because of its different block structure,
requires a greater number of iterations to cover the same area of the image. The
[Kalinan gain for the FABKF is closer to a value of one, indicating less smoothing for
these points. The value of the gain falls often enough below one that some degree
of smoothing is evident. The variation of the gain of the MMABKF indicates the
faster rate that this model can fotlow changes in the image. However, the Kalman
gain of the MMABKT diverges greatly from the pattern seen in the other NSHP

filters. This may indicate that the filter is more likely to become unstable.

._m uagnt umesowt | . o —

b o |
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Figure 5.15: Comparison of Gain Variation Relative to Noise Parameter, o2. a)

MABKF with o2 = 3.0ed, b) MABKF with o2 = 3.0e6.
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The effect of modifying the state transition notse parameter, ol can be seen in
Figure 5.15, where the norm of the Kalman gain is given for the case of the MABKI
with ¢2 = 3.0¢d and o2 = 3.0¢6. For o2 = 3.0e4, the filter gain is highly variable,
often reaching values greater than 1.0. The low values of the gain indicate that the
filter is not following the image values, and that the filter is oversmoothing, The
output image may therefore be well removed from the input image, as shown [or the
homogenous image in Figure 5.2. For the increased noise parameter, oy = 3.0e6, the
value of the filter gain is consistently near one. This indicales that little smoothing
is carried out by the filter, and that the observed image is within the specilied noise
values of the values calculated. In this case, the output iinage is very similar to the
input image, and very little gain in SNR has been achieved. The ideal value for the

state transistion noise parameter is between these two extremes.

5.3.3 Evaluation of Kalman Filter Parameter Behaviour

The variation of the parameter values is also useful in determining the performance
of the filters. Parameters that change too often indicate difliculty with convergence
over the image while parameters that do not change at all over a highly variable
image indicate an inability of the filter to follow the changes in the image. Fignre
5.16 shows the beginning of the convergence of the parameter values and subsequent
variation for cach of the ABKF, MABKF, and MMABKF. Figures 5.18 - 5.20 show
the parameter variation for the FABKF. These are displayed separately as the pro-

cessing differs in the number of parameters and iterations required to process the
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image.

"The variation of the twelve parameters used in each of the NSHP based filters is
given in Figare 5.16. The ABKF parameters change rapidly, with the agg parameter
quickly becoming predominant. This indicates a very narrow correlation with the
surrounding pixels. As well, the parameters change very little after the initial 1000
iterations. This is due to the value of the forgetting lactor approaching one and
reducing the weighting of any new information to almost nothing. The MABKF
filter with a Crupee = 2.5 converges to a different set of values for the parameters
with much less dependency on any one single parameter. Since the lorgetting factor,
Mus. has a value of 0.99, the parameters continue to change throughout the processing
of the image. The exceptionally large change in the parameters, approximately 60%
of the way through the image, is due to local change in the structure of the image
near the bridge over the Victoria Arm, indicated in Figure 2.2. The parameter
values of the MABKF filter with a Cryer = 2.0 change somewhat slower than the
run of the MABKF with Cro,.. = 2.5. Evaluating the effect of the coeflecient of
variation on these filters it is shown that the rapid change of the parameters in the
ABKF is due to those regions of the iinage where the multiplicative model of the
image is invalid. The removal of these regions from the calculation of the parameter
estimation resulls in a better estimate of the parameters that is not overly dependent
on single terms. The MMABKF filter behaves very similarly to the MABKF filter,

with some regions of greater variability evident in the latter portion of the image.

The effect of varying the steady state forgetting factor Ay, is demonstrated in
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Figure 5.16: Comparison of Parameter Variation for NSHP Adaptive Block Kalman
Filters. a) ABKF o2 = 3.0¢5 , b) MABKF o2 = 3.0e5, C'rypuer = 2.5, ¢) MABKF
o2 = 3.0¢5, Crymgz = 2.0, d) MMABKF 02 = 3.0¢5, Cryae = 2.5, o7, = 0.25.

Figure 5.17 using the MABKF. With a low steady stale forgetting lactor of 0.95
there is great variation in the parameters. Such variation does notl give the filler
an opportunity to adjust the Kalman gain to the new paramecter values, so that the
filter will remain unstable and not converge to give good performance. I'he higher
value of 0.995 results in a smoothing of the parameter estimation processes, ensuring

that the Kalman filter running in parallel may adjust to maintain optimal estimates
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for the new parameter values, A compromise of adaptability and damping of the
parameter estimation process is achicved for the Victoria BC. image using a Ay, of

0.99.
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Figure 5.17: Comparison of Effect of Forgetting Factor, A, for MABKF Filter. a)
Large parameter variation occurs with A,y = 0.95 while a larger value, b) Ay = 0.995

reduces parameter variation.

The FABKF requires many more iterations than the NSHP based Kalman filters
lo process the same image. As well, for a block size parameter of m=2, the number
of parameters for the FABKF is 40, much greater than the 12 used for the NSHP
based fillers for a similar sized region of support. Thus the parameter variation
for the FABKF is very different from the NSHP-based filters examined above. The
parateters for block 6 in the FABKF were set to approximate a Gaussian average,
due to the lack of statistica) support for a small region compared to the region of
support for blocks 5, 7, and 8. When the above parameters were included in the
paranmicter estimation, the values were found to be extremely unstable because of the

effect of large errors caused by the remaining statistical outliers on the parameter
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estimation. For a block size value of m=2, the parameters in block six were calen-
lated using a region of only 4 clements of the original image. Some of the parameters
[rom the upper leading edge. block 5, are given in Figure 5,18, This ligure indicates
that the parameters have converged locally by the 500th iteration and change much
less alter the 4000th iteration. The remaining figures for the FABKIE will only show
the parameters for the first 4000 iterations to illustrate the convergence and steady

state variation ol the parameters.

0-7 1 ) T T T T T L)
2
. ”3 .....
[ Moo
0.8 ': R :! “a T
L " -
I A
2 }E P I, —eiann
! [ P *
05 p Tt ' N
i ] ; 5 —
; o e s
.En 0.4 L\‘ 4 it |
g _:‘i Ay ;‘.-‘p"\ PN R
& Y = Lmprr= = mmaes
3 T . L N
g ] o ’
g 3 Farute
o Nmasmam,
O — N
)
* -y
Lpm o nds 0T 7
r
et e e ] TV .‘,JJ‘"!
1 al '} ' 1 i

000 10000 12000 14000 160CO 18000
lteration

Figure 5.18: Parameter Variation for Block 5 in FABKF.

The FABKF was implemented so that the leading block, block 6, uses a Gans-
sian smoother for its initial estiinate. The other leading edge blocks, blocks 5 and
7, use a NSHP region of support much like that used by the ABKF. Each one of
these blocks has 8 parameters, which are displayed in Figure 5.19. In comparing

the two iterations of the FABKF with different Cry,, values, it is evident that the

108



lower C'rmae values resalt in fewer parameter *jumps” and a smoother change in the
estimation process. As well, there tend to be fewer large parameters then there are
in the ABKF and MABKF filters. The 24 parameters for the final fullplane portion
of the filter are divided among the threc graphs in Figure 5.20. The first graph
consists of the eight neighbours of the center pixel, while the remaining graphs are
the upper left and lower right regions of the filter mask used. These figures indicate
that the filter depends more heavily on values outside the nearest neighbours to

calculale the smoothed estimate,
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Fignre 5.19: Comparison of Parameter Variation in Blocks 5 and 7 of FABKF with

Vﬂ-l'yi"g C'rm(u)- a) C?'nm_r = 2.5, l)) C?'mu;r = 2.0.
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5.4 Execution Complexity Issues

An analysis of the filtering issues would not be complete il execution complexity
were not addressed. The original ABKF was designed to use special fast convolu-
tion techniques in order to reduce computational complexity. For the purpose of
evaluating the test filters, these methods were not used. The greatest reduction in
the complexity of the ABKF was in the assumption of a steady state Kalman gain
value, which removed the requirement to calculate both the Kalman gain and its
derivative. Even with the simplification ef the filter by using the EKF approxima-
tion of the RPE, the MABKF filter is still complex and requires approximately 30
minutes on a Sun Sparcstation 2 for the 256x256 test images used for this thesis.
The FABKF Las another order of magnitude increase in the filter complexity. As
the filter actually consists of four filters, two of which are similar to the MABKF fl-
ter, the computational load is overwhelming. Since the FABKF calculates a smaller
block than the MABKF(2x2 square vs 3x6 diagonal), the number of iterations to
process Lhe same region is greater. The execution time of this filter was approxi-
malely five hours on a Sun Sparcstation 2. Efforts could be taken to reduce these
times significantly, but the filters would still be orders of magnitude more complex
than such filters as the Lec statistical filter. The Lee filter calculates the local mean
and variance to determine the filter output while these values are used as inputs to
the modified Kalman filters to calculate the much larger covariance and gain ma-
trices. Then these values are used to calculate both the output vector and the new

parameter vector for the next iteration of the filter. As well, the Lee filter requires
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only the local window Lo process the iinage while the NSHP-based filters all require

a large history to process the data in two-dimensions.

5.5 Summary of Results

Overviewing Lhe results given in this chapter, several conclusions on the performance
of Kalman filtering for SAR can be reached. The use of the quadratic norm eriterion
severly limits the utility of the Kalman filtering without first preprocessing the image
by thresholding the large maguitude statistical outliers. By using the coelficient of
variation threshold, Cr,,,,, the Kalman filter can delect point targets, lollow sharp
edges with a minimum of distortion, and reduce the effect of the remaining outlier
values on Lhe parameter estimation process. The sclection of a proper forgetling
factor is also important. The most eflective values have been demonstrated to start
at 0.99 for space variant problems, and range up to 1.0 for the spatially invariant
problem. Determining the value of the state transistion noise paramcter is also
critical. In non-homogenous regions such as the Vicloria image, a valne of o2 hetween
10 and 20 times less than the image variance appears to work very well. Overall,
the FABKF gives the best performance of all the other tested Kalman filters. It
does not suffer from the asymmetric distortion that the NSHP based methods have.
In addition, il uses a larger region of support for its estimates, resulting in better

statistical support and better filter performance in terms of parameter estimation.



Chapter 6

Conclusions

[n this thesis, Kalman filtering methods have been applied to SAR images in order
to reduce the speckle noise. Kalman filtering techniques have been applied to SAR
imagery belore[5]. However, these filters were developed for largely homogeneous
images. lmages of urban regions and higher resolution images that are becoming
possible with newer satellites such as Radarsat and Envisat [56], and more advanced
imaging techniques [41], do not preserve the homogeneous regions and the multi-

plicative noise assumption required by many existing speckle noise filters.

To correct, these deficiencies in existing Kalman filters that have been applied
to SAR imagery, the derivation of these filters was re-examined and those areas
involving incorrect assumiptions were addressed. This involved the evaluation of the
nltiplicative noise assumption during the processing of the image and the detuning

of the filter in those regions where the filter assumptions were no longer valid. As
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well, the derivation of the parameter estimation technique used was also re-evaluated
and modified so that the parameters continue to be adaptive over the entire image.
This process led to the development of the modified adaptive block Kalmau filter

(MABKF) in this thesis,

When applied to complex images such as those involving high intensity urban
regions, it was determined that the MABKF gave improvement over the original
ABKF. The improvement of the MABKYF over the ABKF is evident in very ho-
mogeneous regions where the multiplicalive noise cffect is not present, and over
complex scenes where the image changes rapidly due to the presence of strong radar
reflectors. The MABKF was also found be be superior in the preservation of strong
point targets. Much of the improved response of the MABKIE can be attributed 1o
the inclusion of the coeflicient of varialion test to detune the filter when the filter
assumptions were invalid. There is some increase in execution time of the MABKI
with respect to the ABKF due to the calculation of the Kalman gain. However, the
removal of the calculation of the derivative of the Kalman gain alter a predeternined
number of iterations reduces this increase greatly without any discernible negative

effects on the capability of the filter.

To address the requirement for greater filter flexibility over complex urban re-
gions the image formation model was re-cxamined. This resulted in the derivation of
the Kalman filter equations for a system involving multiplicative noise in the state
transition equations and a multiplicative MABKE (MMABKF). The MMABKI

filter resulted in greater parameter variation over the image and marginal improve-
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ment in the response of the filter when the noise level was exceedingly high. The
MMABKT allows greater filter flexibility but may result in filter instability in some
cases. Overall, the performance of the MMABKF was slightly better in complex
urban regions offering some improvement, in contrast. As well, the difficulty in de-
termining an acceptable value for oy, precludes easy usage of this form of the Kalman

filter.

The primary problem with the Kalnan filters based on the non-symmetric half
plane region of support was asymmetric distortions. Both the MABKF and ABKF
suffer from asymmetric distortion of the image due to block effects when strong
reflectors are encountered in Lthe image. This issue was addressed by the conversion
of a non-adaptive full plane region of support Kalman filter into an adaptive Kalman
filter similar in form the the MABKF. This FABKF filter was the combination of
three casual Kalman filters feeding a fourth semi-causal full-plane Kalman filter.
Although this filter was much more complicated than the MABKF, the FABKF
gave much better performance than all the other Kalman filters examined in this

thesis and did not suffer from the asymmetric distortions attributed to those filters.

In comparing the results of these filters with the Lee statistical filter it is seen
thal improvements are seen near edges and strong reflectors such as the two point
targets that are located in the harbour that are blurred by the Lee filter as shown
in Figure 2.5. However, if the modified Lee filler proposed by Lopes et al. [40] is
used as a comparison, the point targels are resolved separately. Due to the greater

simplicity of the modilied Lee filter, it would be better suited for routine use for



speckle reduction on SAR imagery. However. as SAR images become more complex

at higher resolutions, methods such as those defined here may have greater utility.

6.1 Summary of Contributions

As a

summary ol the above conclusions, the contributions of this thesis are;

The development of a modified adaptive block Kalman filter encorporating
local statistics measures to further control filter behaviour, This MABKI
filter was shown to perform better than the ABKF on complex SAR images

such as urban regions.

The derivation of the Kalman filter and parameter estimation equations for a
state transition equalion including multiplicative state transition noise, This
enhanced the ability of the Kalman filter to follow the variations common in
SAR images of complex urban environments while having a reduced effect on

homogeneous regions.

The adaptation of the modified adaptive block Kalman filtering paradigm
to an auto-regressive process ulilizing a full plane region of support.  The
use of a Kalman filter based on a full plane model removed the asymimetric
distortions encountered when using Kalman filters based on non-symmetric
half plane models. This resulted in improved results over the other Kalman

filters developed in this thesis.
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6.2 Further Work

In the implementation of these filters, many options presented themselves that were
not taken. ‘These include a modified parameter estimation scheme, speed opti-
mization of the full plane filter. statistical estimation of the multiplicative noise

parameters, and statistical estimation of the additive noise in the state cquations.

The parameter estimation scheme used in the development of the Kalman fil-
ters in Lhis thesis is based on the recursive parameter estimation(RPE) technique by
Ljung and Séderstedm [37}. This system offered such advantages as fast and enforced
convergence of the parameters. However, the method requires the determination of
an approximation of the gradient of the Kalman filter which is computationally ex-
pensive. Tekalp et al. [52] developed a fast implementation of an extended Kalman
filter for parameter estimation for the reduced update Kalman filter(RUPK) devel-
oped by Woods et al. [60]. This system used reduced memory and calculated the
parameter vector in a much less complicated manner than the the RPE. There is

some promise in improved speed performance if such a method were adapted to the

MABKFE or FABKF.

The full-plane adaptive block Kalman filter, used the semi-causal full-planc
model developed by Azimi-Sadjadi and Bannour[11]. The original derivation used
constant parameters for all filters based on a priori determination of the filter pa-
ameters. Thus the filter was not optimized for fast parameter estimation. Future

work could concentrate on rearranging the input vectors and the associated param-



eters so that faster techniques such as those given in {1} and [13] could be used, As
well. the filter problem could he rearranged so that scalar operations could be used

rather than the matrix operations for this thesis.

In implementing the modified Kalman [lilters. the value of the multiplicative
noise variance, @, ; ;. is calculated a priori based on the assnmed statistics of the
image given its formation. ic. intensity or amplitude image and the number of looks,
This value is then modificd using a linear decay function based on the validity of
the multiplicative noise function. A more accurate means of modeling the image
would be Lo use statistical measures to determine the multiplicative noise parameter,
- i.j. locally within the image as it is processed. A odel for this determination is
currently being investigated as a subject in a Ph.D. thesis by K., Fung and may

result in further improvements.

Recalling the evaluation of the Kalinan filter output for the Victoria BC hmage
in Section 5.3.1, it is scen that a value of a2 that gives the desired results for a
medium intensity region over-sinoothes in high intensity regions. This implies that
an adaptive additive noise parameter in the state transition equation (6.1) would
be desirable. This value could also he used so that the multiplicative noise term
used in the MMABKF would not be necessary as the noise in the W term could be

encorporated into the adaptive [/ ; term as in (6.2) [43].

Nij = Ao¥Xijo + AyWXio,; + BU;; {6.1)
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Uin = Uij + (Ex AW X), (6.2)

Tekalp et al. approached this problem, by deriving, e priori, the steady state
Kalman gain values required for eight different edge models [53] and applying the
madel which best fit the data at each point. A texture parameter is defined, T, that
is dependent on the local image statistics. As the image statistics change, the value

of T is modified to allow the state dynamic noise, U, to be modified.

Another approach to this problem is to calculate the Ui, j term based on the
local image statistics and the history of the Kalman filler. This approach is being

investigated as a subject in a Ph.D. thesis by IX.B. Fung.

A suggestion for much more complicated work is the application of Kalman
fillering to process polarimetric SAR images. Polarimetric radars record multiple
polarizations of the radar beam and can give more information for the same region
of image space [61]. Much current work is going into the development of such
polarimetric radars, the SIR-C/X SAR used by the shuttle program being the latest
example. Kalman filtering could be used to greatly enhance such SAR images as

they become more prevalent.
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