
Use registers and multiple

outputs per thread on GPUoutputs per thread on GPU

Vasily Volkov

UC Berkeley

June 30, 2010

• It is widely recommended to optimize for

higher occupancy

• Indeed, you can use higher occupancy to hide

Occupancy is overrated

• Indeed, you can use higher occupancy to hide

arithmetic and memory latencies better

– But don’t have to!

• You can hide latencies keeping occupancy low

– Low occupancy has performance advantages

2

• Latency of arithmetic instructions is ≈24 cycles

– Time between collecting operands and when result is

available

• But throughput is 4 cycles per (SIMD) instruction

– 8 scalar instructions complete each cycle on each SM

Hiding arithmetic pipeline latency

– 8 scalar instructions complete each cycle on each SM

– (here we are talking about “streaming processors”

only)

• Thus, 24/4 = 6 SIMD instructions must be in the

flight, per SM

• E.g. they may come from 6 warps (=192 threads)

3

• Let’s check our hypotheses with experiments

• 1024 dependent instructions in a loop:

for(int i = 0; i < 1024*1024; i += 1024)

{

#pragma unroll

Experimental setup

4

#pragma unroll

for(int j = 0; j < 1024; j++)

{

a = a * b + c;

}

}

• How its performance varies under occupancy?

Performance vs. Occupancy

40%

60%

80%

100%

fr
a

ct
io

n
 o

f
p

e
a

k

Experimental validation: 192 threads is enough
5

0%

20%

64 128 192 256 320 384 448 512

fr
a

ct
io

n
 o

f
p

e
a

k

threads per multiprocessor

• What if we supply independent instructions

from same thread?

for(int i = 0; i < 1024*1024; i += 128)

{

#pragma unroll

for(int j = 0; j < 128; j++)

Use instruction level parallelism (ILP)

6

for(int j = 0; j < 128; j++)

{

a = a * b + c;

d = d * b + c;

}

}

• Shouldn’t this require fewer threads to fill the

pipeline?

More ILP needs less warps

40%

60%

80%

100%

fr
a

ct
io

n
 o

f
p

e
a

k

Now 128 threads suffice
7

0%

20%

64 128 192 256 320 384 448 512

fr
a

ct
io

n
 o

f
p

e
a

k

threads per multiprocessor

• Can we hide all latency using only 64 threads?

– (Can’t run fewer threads due to other bottlenecks)

for(int i = 0; i < 1024*1024; i += 128)

{

Pushing it further

8

{

#pragma unroll

for(int j = 0; j < 128; j++)

{

a = a * b + c;

d = d * b + c;

e = e * b + c;

}

}

64 threads is enough

40%

60%

80%

100%

fr
a

ct
io

n
 o

f
p

e
a

k

We hid all latency using only 6% occupancy
9

0%

20%

64 128 192 256 320 384 448 512

fr
a

ct
io

n
 o

f
p

e
a

k

threads per multiprocessor

• Yes, e.g. if using register blocking

• Or if you compute multiple outputs per thread

Does ILP happen in practice?

10

Can we hide memory latency in a similar

manner?

– It is hundreds of cycles…

11

• Copy one 64-bit word per thread:

__global__ void memcpy(float2 *dst, float2 *src)

{

int iblock = blockIdx.x

+ __mul24(blockIdx.y, gridDim.x);

Memcpy benchmark

12

int index = threadIdx.x

+ __mul24(iblock, blockDim.x);

float2 a0 = src[index];

dst[index] = a0;

}

• Allocate shared memory dynamically to

control occupancy

Memcpy performance

40%

60%

80%

100%

fr
a

ct
io

n
 o

f
p

e
a

k

• Need 320 threads to hide memory latency

13

0%

20%

64 128 192 256 320 384 448 512

fr
a

ct
io

n
 o

f
p

e
a

k

threads per multiprocessor

__global__ void memcpy(float2 *dst, float2 *src)

{

int iblock = blockIdx.x

+ __mul24(blockIdx.y, gridDim.x);

int index = threadIdx.x

+ __mul24(iblock, blockDim.x * 2);

Copy two words per thread

14

float2 a0 = src[index];

float2 a1 = src[index+blockDim.x];

dst[index] = a0;

dst[index+blockDim.x] = a1;

}

• Load two words but wait for latency once

2 words per thread: performance

40%

60%

80%

100%

fr
a

ct
io

n
 o

f
p

e
a

k

Get same performance at lower occupancy
15

0%

20%

64 128 192 256 320 384 448 512

fr
a

ct
io

n
 o

f
p

e
a

k

threads per multiprocessor

4 words per thread: performance

40%

60%

80%

100%

fr
a

ct
io

n
 o

f
p

e
a

k

Get same performance at even lower occupancy
16

0%

20%

64 128 192 256 320 384 448 512

fr
a

ct
io

n
 o

f
p

e
a

k

threads per multiprocessor

8 words per thread: performance

40%

60%

80%

100%

fr
a

ct
io

n
 o

f
p

e
a

k

Get 80% of memory peak at 6% occupancy
17

0%

20%

64 128 192 256 320 384 448 512

fr
a

ct
io

n
 o

f
p

e
a

k

threads per multiprocessor

Can hide both memory and arithmetic latency

using 64 threads

Conclusion so far

18

• Low occupancy = many registers per thread

• So, can keep large working set in registers

– To reduce traffic to other memories

– E.g. to access shared memory less

Who cares?

– E.g. to access shared memory less

19

Can shared memory be a bottleneck?

G80/GT200 Fermi

flops/cycle, a*b+c,

single precision

16 flops 64 flops

words/cycle, 32-bit,

shared memory

8 words 16 words

20

shared memory

ratio 2 flops/word 4 flops/word

• Naïve matrix multiply has 1 flop/word

– Bound by shared memory bandwidth

Common computational pattern when using

shared memory:

• Read from global memory

• Store to shared memory

Shared memory

• Store to shared memory

• Synchronize threads

• Compute using shared memory

Is occupancy important in this case?

21

• Due to synchronization, whole thread block

stalls at once

– no matter how many threads in it:

Whole thread block stalls at once

22

What you need is not many concurrent threads,

but many concurrent thread blocks

Smaller blocks hide latency same

In particular, if you do same work:

23

(This implies doing more work per thread)

Using fewer threads, you hide latency sam:e

• In fact, smaller thread blocks are better!

24

Small thread blocks are better (I)

• Less threads = more registers per thread

25

Small thread blocks are better (II)

• There is a limit on total number of threads

• 1024 on GT200

• This is only 2 thread blocks of size 512

– Enough to hide latency?– Enough to hide latency?

• But 8 thread blocks of size 128

26

Small thread blocks are better (III)

• 2x more work per thread – less than 2x more

registers per thread

– So, less registers per thread block

– Thus, can run more thread blocks concurrently– Thus, can run more thread blocks concurrently

• If already enough concurrent thread blocks?

– Use the extra registers to process larger data

blocks

27

A few simple changes to get 1.4x speedup

Demo: matrix multiply from SDK

28

The baseline

• Matrix multiply example from SDK 2.3:

• Uses 16x16 matrix blocks

• Computes one output per thread

• 16x16 thread blocks

29

• 16x16 thread blocks

• Well optimized otherwise:

– All memory accesses are coalesced

– Data is cached in shared memory

The baseline (CUDA SDK 2.3)

float Csub = 0;

for (int a = aBegin, b = bBegin; a <= aEnd;

a += aStep, b += bStep) {

__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];

__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

AS(ty, tx) = A[a + wA * ty + tx];

BS(ty, tx) = B[b + wB * ty + tx];

__syncthreads();

30

__syncthreads();

for (int k = 0; k < BLOCK_SIZE; ++k)

Csub += AS(ty, k) * BS(k, tx);

__syncthreads();

}

int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;

C[c + wB * ty + tx] = Csub;

The original code (comments not included)

• The baseline runs at 200 Gflop/s

– For 1008x1008 matrices

– Measure only GPU time (no PCIe transfers)

The baseline performance

• Uses only 14 registers per thread

• Sustains 100% occupancy

• What can be better?

31

• In the new code I run 16x8 thread blocks

– Grid size is same

• Half of the threads is eliminated

• Each remaining thread does 2x more work

Step I: do 2 outputs per thread

• Each remaining thread does 2x more work

32

Two outputs per thread (I)

float Csub[2] = {0,0};

for (int a = aBegin, b = bBegin; a <= aEnd;

a += aStep, b += bStep) {

__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];

__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

AS(ty, tx) = A[a + wA * ty + tx];

BS(ty, tx) = B[b + wB * ty + tx];

AS(ty+8, tx) = A[a + wA * (ty+8) + tx];

33

AS(ty+8, tx) = A[a + wA * (ty+8) + tx];

BS(ty+8, tx) = B[b + wB * (ty+8) + tx];

__syncthreads();

Changes are marked in red

• Now have 2 outputs (Csub)

• Each thread fetches 2 elements of A and B

Two outputs per thread (II)

#pragma unroll

for (int k = 0; k < BLOCK_SIZE; ++k)

{

Csub[0] += AS(ty, k) * BS(k, tx);

Csub[1] += AS(ty+8, k) * BS(k, tx);

}

__syncthreads();

}

int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;

34

int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;

C[c + wB * ty + tx] = Csub[0];

C[c + wB * (ty+8) + tx] = Csub[1];

• 2x more flops per thread

• Store 2 outputs in the end

• Now compiler needs a hint to unroll the loop

• New performance: 253 Gflop/s

– 27% speedup!

• Uses only 18 registers per thread

2 outputs/thread: performance

• Uses only 18 registers per thread

– 4 more

• Sustains 75% occupancy

– 25% less

35

Data fetched from shared memory is reused:

Why the speedup?

for (int k = 0; k < BLOCK_SIZE; ++k)

{

Csub[0] += AS(ty, k) * BS(k, tx);

Csub[1] += AS(ty+8, k) * BS(k, tx);

36

}

Reuse was not possible before

• The data was fetched in different threads

• Can’t access registers of another thread

Result: reduced shared memory traffic

• Why not apply same technique again?

• Now use 16x4 thread blocks

• 4 outputs per thread

37

Four outputs per thread (I)

float Csub[4] = {0,0,0,0};

for (int a = aBegin, b = bBegin; a <= aEnd;

a += aStep, b += bStep) {

__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];

__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

AS(ty, tx) = A[a + wA * ty + tx];

BS(ty, tx) = B[b + wB * ty + tx];

AS(ty+4, tx) = A[a + wA * (ty+4) + tx];

38

AS(ty+4, tx) = A[a + wA * (ty+4) + tx];

BS(ty+4, tx) = B[b + wB * (ty+4) + tx];

AS(ty+8, tx) = A[a + wA * (ty+8) + tx];

BS(ty+8, tx) = B[b + wB * (ty+8) + tx];

AS(ty+12,tx) = A[a + wA * (ty+12)+ tx];

BS(ty+12,tx) = B[b + wB * (ty+12)+ tx]

__syncthreads();

Same idea…

Four outputs per thread (II)

#pragma unroll

for (int k = 0; k < BLOCK_SIZE; ++k)

{

Csub[0] += AS(ty, k) * BS(k, tx);

Csub[1] += AS(ty+4, k) * BS(k, tx);

Csub[2] += AS(ty+8, k) * BS(k, tx);

Csub[3] += AS(ty+12,k) * BS(k, tx);

}

__syncthreads();

}

39

}

int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;

C[c + wB * ty + tx] = Csub[0];

C[c + wB * (ty+4) + tx] = Csub[1];

C[c + wB * (ty+8) + tx] = Csub[2];

C[c + wB * (ty+12)+ tx] = Csub[3];

Get even more reuse now…

Unexpected slowdown

New performance is only 235 Gflop/s

• 8% slowdown

What’s the problem?

40

What’s the problem?

Use decuda to figure it out

decuda: disassembler of GPU binaries

• second most useful tool after compiler

• many thanks to Wladimir J. van der Laan for

41

• many thanks to Wladimir J. van der Laan for

developing it!

Many operations on pointers to shared memory:

movsh.b32 $ofs4, $r29, 0x00000000

mad.rn.f32 $r17, s[$ofs4+0x000c], $r4, $r17

mad.rn.f32 $r10, s[$ofs2+0x000c], $r4, $r10

mad.rn.f32 $r4, s[$ofs3+0x000c], $r4, $r18

movsh.b32 $ofs4, $r9, 0x00000002

add.b32 $ofs4, $ofs4, 0x000002a4

Use decuda to figure it out

42

add.b32 $ofs4, $ofs4, 0x000002a4

mov.b32 $r18, $ofs4

mad.rn.f32 $r16, s[$ofs1+0x0010], $r3, $r16

movsh.b32 $ofs4, $r29, 0x00000000

mad.rn.f32 $r17, s[$ofs4+0x0010], $r3, $r17

mad.rn.f32 $r10, s[$ofs2+0x0010], $r3, $r10

mad.rn.f32 $r30, s[$ofs3+0x0010], $r3, $r4

movsh.b32 $ofs4, $r18, 0x00000000

• The problem is poor locality in sequential

access to shared memory

– Need to reload pointers too often

• Solution:

Workaround: transpose blocks

• Solution:

– Use transposed layout in shared memory

• Change all AS(yy,xx) to AS(xx,yy), same with BS

– Pad the arrays

• Define as As[BLOCK_SIZE][BLOCK_SIZE+1]

43

• New performance: 284 Gflop/s

• Uses only 29 registers per thread

– 11 more

New 4 outputs/thread: performance

– 11 more

• Sustains 37.5% occupancy

– 2x lower

44

Outputs/thread 1 2 4

Registers/thread 14 18 29

Occupancy 100% 75% 37.5%

Optimization summary

45

Occupancy 100% 75% 37.5%

Registers/block 3584 2304 1856

Blocks/SM 4 6 6

Gflop/s 200 253 284

At this rate we’ll get to CUBLAS soon:

250

300

350

400

G
fl

o
p

/s

CUBLAS

Optimize further?

46

0

50

100

150

200

1 2 4 8 16

G
fl

o
p

/s

outputs per thread

SDK example

CUBLAS

SGEMM

1

1.5

2

fl
o

p
s/

w
o

rd
Speedup is due to less shared

memory traffic

47

0

0.5

1

1 2 4 8 16

fl
o

p
s/

w
o

rd

outputs per thread

40%

60%

80%

100%

o
cc

u
p

a
n

cy
Run faster at lower occupancy

48

0%

20%

40%

1 2 4

o
cc

u
p

a
n

cy

outputs per thread

• If you optimize for perfect occupancy, you may

lose performance opportunities

• Consider hiding latency by computing multiple

outputs per thread

Conclusion

outputs per thread

• Use registers instead of shared memory

whenever possible

49

